
Assignment#3 Sample Key



1. L = { am bn ct | t = min(m,n) }

Use the Pumping Lemma for CFLs to show L is not a CFL
Me: L is a CFL
PL: Provides N>0
Me: z = aN bN cN
PL: z = uvwxy, |vwx| ≤ N, |vx| > 0, and ∀i≥0 uviwxiy ∈ L
Me: Since |vwx| ≤ N, it can consist of a’s and/or b’s or b’s and/or c’s but 
never all three. 
Assume it contains no c’s then i=0 decreases the number of a’s and/or the 
number of b’s, but not the c’s and so there are more c’s than the minimum of 
a’s and b’s. 
Assume it contains c’s then i=2 increases the number of c’s and maybe 
number of b’s, but not the a’s and so there are more than N c’s but just N a’s.



2. Language Closure under Various Operation
Consider some language L.  For each of the following cases, write in one of (i) through (vi), to indicate what you can say 
conclusively about L’s complexity, where
(i) L is definitely regular
(ii) L is context-free, possibly not regular, but then again it might be regular
(iii) L is context-free, and definitely not regular
(iv) L might not even be context-free, but then again it might even be regular
(v) L is definitely not regular, and it may or may not be context-free
(vi) L is definitely not even context-free
Follow each answer with example languages A (and B, where appropriate) to back up the complexity claims inherent in your 
answer; and/or state some known closure property that reflects a bound on the complexity of L.
Example.) L = A È B, where A and B are both context free, and definitely not regular
L can be characterized by Property (ii), above.
L is context-free, since the class of context-free languages is closed under union.  
L can be regular.  For example,
A = {  an bm | m ≥ n }, B = {  an bm | m ≤ n }, 
L = A È B = {  an bm | n, m ≥ 0 }, which is regular since it can be represented by the regular expression a*b*.  
But L is in general not guaranteed to be regular, e.g., if we just make A and B the same context-free, non-regular set, then L = 
A È A = A , which is not regular.



2. Language Closure under Various Operation

a.) L = A Ç B, where A and B are both context-free, non-regular
(iv)
Regular: A = anbn, B = cndn, L = Æ
Context-Free: A = anbn, B = anbn, L = anbn

Non-Context-Free: A = anbnc*, B = a*bncn, L = anbncn

b.) L = A Ç B, where A is context-free, non-regular and B is regular
(ii)
Regular: A = anbn, B = Æ, L = Æ
Context-Free: A = anbn, B = a*b*, L = anbn

Non-Context-Free: Not possible as CFLs are closed under intersection with 
regular



3. Show prfs are closed under Fibonacci 
induction
Fibonacci induction means that each induction step after calculating the base is computed using 
the previous two values. Here,
f(0,x) = some base value; 
f(1,x) is based on f(0,x) and 0 (an invented value for two steps back); 
and for y>1, f(y,x) is based on f(y-1,x) and f(y-2,x). 

The formal hypothesis is: 
Assume g and h are already known to be prf, then so is f, where
f(0,x) = g(x); 
f(1,x) = h(f(0,x), 0); and 
f(y+2,x) = h(f(y+1,x), f(y,x))

Proof is by construction

2/6/22 © UCF CS 5



Fibonacci Recursion

Let K be the following primitive recursive function, defined by induction on the primitive recursive 
functions, g, h, and the pairing function.
K(0,x) = B(x)
B(x) = < g(x), C0(x) > // this is just <g(x), 0>
K(y+1, x) = J(y, x, K(y,x))
J(y,x,z) = < h(<z>1, <z>2), <z>1 > 
// this is < f(y+1,x), f(y,x)>, even though f is not yet shown to be prf!!
This shows K is prf. 

f is then defined from K as follows:
f(y,x) = <K(y,x)>1 // extract first value from pair encoded in K(y,x)
This shows it is also a prf, as was desired.

2/6/22 © UCF CS 6



Fibonacci Recursion (simpler form)

Let K be the following primitive recursive function, defined by induction on the primitive recursive 
functions, g, h, and the pairing function.

K(0,x) = <g(x), 0> // this is pair <f(0,x), 0>
K(y+1, x) = <h(<K(y,x)>1, <K(y,x)>2), <K(y,x)>1)> // this is pair < f(y+1,x), f(y,x)>, 

This shows K is prf. 

f is then defined from K as follows:

f(y,x) = <K(y,x)>1 // extract first value from pair encoded in K(y,x)
This shows it is also a prf, as was desired.

2/6/22 © UCF CS 7


