Sample Assignment\#2 Key

1a. EveryOther $(L)=\left\{a_{1} a_{3} \ldots a_{2 n-1}\right\}$ $a_{1} a_{2} a_{3} \ldots a_{2 n-1} a_{2 n}$ is in $\left.L\right\}$

- Approach 1: Let \mathbf{L} be a Regular language over the finite alphabet $\boldsymbol{\Sigma}$. For each $a \in \Sigma$, define $f(a)=\left\{a, a^{\prime}\right\}, g(a)=a^{\prime}$ and $h(a)=a, h\left(a^{\prime}\right)=\lambda$, \mathbf{f} is a substitution, \mathbf{g} and \mathbf{h} are homomorphisms.
EveryOther $(\mathrm{L})=\mathrm{h}\left(\mathrm{f}(\mathrm{L}) \cap(\Sigma \cdot \mathrm{g}(\Sigma))^{*}\right)$
- Why this works:
$f(L)$ gets us every possible random priming of letters of strings in L.
($\Sigma \cdot \mathbf{g}(\Sigma))^{*}$ gets every word composed of pairs of unprimed and primed letters from Σ. Intersecting this with $f(\mathrm{~L})$ gets strings of the form $a_{1} a_{2}^{\prime} a_{3} a_{4}^{\prime} \ldots a_{2 n-1} a_{2 n}^{\prime}$ where $a_{1} a_{2} a_{3} a_{4} \ldots a_{2 n-1} a_{2 n}$ is in L Applying the homomorphism h erases all primed letters resulting in every string $a_{1} a_{3} \ldots a_{2 n-1}$ where $a_{1} a_{2} a_{3} a_{4} \ldots a_{2 n-1} a_{2 n}$ is in L, precisely the language EveryOther(L) that we sought. This works as Regular Languages are closed under intersection, concatenation, *, substitution and homomorphism.

1a. EveryOther $(L)=\left\{a_{1} a_{3} \ldots a_{2 n-1} \mid\right.$ $a_{1} a_{2} a_{3} \ldots a_{2 n-1} a_{2 n}$ is in $\left.L\right\}$

- Approach 2: Let \mathbf{L} be a Regular language over the finite alphabet $\boldsymbol{\Sigma}$. Assume L is recognized by the DFA $A_{1}=\left(\mathbf{Q}, \boldsymbol{\Sigma}, \boldsymbol{\delta}_{1}, \boldsymbol{q}_{1}, F\right)$. Define NFA $A_{2}=\left(Q, \Sigma, \delta_{2}, q_{1}, F\right)$, where $\delta_{2}(q, a)=$ union $(b \in \Sigma)\left\{\delta_{1}\left(\delta_{1}(q, a), b\right)\right\}$
- Why this works:

Every transition that $\mathbf{A}_{\mathbf{2}}$ takes is one that $\mathbf{A}_{\mathbf{1}}$ would have taken when reading a pair that starts with the character read by \mathbf{A}_{1} followed by any arbitrary character.

1b. $\operatorname{Half}(L)=\{x \mid$ there exists $a y,|x|=|y|$ and $x y$ is in L \}

- Let \mathbf{L} be a Regular language over the finite alphabet $\boldsymbol{\Sigma}$. Assume \mathbf{L} is recognized by the DFA $A_{1}=\left(Q, \Sigma, \delta_{1}, q_{1}, F\right)$. Define the NFA
$A_{2}=\left((Q \times Q \times Q) \cup\left\{q_{0}\right\}, \Sigma, \delta_{2}, q_{0}, F^{\prime}\right)$, where
$\delta_{2}\left(q_{0}, \lambda\right)=$ union $(q \in Q)\left\{\left\langle q_{1}, q, q\right\rangle\right\}$ and
$\delta_{2}(<q, r, s>, a)=$ union $(b \in \Sigma)\left\{<\delta_{1}(q, a), \delta_{1}(r, b), s>\right\}, q, r, s \in Q$ $F^{F}=$ union($q \in Q$) $\{\langle q, f, q\rangle\}, f \in F$
- Why this works:

The first part of a state $\left\langle q, r, s>\operatorname{tracks} \mathrm{A}_{1}\right.$.
The second part of a state $<\mathbf{q}, \mathbf{r}, \mathbf{s}>$ tracks \mathbf{A}_{1} for precisely all possible strings that are the same length as what \mathbf{A}_{1} is reading in parallel. This component starts with a guess as to what state A_{1} might end up in.
The third part of a state $<\mathbf{q}, \mathbf{r}, \mathbf{s}>$ remembers the initial guess.
Thus, $\delta_{2}{ }^{*}\left(<q_{1}, q, q>, x\right)=\left\{\delta_{1}{ }^{*}\left(q_{0}, x\right), \delta_{1}{ }^{*}(q, y), q>\right\}$ for arbitrary $y,|x|=|y|$ We accept if the initial guess was right and the second component is final, meaning $x y$ is in L..

2. $L=\left\{a^{m} b^{n} c^{t} \mid t=\min (m, n)\right\}$

a.) Use the Myhill-Nerode Theorem to show L is not Regular.

Define the equivalence classes [aibi], $\mathbf{i} \geq \mathbf{0}$

Thus, $\left[a^{i} b^{i}\right] \neq\left[a^{i} b^{j}\right]$ when $\mathbf{j} \neq \mathbf{i}$ and so the index of \mathbf{R}_{L} is infinite.
By Myhill-Nerode, \mathbf{L} is not Regular.

2. $L=\left\{a^{m} b^{n} c^{t} \mid t=\min (m, n)\right\}$

b.) Use the Pumping Lemma for CFLs to show L is not a CFL Me: L is a CFL
PL: Provides $\mathbf{N}>\mathbf{0}$
Me: $\boldsymbol{z}=\mathbf{a}^{\mathrm{N}} \mathbf{b}^{\mathrm{N}} \mathbf{c}^{\mathbf{N}}$
PL: $\mathbf{z}=\mathbf{u v w x y},|\mathbf{v w x}| \leq \mathbf{N},|v x|>0$, and $\forall i \geq 0$ uvi'wxiy $\in \mathrm{L}$
Me: Since $|\mathbf{v w x}| \leq \mathbf{N}$, it can consist of a's and/or b's or b's and/or c's but never all three.
Assume it contains no \mathbf{c} 's then $\mathbf{i = 0} \mathbf{0}$ decreases the number of $\mathbf{a}^{\prime} s$ and/or the number of \mathbf{b} 's, but not the \mathbf{c} 's and so there are more \mathbf{c} 's than the minimum of a's and b's.
Assume it contains c's then $\mathbf{i}=\mathbf{2}$ increases the number of \mathbf{c} 's and maybe number of \mathbf{b} 's, but not the \mathbf{a} 's and so there are more than $\mathbf{N} \mathbf{~ c ' s}$ but just \mathbf{N} a's.

2. $L=\left\{a^{m} b^{n} c^{t} \mid t=\min (m, n)\right\}$

c.) Present a CSG for \mathbf{L} to show it is context sensitive
$G=(\{A, B, C,<a>,\},\{a, b, c\}, R, A)$
$A \rightarrow a B b c|a b c| a|b| \lambda$
$\mathrm{B} \rightarrow \mathrm{aBbC}|\mathrm{abC}| \quad / /$ match a's, b's and c's $a<a>b C \mid a bC \quad / / ~ a l l o w ~ m o r e ~ a ' s ~ o r ~ b ' s ~$
$\mathrm{Cb} \rightarrow \mathrm{bC} \quad / /$ Shuttle C over to a c $\mathrm{Cc} \rightarrow \mathrm{cc} \quad / /$ Change C to a c
$<a>\rightarrow a<a>\mid a$
$\rightarrow b\mid b$

