
Assignment#3 Key



1. Consider L = {an bs ct | s>n and t>s}. 

Using the Pumping Lemma for CFLs, show L is not a Context-Free Language. 
Assume L is a CFL
Let N > 0 be from PL
Chose string aN bN+1 cN+2
PL breaks into uvwxz, |vwx| ≤ N and |vx| >0 and says ∀i≥0 uviwxiz
Case 1:. vx contains at least one a. Set i=3, then we at least N+2 a’s and only 
N+2 c’s and so string is not in L.
Case 2: vx contains no a’s. Set i = 0, then we still have N a’s but one or both 
of the b’s or c’s have been reduced and yet N+1 and N+2 are as small as they 
can be, so the new string is not in L.
These cases cover all possibilities and so L is not a CFL.



2. Case Analysis of Languages Closures

Consider some language L. For each of the following cases, write in one 
of (i) through (vi), to indicate what you can say conclusively about L’s 
complexity, where
(i) L is definitely regular
(ii) L is context-free, possibly not regular, but then again it might be 
regular
(iii) L is context-free, and definitely not regular
(iv) L might not even be context-free, but then again it might even be 
regular
(v) L is definitely not regular, and it may or may not be context-free
(vi) L is definitely not even context-free



2a. Present arguments for the following case

L = B - A, where A is context-free, non-regular and B is regular
Can be Regular as in case where B ∩ A = ∅ and so L = B, which is 
Regular
Can be a CFL as in case where B = a*b*, A = anbn and so L = anbm, n≠m, 
which is a CFL (we have written a CFG for it previously)
Can be a CSL as in the case 
B = {x | x∈{a,b}* and |x| is even},
A = {yz | y,z∈{a,b}*, y≠z, |y|=|z|}; 
L = {ww | w∈{a,b}*) which is a CSL (we used PL to show this)
This is case (iv)



2b. Present arguments for the following case

L = A - B, where A is context-free, non-regular and B is regular
Can be Regular as in case where B = Σ* and so L = ∅, which is Regular
Can be a CFL as in case where B ∩ A = ∅ and so L = A, a CFL
Since A – B = A ∩ ~B, Regular are closed under complement, and CFLs 
are closed under intersection with Regular, then must be no worse than 
a CFL. 
This is case (ii)



2c. Present arguments for the following case

A ⊂ L, where A is Context-Free
Can be Regular as in case where L = a*b* and A = {anbn | n ≥ 0 }
Can be a CFL as in case where L = A 
Can be a CSL as in the case L = anbncn and A = {anbnc* | n ≥ 0 } 
To be honest L can be arbitrarily complex. For instance, consider 
L = anbncf(n) where f(n) is any total mapping, maybe not even a 
computable one, then A = {anbnc* | n ≥ 0 } ⊂ L
This is case (iv)



3. Show prfs are closed under halfway mutual 
induction
Halfway mutual induction means that each induction step after 
calculating the base is computed using the floor((y+1)/2 value of the 
other function.
The formal hypothesis is:
Assume g1, g2, h1 and h2 are already known to be prf, then so 
are f1 and f2, where
f1(x,0) = g1(x); f2(x,0) = g2(x)
f1(x,y+1) = h1(f2(x, floor((y+1)/2))); f2(x,y+1) = h2(f1(x, floor((y+1)/2))
Note tha // does the floor of division and it is a prf
Proof is by construction
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3. Building and Accessing Values in a Trace

First, we recall how our pairing function works and that we can use it to encode arbitrarily long 
tuples. We can essentially think of a number as representing a stack with a head and a tail. The 
head is a single element, and the tail is the remaining elements of the stack.
<x, y> = 2x * (2y+1) – 1; <z>1 = exp(z+1, 0); <z>2 = ((( z + 1 ) // 2 <z>1 ) – 1 ) // 2

Given this, we want an accessor for any arbitrary element in such a k-tuple. We will start by 
providing a way to get the y-th tail of a tuple.

Item(z, 0) = <z>1 // essentially the Head of the list, say of <a, b, c, d, e,  0>; 0 is bottom

Item(z, y+1) = Item(<z>2,y)  // in above case if y =0, we get a; 
// if y+1=1, we get Item(<b,c,d,e,0>,0) = b

// if y+1=2 we get Item(<b,c,d,e,0>,1) = Item(<c,d,e,0>,0) = c

2/24/22 © UCF CS 8



3. Halfway Mutual Induction (Recursion)

F will do all computations in “parallel”

F(x,0) = <<g1(x), g2(x)>, 0> // bases for both; creating a list of pairs

F(x, y+1) = << h1( <F(x,Item((y+1)//2))>2), h2(<F(x,Item((y+1)//2))>1))>, F(x,y) >
F produces a list of pairs containing the pair f1f2, in its first and second components, respectively. 
The above shows F is a prf. 

f1 and f2, are then defined from F by getting the first component of the y-th pair. That is, itself, a 
pair and so we then extract its first component for f1 and second for f2.
f1(x,y) = << F(x,y) >1>1

f2(x,y) = << F(x,y) >1>2

This shows that f1 and f2 are also prf’s, as was desired.
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