Assignment\#2 Key

1a. $\operatorname{ProperPrefix}(\mathrm{L})=\{x \mid w$ is $\mathrm{in} L, y$ is not lambda and $w=x y\}$

- Let \mathbf{L} be a Regular language over the finite alphabet $\boldsymbol{\Sigma}$. For each $\mathbf{a} \boldsymbol{\Sigma} \boldsymbol{\Sigma}$, define $f(a)=\left\{a, a^{\prime}\right\}, g(a)=a^{\prime}$ and $h(a)=a, h\left(a^{\prime}\right)=\lambda$, f is a substitution, g and h are homomorphisms. ProperPrefix $(\mathrm{L})=\mathrm{h}\left(\mathrm{f}(\mathrm{L}) \cap\left(\Sigma^{*} \mathrm{~g}\left(\Sigma^{+}\right)\right)\right.$
- Why this works:
$f(L)$ gets us every possible random priming of letters of strings in L. $\Sigma^{*} \mathbf{g}\left(\Sigma^{+}\right)$gets every word that ends with at least one letter primed and starts in a sequence (possibly null) of unprimed letters. Intersecting this with $f(L)$ gets strings in L with non-null suffixes primed and the rest(the proper prefix) unprimed.
Applying the homomorphism h erases all primed letters getting proper prefixes. This works as Regular Languages are closed under intersection, concatenation, *, +, substitution, and homomorphism.
- Can also create an NFA from DFA for L, but that's too much work.

1a. ProperSuffix $(L)=\{x \mid w$ is in L, y is not lambda and $w=x y$ or $w=y x\}$

- Let \mathbf{L} be a Regular language over the finite alphabet $\boldsymbol{\Sigma}$. For each $\mathbf{a} \in \boldsymbol{\Sigma}$, define $f(a)=\left\{a, a^{\prime}\right\}, g(a)=a^{\prime}$ and $h(a)=a, h\left(a^{\prime}\right)=\lambda$,
f is a substitution, g and h are homomorphisms.
ProperSuffix $(\mathrm{L})=\mathrm{h}\left(\mathrm{f}(\mathrm{L}) \cap\left(\mathrm{g}\left(\Sigma^{+}\right) \Sigma^{*}\right)\right)$
- Why this works:
$f(L)$ gets us every possible random priming of letters of strings in L.
$\mathbf{g}\left(\Sigma^{+}\right) \Sigma^{*}$ gets every word that starts with at least one letter primed and ends in a sequence (possibly null) of unprimed letters. Intersecting this with $f(L)$ gets strings in L with non-null prefixes primed and the restThe proper suffix) unprimed.
Applying the homomorphism h erases all primed letters getting proper suffixes. This works as Regular Languages are closed under intersection, concatenation, ${ }^{*},+$, substitution, and homomorphism.
- Can also create an NFA from DFA for L, but that's too much work.

1a. ProperPreOrSuffix $(\mathrm{L})=\{x \mid w$ is in L, y is not lambda and w $=y x\}$

- Let \mathbf{L} be a Regular language over the finite alphabet $\boldsymbol{\Sigma}$. For each $\mathbf{a} \in \boldsymbol{\Sigma}$, define $f(a)=\left\{a, a^{\prime}\right\}, g(a)=a^{\prime}$ and $h(a)=a, h\left(a^{\prime}\right)=\lambda$, f is a substitution, g and \mathbf{h} are homomorphisms.
ProperPreOrSuffix $(\mathrm{L})=\mathbf{h}\left(\mathrm{f}(\mathrm{L}) \cap\left(\Sigma^{*} \mathbf{g}\left(\Sigma^{+}\right) \cup\left(\mathrm{g}\left(\mathbf{\Sigma}^{+}\right) \Sigma^{*}\right)\right)\right.$
- Why this works:

Look back at ProperPrefix and ProperSuffix. This works as Regular Languages are closed union, intersection, concatenation, ${ }^{*},{ }^{+}$, substitution, and homomorphism..

- Can also create an NFA from DFA for \mathbf{L}, but that's too much work.

1b. LastHalf(L) $=\{y \mid$ there exists a string x,
 $$
|x|=|y| \text { and } x y \text { is in } L\}
$$

- Let \mathbf{L} be a Regular language over the finite alphabet $\boldsymbol{\Sigma}$. Assume \mathbf{L} is recognized by the DFA $A_{1}=\left(Q, \Sigma, \delta_{1}, q_{1}, F\right)$. Define the NFA
$A_{2}=\left((Q \times Q \times Q) \cup\left\{q_{0}\right\}, \Sigma, \delta_{2}, q_{0}, F^{\prime}\right)$, where
$\delta_{2}\left(q_{0}, \lambda\right)=$ union $(q \in Q)\left\{\left\langle q_{1}, q, q\right\rangle\right\}$ and
$\delta_{2}^{2}(<s, t, u>, b)=$ union $(a \in \Sigma)\left\{<\delta_{1}(s, a), \delta_{1}(t, b), u>\right\}, s, t, u \in Q$
$F^{\prime}=$ union $(q \in Q)\{\langle q, f, q\rangle\}, f \in F$
- Why this works:

The first part of a state $<\mathbf{s}, \mathbf{t}, \mathbf{u}>\operatorname{tracks} \mathbf{A}_{1}$ for all possible strings that are the same length as what \mathbf{A}_{2} is reading in parallel. We guess it will end up in state \mathbf{q} and so $\mathbf{u}=\mathbf{q}$ to remember that guess. The second part of state $<\mathbf{s}, \mathbf{t}, \mathbf{u}>$ tracks \mathbf{A}_{1} as if it has read a string that ended in state $\mathbf{q}(\mathbf{u}=\mathbf{q})$.

- Thus, we start with a guess (q) as to what state \mathbf{A}_{1} might end up in reading a string of length \mathbf{x}. The guess is checked by requiring us to start up in state \mathbf{q} in the mid part which reads \mathbf{y}, where $|x|=|y|$.
- The final states check that our guess was correct, and that we could end in a final state of \mathbf{A}_{1}, with using the guess when we started reading the second part.

2. Use Regular Equations to Solve for B

$\mathrm{A}=\boldsymbol{\lambda}$
$B=A a+C a$

$$
\begin{aligned}
& =a+C a=a+B a^{*}\left(b a^{+}\right)^{*} a=a\left(a^{*}\left(b a^{+}\right)^{*} a\right)^{*} \\
& =B+(C b+B) a^{+}=B+B a^{+}+C b a^{+}=\left(B+B a^{+}\right)\left(b a^{+}\right)=B a^{*}\left(b a^{+}\right)^{*} \\
& =C b+B+D a=(C b+B) a^{*}
\end{aligned}
$$

$\mathrm{C}=\mathrm{B}+\mathrm{Da}$
$E=B+D a$
$\mathrm{L}=\mathrm{B}=\mathrm{a}\left(\mathrm{a}^{*}\left(\mathrm{ba} \mathrm{a}^{+}\right)^{*} \mathrm{a}\right)^{*}$
2. Use Lambda Closure and Regular Equations to Solve for B (which becomes $<B C D E_{\text {x }}$)

3. $L=\left\{b a^{n} a b^{n} \mid n>0\right\}$

a.) Use the Pumping Lemma for Regular Languages to show L is not Regular.

Assume \mathbf{L} is Regular
Let $\mathbf{N}>\mathbf{0}$ be value provided by PL
Choose $\mathbf{b a}^{\mathbf{N}} \mathbf{a b}^{\mathbf{N}}$ as a string in \mathbf{L}
PL splits $\mathbf{b a}^{\mathbf{N}} \mathbf{a b}^{\mathbf{N}}$ into $\mathbf{x y z}$ such that $|\mathrm{xy}| \leq \mathbf{N}$ and $|\mathrm{y}|>\mathbf{0}$.
I have two cases:
\mathbf{y} contains $\mathbf{a} \mathbf{b}$. This means the \mathbf{b} is the starting character as $|\mathbf{x y}| \leq \mathbf{N}$ Let $\mathbf{i}=\mathbf{0}$ then we erase the starting \mathbf{b} and the resulting string is not in \mathbf{L}. \mathbf{y} is strictly over \mathbf{a}^{\prime}. Set $\mathbf{i = 0}$ and we get $\mathbf{b a}^{\mathbf{N}-|y|} \mathbf{a b}^{\mathbf{N}}$ but then the starting \mathbf{a}^{\prime} don't match the ending \mathbf{b} in number and so the resulting string is not in \mathbf{L}.
That two cases cover all possible cases, given the constraints, and so we get a contradiction for all possibilities and so L is not Regular based on the PL.

3. $L=\left\{b a^{n} a b^{n} \mid n>0\right\}$

b.) Use the Myhill-Nerode Theorem to show L is not Regular. Define the equivalence classes [bai], $\mathbf{i}>\mathbf{0}$
Clearly $\boldsymbol{b a}^{\mathbf{i}} \mathbf{a b}^{\mathbf{i}}$ is in \mathbf{L}, but bajabi is not in \mathbf{L} when $\mathbf{j} \neq \mathbf{i}, \mathbf{i}, \mathbf{j}>\mathbf{0}$
Thus, [aid ${ }^{i}$ [ai] when $j \neq \mathbf{i}, \mathrm{i}, \mathrm{j}>\mathbf{0}$ and so the index of \mathbf{R}_{L} is infinite.
By Myhill-Nerode, \mathbf{L} is not Regular.

