Assignment#4 Key

1. HAS_SUC(HS) = { f | $\exists x, f(x) \downarrow$, and f(x) = x+1 }

a.) Show some minimal quantification of some known primitive recursive predicate that provides an upper bound for the complexity of HS.

 $\exists < x,t > [STP(f,x,t) \& (VALUE(f,x,t) = x+1)] \}$

b.) Use Rice's Theorem to prove that HSis undecidable. Be Complete.

HS is non-trivial as $S(x) = x+1 \in ND$ and $CO(x) = 0 \notin ND$

Let f,g be two arbitrary indices of procedures such that $\forall x f(x) = g(x)$

 $f \in HS$ iff $\exists x f(x) = x+1$ iff $f(x_0) = x_0 + 1$ for some x_0 iff $g(x_0) = x_0 + 1$ as $\forall x f(x) = g(x)$ implies $\exists x g(x) = x + 1$ iff $g \in HS$

 $f \notin HS$ iff $\forall x [f(x) \downarrow implies f(x) \neq x + 1]$ iff $\forall x [g(x) \downarrow implies g(x \neq x + 1] as \forall x f(x) = g(x) iff g \notin ND$

c.) Show that K = { f | f(f) converges } is many-one reducible to HS.

Let **f** be an arbitrary index. From **f**, define $\forall \mathbf{x} \mathbf{F}_{f}(\mathbf{x}) = \mathbf{f}(\mathbf{f}) - \mathbf{f}(\mathbf{f}) + \mathbf{x} + \mathbf{1}$. $\mathbf{f} \in \mathbf{K}$ implies $\forall \mathbf{x} \mathbf{F}_{f}(\mathbf{x}) = \mathbf{x} + \mathbf{1}$ implies $\mathbf{F}_{f} \in \mathbf{HS}$. $\mathbf{f} \notin \mathbf{K}$ implies $\forall \mathbf{x} \mathbf{F}_{f}(\mathbf{x})$ diverges implies $\mathbf{F}_{f} \notin \mathbf{HS}$.

Thus, **K** ≤_m **HS**

d.) Show that HS is many-one reducible to K = { f | f(f) converges }

Let **f** be an arbitrary index. From **f**, define $\forall y F_f(y) = \exists \langle x,t \rangle STP(f,x,t) \& (VALUE(f,x,t) = x + 1)$ **f** \in **HS** implies $\forall y F_f(y)$ converges implies $F_f(F_f)$ converges implies $F_f \in K$ **f** \notin **HS** implies $\forall y F_f(y)$ diverges implies $F_f \notin K$.

Thus, **HS** ≤_m **K**

2. IS_SUC(IS) = { f | $\forall x, f(x) \downarrow$, and f(x) = x+1 }

a.) Show some minimal quantification of some known primitive recursive predicate that provides an upper bound for the complexity of **IS**.

 $\forall x \exists t [STP(f,x,t) \& (VALUE(f,x,t) = x + 1)] \}$

b.) Use Rice's Theorem to prove that **IS** is undecidable. Be Complete.

AD is non-trivial as $S(x) = x+1 \in AD$ and $CO(x) = 0 \notin AD$

Let f,g be two arbitrary indices of procedures such that $\forall x f(x) = g(x)$

 $f \in IS \text{ iff } \forall x f(x) = x + 1 \text{ iff } \forall x g(x) = x + 1 \text{ iff } g \in IS$

c.) Show that TOT = { f | for all x, f(x) converges } is many-one reducible to IS.

Let **f** be an arbitrary index. From **f**, define $\forall x F_f(x) = f(x)-f(x) + x + 1$. **f** \in **TOT** implies $\forall x F_f(x) = x+1$ implies $F_f \in HS$. **f** \notin **TOT** implies $\exists x F_f(x)$ diverges implies $F_f \notin HS$.

Thus, **TOT** ≤_m **HS**

d.) Show that HS is many-one reducible to TOT = { f | for all x, f(x) converges }

Let **f** be an arbitrary index. From **f**, define $\forall x F_f(x) = \mu y [f(x) = x + 1]$ $f \in IS$ implies $\forall x F_f(x)$ converges implies $F_f \in TOT$ $f \notin IS$ implies $\exists x F_f(x)$ diverges implies $F_f \notin TOT$.

Thus, **IS** ≤_m **TOT**