Assignment#4 Sample Key

1. Show **S** inf. rec. iff **S** is the range of a monotonically increasing function

- Let f_s(x+1) > f_s(x), and Range(f_s(x)) = S. S is decided by the characteristic function
 χ_s(x) = ∃ y ≤ x [f_s(y) == x]
 The above works as x must show up within the first x+1 numbers listed since f_s is monotonically increasing.
- Let **S** be infinite recursive. As **S** is recursive, it has a characteristic function where $\chi_s(x)$ is true iff **x** is in **S**. Define the monotonically increasing enumerating function $f_s(x)$ where

$$f_{s}(0) = \mu x [\chi_{s}(x)]$$

$$f_{s}(y+1) = \mu x > f_{s}(y) [\chi_{s}(x)]$$

As required, this enumerates the elements of **S** in order, low to high.

2. If **S** is infinite re, then **S** has an infinite recursive subset **R**

- Let **f**_s be an algorithm where **S** = **range(f**_s) is an infinite set
- Define the monotonically increasing function $f_R(x)$ by $f_R(0) = f_S(0)$ $f_R(y+1) = f_S(\mu x [f_S(x) > f_R(y)])$
- The above is monotonically increasing because each iteration seeks a larger number and it will always succeed since S is itself infinite and so has no largest value. Also, R is clearly a subset of S since each element is in the range of f_s.
- From #2, **R** is infinite recursive as it is the range of a monotonically increasing algorithm f_R .
- Combining, **R** is an infinite recursive subset of **S**, as was desired.

3. NotDominating(ND) = { f | for some x, f(x) < x }.

a.) Show some minimal quantification of some known primitive recursive predicate that provides an upper bound for the complexity of ND.

 $\exists \langle x,t \rangle [STP(f,x,t) \& (VALUE(f,x,t) < x)] \}$

b.) Use Rice's Theorem to prove that ND is undecidable. Be Complete.

ND is non-trivial as $CO(x) = 0 \in ND$ and $S(x) = x+1 \notin ND$

Let f,g be two arbitrary indices of procedures such that $\forall x f(x) = g(x)$

 $f \in ND$ iff $\exists x f(x) < x$ iff $f(x_0) < x_0$ for some x_0 iff $g(x_0) < x_0$ as $\forall x f(x) = g(x)$ implies $\exists x g(x) < x$ iff $g \in ND$

 $f \notin ND$ iff $\forall x [f(x) \downarrow implies f(x)>x]$ iff $\forall x [g(x) \downarrow implies g(x)>x]$ as $\forall x f(x) = g(x)$ iff $g \notin ND$

c.) Show that K = { f | f(f) converges } is many-one reducible to ND.

Let **f** be an arbitrary index. From **f**, define $\forall \mathbf{x} \mathbf{F}_{\mathbf{f}}(\mathbf{x}) = \mathbf{f}(\mathbf{f}) \cdot \mathbf{f}(\mathbf{f})$. $\mathbf{f} \in \mathbf{K}$ implies $\forall \mathbf{x} \mathbf{F}_{\mathbf{f}}(\mathbf{x}) = \mathbf{0}$ implies $\mathbf{F}_{\mathbf{f}} \in \mathbf{ND}$. $\mathbf{f} \notin \mathbf{K}$ implies $\forall \mathbf{x} \mathbf{F}_{\mathbf{f}}(\mathbf{x})$ diverges implies $\mathbf{F}_{\mathbf{f}} \notin \mathbf{ND}$.

Thus, K ≤_m ND

d.) Show that ND is many-one reducible to K = { f | f(f) converges }

Let **f** be an arbitrary index. From **f**, define $\forall y F_f(y) = \exists \langle x,t \rangle STP(f,x,t) \& (VALUE(f,x,t) \langle x \rangle f \in ND$ implies $\forall y F_f(y)$ converges implies $F_f(F_f)$ converges implies $F_f \in K$ **f** \notin ND implies $\forall y F_f(y)$ diverges implies $F_f \notin K$.

Thus, **ND** ≤_m K

4. AlwaysDominates(AD) = { f | for all x, f(x) > x }

a.) Show some minimal quantification of some known primitive recursive predicate that provides an upper bound for the complexity of **AD**.

 $\forall x \exists t [STP(f,x,t) \& (VALUE(f,x,t) > x)] \}$

b.) Use Rice's Theorem to prove that **AD** is undecidable. Be Complete.

AD is non-trivial as $S(x) = x+1 \in AD$ and $CO(x) = 0 \notin AD$

Let f,g be two arbitrary indices of procedures such that $\forall x f(x) = g(x)$

 $f \in AD$ iff $\forall x f(x) < x iff \forall x g(x) < x iff g \in AD$

c.) Show that TOT = { f | for all x, f(x) converges } is many-one reducible to AD.

Let **f** be an arbitrary index. From **f**, define $\forall x F_f(x) = f(x)-f(x) + x + 1$. **f** \in **TOT** implies $\forall x F_f(x) = x+1$ implies $F_f \in AD$. **f** \notin **TOT** implies $\exists x F_f(x)$ diverges implies $F_f \notin AD$.

Thus, **TOT** ≤_m **AD**

d.) Show that AD is many-one reducible to TOT = { f | for all x, f(x) converges }

Let **f** be an arbitrary index. From **f**, define $\forall x F_f(x) = \mu y [f(x) > x]$ **f** \in **AD** implies $\forall x F_f(x)$ converges implies $F_f \in TOT$ **f** \notin **AD** implies $\exists x F_f(x)$ diverges implies $F_f \notin TOT$.

Thus, **AD** ≤_m **TOT**