Assignment\#4 Key

1. HAS_SUC(HS) $=\{f \mid \exists x, f(x) \downarrow$, and $f(x)=x+1\}$

a.) Show some minimal quantification of some known primitive recursive predicate that provides an upper bound for the complexity of HS.
$\exists<x, t>[\operatorname{STP}(f, x, t) \&(\operatorname{VALUE}(f, x, t)=x+1)]\}$
b.) Use Rice's Theorem to prove thatHSis undecidable. Be Complete.

HS is non-trivial as $\mathbf{S}(\mathbf{x})=\mathbf{x + 1} \in \mathbf{N D}$ and $\mathbf{C O}(\mathbf{x})=\mathbf{0} \notin \mathbf{N D}$
Let f, g be two arbitrary indices of procedures such that $\forall x f(x)=g(x)$
$f \in$ HS iff $\exists x f(x)=x+1$ iff $f\left(x_{0}\right)=x_{0}+1$ for some x_{0} iff $g\left(x_{0}\right)=x_{0}+1$ as $\forall x f(x)=g(x)$ implies $\exists x g(x)=x+1$ iff $g \in$ HS
$f \notin$ HS iff $\forall x[f(x) \downarrow$ implies $f(x) \neq x+1]$ iff $\forall x[g(x) \downarrow$ implies $g(x \neq x+1]$ as $\forall x f(x)=g(x)$ iff $g \notin N D$
c.) Show that $K=\{f \mid f(f)$ converges $\}$ is many-one reducible to $H S$.

Let f be an arbitrary index. From f, define $\forall x F_{f}(\mathbf{x})=f(f)-f(f)+\mathbf{x + 1}$.
$f \in K$ implies $\forall x F_{f}(x)=x+1$ implies $F_{f} \in H S$.
$\mathrm{f} \notin \mathrm{K}$ implies $\forall \mathbf{x} \mathrm{F}_{\mathrm{f}}(\mathbf{x})$ diverges implies $\mathrm{F}_{\mathrm{f}} \notin \mathbf{H S}$.
Thus, $\mathbf{K} \leq_{m}$ HS
d.) Show that HS is many-one reducible to $\mathbf{K}=\{\mathbf{f} \mid \boldsymbol{f}(\mathbf{f})$ converges $\}$

Let f be an arbitrary index. From f, define $\forall y f_{f}(\mathbf{y})=\exists\langle x, t>\operatorname{STP}(f, x, t) \&(\operatorname{VALUE}(f, x, t)=x+1)$
$\mathbf{f} \in \mathbf{H S}$ implies $\forall \mathbf{y} \mathbf{F}_{\mathrm{f}}(\mathbf{y})$ converges implies $\mathbf{F}_{f}\left(\mathbf{F}_{f}\right)$ converges implies $\mathbf{F}_{\mathrm{f}} \in \mathbf{K}$
$\mathbf{f} \notin \mathbf{H S}$ implies $\forall \mathbf{y} \mathbf{F}_{\mathrm{f}}(\mathbf{y})$ diverges implies $\mathbf{F}_{\mathrm{f}} \notin \boldsymbol{K}$.
Thus, $\mathbf{H S} \leq_{\mathbf{m}} \mathbf{K}$

2. IS _SUC $(I S)=\{f \mid \forall x, f(x) \downarrow$, and $f(x)=x+1\}$

a.) Show some minimal quantification of some known primitive recursive predicate that provides an upper bound for the complexity of IS.
$\forall x \exists \mathrm{t}[\operatorname{STP}(\mathbf{f}, \mathrm{x}, \mathrm{t}) \&(\operatorname{VALUE}(\mathrm{f}, \mathrm{x}, \mathrm{t})=\mathrm{x}+1)]\}$
b.) Use Rice's Theorem to prove that IS is undecidable. Be Complete.

AD is non-trivial as $\mathbf{S}(\mathbf{x})=\mathbf{x + 1} \in \mathbf{A D}$ and $\mathbf{C O}(x)=\mathbf{0} \notin \mathbf{A D}$
Let f, g be two arbitrary indices of procedures such that $\forall x f(x)=g(x)$
$f \in$ IS iff $\forall x f(x)=x+1$ iff $\forall x g(x)=x+1$ iff $g \in$ IS
c.) Show that TOT $=\{f \mid$ for all $x, f(x)$ converges $\}$ is many-one reducible to IS.

Let f be an arbitrary index. From f, define $\forall x F_{f}(x)=f(x)-f(x)+x+1$.
$\mathbf{f} \in$ TOT implies $\forall \mathbf{x} F_{f}(x)=x+1$ implies $F_{f} \in \mathbf{H S}$.
$f \notin$ TOT implies $\exists \mathbf{x} F_{f}(x)$ diverges implies $F_{f} \notin$ HS.
Thus, TOT \leq_{m} HS
d.) Show that HS is many-one reducible to TOT $=\{\mathbf{f} \mid$ for all $\mathbf{x}, \mathrm{f}(\mathbf{x})$ converges $\}$

Let f be an arbitrary index. From f, define $\forall \mathbf{x} \mathrm{F}_{\mathrm{f}}(\mathbf{x})=\mu \mathbf{y}[f(\mathbf{x})=\mathbf{x + 1}]$
$\mathbf{f} \in$ IS implies $\forall \mathbf{x} \boldsymbol{F}_{f}(\mathbf{x})$ converges implies $\boldsymbol{F}_{f} \in$ TOT
$\mathbf{f} \notin$ IS implies $\exists \mathbf{x} \mathbf{F}_{f}(\mathbf{x})$ diverges implies $\mathbf{F}_{f} \notin$ TOT.
Thus, IS \leq_{m} TOT

