Assignment\#4 Sample Key

1. Show S inf. rec. iff S is the range of a monotonically increasing function

- Let $f_{s}(\mathbf{x}+\mathbf{1})>\mathrm{f}_{\mathbf{s}}(\mathbf{x})$, and Range $\left(\mathrm{f}_{\mathbf{s}}(\mathbf{x})\right)=\mathbf{S}$. \mathbf{S} is decided by the characteristic function

$$
\chi_{s}(x)=\exists y \leq x\left[f_{s}(y)=x\right]
$$

The above works as \mathbf{x} must show up within the first $\mathbf{x + 1}$ numbers listed since f_{s} is monotonically increasing.

- Let \mathbf{S} be infinite recursive. As \mathbf{S} is recursive, it has a characteristic function where $\chi_{s}(x)$ is true iff \mathbf{x} is in \mathbf{S}.
Define the monotonically increasing enumerating function $f_{s}(\mathbf{x})$ where
$\mathrm{f}_{\mathrm{s}}(0)=\mu \mathrm{x}\left[\chi_{\mathrm{s}}(\mathrm{x})\right]$
$\mathrm{f}_{\mathrm{s}}(\mathrm{y}+1)=\mu \mathrm{x}>\mathrm{f}_{\mathrm{s}}(\mathrm{y})\left[\chi_{\mathrm{s}}(x)\right]$
As required, this enumerates the elements of \mathbf{S} in order, low to high.

2. If S is infinite re, then S has an infinite recursive subset R

- Let $\mathbf{f}_{\mathbf{s}}$ be an algorithm where $\mathbf{S}=$ range $\left(\mathbf{f}_{\mathrm{s}}\right)$ is an infinite set
- Define the monotonically increasing function $f_{R}(x)$ by $f_{R}(0)=f_{s}(0)$
$f_{R}(y+1)=f_{s}\left(\mu x\left[f_{s}(x)>f_{R}(y)\right]\right)$
- The above is monotonically increasing because each iteration seeks a larger number and it will always succeed since \mathbf{S} is itself infinite and so has no largest value. Also, \mathbf{R} is clearly a subset of \mathbf{S} since each element is in the range of f_{s}.
- From \#2, \mathbf{R} is infinite recursive as it is the range of a monotonically increasing algorithm f_{R}.
- Combining, \mathbf{R} is an infinite recursive subset of \mathbf{S}, as was desired.

3. NotDominating(ND) $=\{\mathrm{f} \mid$ for some $\mathrm{x}, \mathrm{f}(\mathrm{x})<\mathrm{x}\}$.

a.) Show some minimal quantification of some known primitive recursive predicate that provides an upper bound for the complexity of ND.
$\exists<\mathrm{x}, \mathrm{t}>[\operatorname{STP}(\mathrm{f}, \mathrm{x}, \mathrm{t}) \&(\operatorname{VALUE}(\mathrm{f}, \mathrm{x}, \mathrm{t})<\mathrm{x})]\}$
b.) Use Rice's Theorem to prove that ND is undecidable. Be Complete.

ND is non-trivial as $\mathbf{C O}(\mathbf{x})=\mathbf{0} \in \mathbf{N D}$ and $\mathbf{S}(\mathbf{x})=\mathbf{x + 1} \notin \mathbf{N D}$
Let f, g be two arbitrary indices of procedures such that $\forall x f(x)=g(x)$
$f \in$ ND iff $\exists x f(x)<x$ iff $f\left(x_{0}\right)<x_{0}$ for some x_{0} iff $g\left(x_{0}\right)<x_{0}$ as $\forall x f(x)=g(x)$ implies $\exists x g(x)<x$ iff $g \in$ ND
$\mathrm{f} \notin \mathrm{ND}$ iff $\forall \mathrm{x}[\mathrm{f}(\mathrm{x}) \downarrow$ implies $\mathrm{f}(\mathrm{x})>\mathrm{x}]$ iff $\forall \mathrm{x}[\mathrm{g}(\mathrm{x}) \downarrow$ implies $\mathrm{g}(\mathrm{x})>\mathrm{x}]$ as $\forall \mathrm{xf}(\mathrm{x})=\mathrm{g}(\mathrm{x})$ iff $\mathrm{g} \notin \mathrm{ND}$
c.) Show that $K=\{f \mid f(f)$ converges $\}$ is many-one reducible to ND.

Let f be an arbitrary index. From f, define $\forall x F_{f}(\mathbf{x})=f(f)-f(f)$.
$f \in K$ implies $\forall x F_{f}(x)=0$ implies $F_{f} \in N D$.
$\mathrm{f} \notin \mathbf{K}$ implies $\forall \mathbf{x} \mathbf{F}_{\mathrm{f}}(\mathbf{x})$ diverges implies $\mathbf{F}_{\mathrm{f}} \notin \mathbf{N D}$.
Thus, $\mathbf{K} \leq_{m}$ ND
d.) Show that ND is many-one reducible to $K=\{f \mid f(f)$ converges $\}$

Let \mathbf{f} be an arbitrary index. From \mathbf{f}, define $\forall \mathbf{y} \boldsymbol{F}_{\mathrm{f}}(\mathbf{y})=\exists\langle\mathbf{x}, \mathbf{t}>\operatorname{STP}(\mathbf{f}, \mathbf{x}, \mathrm{t}) \&(\operatorname{VALUE}(\mathbf{f}, \mathrm{x}, \mathrm{t})<\mathbf{x})$
$\mathbf{f} \in$ ND implies $\forall \mathbf{y} \mathbf{F}_{\mathrm{f}}(\mathbf{y})$ converges implies $\mathrm{F}_{\mathrm{f}}\left(\mathbf{F}_{\mathrm{f}}\right)$ converges implies $\mathbf{F}_{\mathrm{f}} \in \mathbf{K}$
$\mathbf{f} \notin \mathbf{N D}$ implies $\forall \mathbf{y} \mathbf{F}_{\mathrm{f}}(\mathbf{y})$ diverges implies $\mathbf{F}_{\mathrm{f}} \notin \mathbf{K}$.
Thus, $\mathrm{ND} \leq_{\mathrm{m}} \mathrm{K}$

4. AlwaysDominates $(A D)=\{f \mid$ for all $x, f(x)>x\}$

a.) Show some minimal quantification of some known primitive recursive predicate that provides an upper bound for the complexity of AD.
$\forall x \exists \mathrm{t}[\operatorname{STP}(\mathrm{f}, \mathrm{x}, \mathrm{t}) \&(\operatorname{VALUE}(\mathrm{f}, \mathrm{x}, \mathrm{t})>\mathrm{x})]\}$
b.) Use Rice's Theorem to prove that AD is undecidable. Be Complete.

AD is non-trivial as $\mathbf{S}(\mathbf{x})=\mathbf{x + 1} \in \mathbf{A D}$ and $\mathbf{C O}(x)=\mathbf{0} \notin \mathbf{A D}$
Let f, g be two arbitrary indices of procedures such that $\forall x f(x)=g(x)$
$f \in A D$ iff $\forall x f(x)<x$ iff $\forall x g(x)<x$ iff $g \in A D$
c.) Show that TOT $=\{f \mid$ for all $x, f(x)$ converges $\}$ is many-one reducible to AD.

Let f be an arbitrary index. From f, define $\forall x F_{f}(x)=f(x)-f(x)+x+1$.
$f \in$ TOT implies $\forall x F_{f}(x)=x+1$ implies $F_{f} \in A D$.
$f \notin$ TOT implies $\exists \mathbf{x} F_{f}(x)$ diverges implies $F_{f} \notin A D$.
Thus, TOT \leq_{m} AD
d.) Show that AD is many-one reducible to TOT $=\{\mathbf{f} \mid$ for all $\mathbf{x}, \mathrm{f}(\mathbf{x})$ converges $\}$

Let f be an arbitrary index. From f, define $\forall x F_{f}(x)=\mu y[f(x)>x]$
$f \in$ AD implies $\forall \mathbf{x} F_{f}(\mathbf{x})$ converges implies $F_{f} \in$ TOT
$f \notin A D$ implies $\exists x F_{f}(x)$ diverges implies $F_{f} \notin$ TOT.
Thus, $A D \leq_{m}$ TOT

