
Assignment#2 Key



1a. ProperPrefix(L) = { x | w is in L, y is not lambda and w = xy }

• Let L be a Regular language over the finite alphabet Σ. For each a∈Σ, define 
f(a) = {a,a’}, g(a) = a’ and h(a) = a, h(a’) = λ, 
f is a substitution, g and h are homomorphisms.
ProperPrefix(L) = h(f(L) ∩ (Σ* g(Σ+))
• Why this works: 

f(L) gets us every possible random priming of letters of strings in L.
Σ* g(Σ+) gets every word that ends with at least one letter primed and 
starts in a sequence (possibly null) of unprimed letters. Intersecting this 
with f(L) gets strings in L with non-null suffixes primed and the rest(the 
proper prefix) unprimed. 
Applying the homomorphism h erases all primed letters getting proper 
prefixes. This works as Regular Languages are closed under intersection, 
concatenation, *, +, substitution, and homomorphism.
• Can also create an NFA from DFA for L, but that’s too much work.



1a. ProperSuffix(L) = { x | w is in L, y is not lambda and w = xy
or w = yx }

• Let L be a Regular language over the finite alphabet Σ. For each a∈Σ, define 
f(a) = {a,a’}, g(a) = a’ and h(a) = a, h(a’) = λ, 
f is a substitution, g and h are homomorphisms.
ProperSuffix(L) = h(f(L) ∩ (g(Σ+) Σ*))
• Why this works: 

f(L) gets us every possible random priming of letters of strings in L.
g(Σ+) Σ* gets every word that starts with at least one letter primed and 
ends in a sequence (possibly null) of unprimed letters. Intersecting this 
with f(L) gets strings in L with non-null prefixes primed and the restThe
proper suffix) unprimed. 
Applying the homomorphism h erases all primed letters getting proper 
suffixes. This works as Regular Languages are closed under intersection, 
concatenation, *, +, substitution, and homomorphism.
• Can also create an NFA from DFA for L, but that’s too much work.



1a. ProperPreOrSuffix(L) = { x | w is in L, y is not lambda and w 
= yx }

• Let L be a Regular language over the finite alphabet Σ. For each a∈Σ, 
define f(a) = {a,a’}, g(a) = a’ and h(a) = a, h(a’) = λ, 
f is a substitution, g and h are homomorphisms.
ProperPreOrSuffix(L) = h(f(L) ∩ (Σ* g(Σ+) ∪ (g(Σ+) Σ*))
• Why this works: 

Look back at ProperPrefix and ProperSuffix. This works as Regular 
Languages are closed union, intersection, concatenation, *, +, 
substitution, and homomorphism..
• Can also create an NFA from DFA for L, but that’s too much work.



1b. LastHalf(L) = { y | there exists a string x , 
|x| = |y| and xy is in L }

• Let L be a Regular language over the finite alphabet Σ. Assume L is recognized by the DFA 
A1 = (Q, Σ, δ1, q1, F). Define the NFA 
A2 = ((Q×Q×Q)∪{q0}, Σ, δ2, q0, F’), where 
δ2(q0,λ) = union(q∈Q) {<q1, q, q >} and 
δ2(< s, t, u >, b) = union(a∈Σ) { < δ1(s,a), δ1(t,b), u> }, s,t,u ∈ Q
F’ = union(q∈Q) {<q, f, q>}, f∈F

• Why this works: 
The first part of a state < s, t, u> tracks A1 for all possible strings that are the same length as what 
A2 is reading in parallel. We guess it will end up in state q and so u=q to remember that guess.
The second part of state < s, t, u > tracks A1 as if it has read a string that ended in state q (u=q). 

• Thus, we start with a guess (q) as to what state A1 might end up in reading a string of length x.
The guess is checked by requiring us to start up in state q in the mid part which reads y, where 
|x|=|y|.

• The final states check that our guess was correct, and that we could end in a final state of A1, with 
using the guess when we started reading the second part.



2. Use Regular Equations to Solve for B

A = λ
B = Aa + Ca = a + Ca = a + Ba* (ba+)* a = a(a* (ba+)* a)*
C = B + Da = B + (Cb + B) a+ = B + B a+ + Cba+ = (B + B a+) (ba+) = Ba* (ba+)* 
D = Cb + E = Cb + B + Da = (Cb + B) a*
E = B + Da

L = B = a(a* (ba+)* a)*



2. Use Lambda Closure and Regular Equations to Solve 
for B (which becomes <BCDE>)

A = λ
<BCDE> = Aa + <CDE>a + <BCDE>a = a + <BCDE>  (a + b(ab)*a) = a(a + b(ab)*a)* 
D = <BCDE>b + <CDE>b
<CDE> = Da = <BCDE>b + Dab = <BCDE>b(ab)*

L = <BCDE> = a(a + b(ab)* a)* = a(a* (ba+)* a)*
Proof of equivalent can be done by mutual inclusion.



3. L = { ban abn | n > 0 }

a.) Use the Pumping Lemma for Regular Languages to show L is not Regular.
Assume L is Regular
Let N>0 be value provided by PL
Choose baN abN as a string in L
PL splits baN abN into xyz such that |xy|≤ N and |y| > 0.
I have two cases:
y contains a b. This means the b is the starting character as |xy|≤ N
Let i=0 then we erase the starting b and the resulting string is not in L.
y is strictly over a’s. Set i=0 and we get baN-|y| abN but then the starting a’s don’t 
match the ending b in number and so the resulting string is not in L.
That two cases cover all possible cases, given the constraints, and so we get a 
contradiction for all possibilities and so L is not Regular based on the PL.



3. L = { ban abn | n > 0 }

b.) Use the Myhill-Nerode Theorem to show L is not Regular.
Define the equivalence classes [bai], i > 0
Clearly baiabi is in L, but bajabi is not in L when j ≠ i, i, j>0
Thus, [ai] ≠ [aj] when j ≠ i, i, j>0 and so the index of RL is infinite.
By Myhill-Nerode, L is not Regular.


