Assignment#2 Key

1a. ProperPrefix(L) ={x | wisin L, y is not lambda and w = xy }

e Let L be a Regular language over the finite alphabet 2. For each a€Z, define
f(a) ={a,a’}, g(a) =a’ and h(a) = a, h(a’) = A,
f is a substitution, g and h are homomorphisms.
ProperPrefix(L) = h(f(L) n (Z* g(Z*))

* Why this works:

f(qlg.) ets us every possible random priming of letters of strings in L.

2 g%i*) gets every word that ends with at least one letter primed and
starts in a sequence (possibly null) of unprimed letters. Intersecting this
with f(L) gets strings in L with non-null suffixes primed and the rest(the
proper prefixLunprimed.

Applying the homomorphism h erases all primed letters getting proper
prefixes. This works as Regular Languages are closed under intersection,
concatenation, *, ¥, substitution, and homomorphism.

e Can also create an NFA from DFA for L, but that’s too much work.

1a. ProperSuffix(L) ={x | wisin L, y is not lambda and w = xy
or w=yx}

e Let L be a Regular language over the finite alphabet 2. For each a€Z, define
f(a) ={a,a’}, g(a) =a’ and h(a) = a, h(a’) = A,
f is a substitution, g and h are homomorphisms.
ProperSuffix(L) = h(f(L) n (g(Z*) £%))

* Why this works:

f(LZ) ets us every possible random priming of letters of strings in L.

g(*?Z* gets every word that starts with at least one letter primed and

ends in a sequence (possibly null) of unprimed letters. Intersecting this

with f(L) gets strings in L with non-null prefixes primed and the restThe
proper suffix) unprimed.

Ap]Joning the homomorphism h erases all primed letters getting proper
suffixes. This works as Regular Languages are closed under intersection,

concatenation, *, ¥, substitution, and homomorphism.
e Can also create an NFA from DFA for L, but that’s too much work.

1a. ProperPreOrSuffix(L) ={x | wisin L, y is not lambda and w
=YX |

* Let L be a Regular language over the finite alphabet Z. For each a€g,
define f(a) = {a,a’}, g(a) = a’ and h(a) = a, h(a’) =A,
f is a substitution, g and h are homomorphismes.
ProperPreOrSuffix(L) = h(f(L) n (Z* g(2*) U (g(Z*) %))

* Why this works:
Look back at ProperPrefix and ProperSuffix. This works as Regular
Languages are closed union, intersection, concatenation, *, *,
substitution, and homomorphism..

e Can also create an NFA from DFA for L, but that’s too much work.

1b. LastHalf(L) = {y | there exists a string x,
x| = |y| and xyisin L}

* Let L be a Regular language over the finite alphabet 2. Assume L is recognized by the DFA
A = {Q, 2, 61, q,, F). Define the NFA

A, = ((QxQxQ)U{q,}, 2, 8,, qo, F’), where

6,(q0,A) = union(q€Q) {<q,, q, 9 >} and

6; <s, t, u>, b)=union(a€l) { < §,(s,a), 6,(t,b), u>} s,t,LueQ

F" = union(q€Q) {<q, f, g>}, fEF

* Why this works:
The first part of a state <s, t, u> tracks A, for all possible strings that are the same length as what
A, is reading in parallel. We guess it will end up in state q and so u=q to remember that guess.
The second part of state <'s, t, u > tracks A, as if it has read a string that ended in state q (u=q).

* Thus, we start with a Euess (g9) as to what state A; might end up in reading a string of length x.
The %uess is checked by requiring us to start up in state q in the mid part which reads y, where

Ix]=]yl.

* The final states check that our guess was correct, and that we could end in a final state of A,, with
using the guess when we started reading the second part.

2. Use Regular Equations to Solve for B

(.‘a a D :
a
°] k e e
A

A=A

B=Aa+Ca =a+ Ca=a+Ba* (ba*)* a=a(a* (ba*)* a)*

C=B+Da =B+ (Cb+B)a*=B+Ba*+Cbha*=(B +B a*) (ba*) = Ba* (ba*)*
D=Cb+E =Cb +B + Da=(Cb +B)a*

E=B +Da

L=B =a(a* (ba*)* a)*

2. Use Lambda Closure and Regular Equations to Solve
for B (which becomes <BCDE3)

A=A

<BCDE> = Aa + <CDE>a + <BCDE>a = a + <BCDE> (a + b(ab)*a) = a(a + b(ab)*a)*
D = <BCDE>b + <CDE>b

<CDE> = Da = <BCDE>b + Dab = <BCDE>b(ab)*

L = <BCDE> = a(a + b(ab)* a)* = a(a* (ba*)* a)*
Proof of equivalent can be done by mutual inclusion.

3.L={ba"ab" | n>0}

a.) Use the Pumping Lemma for Regular Languages to show L is not Regular.
Assume L is Regular

Let N>0 be value provided by PL

Choose baN abN as a string in L

PL splits baN abN into xyz such that |[xy|< N and |y| > 0.

| have two cases:

y contains a b. This means the b is the starting character as |xy|< N

Let i=0 then we erase the starting b and the resulting string is not in L.

y is strictly over a’s. Set i=0 and we get ba™-lYl abN but then the starting a’s don’t
match the ending b in number and so the resulting string is not in L.

That two cases cover all possible cases, given the constraints, and so we get a
contradiction for all possibilities and so L is not Regular based on the PL.

3.L={ba"ab" | n>0}

b.) Use the Myhill-Nerode Theorem to show L is not Regular.
Define the equivalence classes [bal], i > 0

Clearly ba'ab' is in L, but balab! is notin L when j #i, i, j>0

Thus, [a'] # [a]] when j #1, i, j>0 and so the index of R, is infinite.

By Myhill-Nerode, L is not Regular.

