Sample Assignment#2 Key

1a. EveryOther(L) = { $a_1 a_3 ... a_{2n-1}$ | $a_1 a_2 a_3 ... a_{2n-1} a_{2n}$ is in L }

- Approach 1: Let L be a Regular language over the finite alphabet Σ. For each a∈Σ, define f(a) = {a,a'}, g(a) = a' and h(a) = a, h(a') = λ, f is a substitution, g and h are homomorphisms.
 EveryOther(L) = h(f(L) ∩ (Σ g(Σ))*)
- Why this works:

f(L) gets us every possible random priming of letters of strings in L. ($\Sigma \cdot g(\Sigma)$)* gets every word composed of pairs of unprimed and primed letters from Σ . Intersecting this with **f(L)** gets strings of the form $a_1 a_2' a_3 a_4' \dots a_{2n-1} a_{2n}'$ where $a_1 a_2 a_3 a_4 \dots a_{2n-1} a_{2n}$ is in L Applying the homomorphism **h** erases all primed letters resulting in every string $a_1 a_3 \dots a_{2n-1}$ where $a_1 a_2 a_3 a_4 \dots a_{2n-1} a_{2n}$ is in L, precisely the language **EveryOther(L)** that we sought. This works as Regular Languages are closed under intersection, concatenation, *, substitution and homomorphism.

1a. EveryOther(L) = { $a_1 a_3 ... a_{2n-1}$ | $a_1 a_2 a_3 ... a_{2n-1} a_{2n}$ is in L }

- Approach 2: Let **L** be a Regular language over the finite alphabet Σ . Assume **L** is recognized by the DFA $A_1 = (Q, \Sigma, \delta_1, q_1, F)$. Define NFA $A_2 = (Q, \Sigma, \delta_2, q_1, F)$, where $\delta_2(q,a) = union(b \in \Sigma) \{ \delta_1(\delta_1(q,a),b) \}$
- Why this works:

Every transition that A_2 takes is one that A_1 would have taken when reading a pair that starts with the character read by A_1 followed by any arbitrary character.

1b. Half(L) = { x | there exists a y, |x| = |y|and xy is in L }

- Let L be a Regular language over the finite alphabet **Σ**. Assume L is recognized by the DFA $A_1 = (Q, \Sigma, \delta_1, q_1, F)$. Define the NFA $A_2 = ((Q \times Q \times Q) \cup \{q_0\}, \Sigma, \delta_2, q_0, F')$, where $\delta_2(q_0, \lambda) = union(q \in Q) \{ <q_1, q, q > \}$ and $\delta_2(< q, r, s > ,a) = union(b \in \Sigma) \{ < \delta_1(q,a), \delta_1(r,b), s > \}, q,r,s \in Q$ $F' = union(q \in Q) \{ <q, f, q > \}, f \in F$
- Why this works:

The first part of a state $\langle q, r, s \rangle$ tracks A_1 .

The second part of a state $\langle \mathbf{q}, \mathbf{r}, \mathbf{s} \rangle$ tracks \mathbf{A}_1 for precisely all possible strings that are the same length as what \mathbf{A}_1 is reading in parallel. This component starts with a guess as to what state A_1 might end up in.

The third part of a state $\langle \mathbf{q}, \mathbf{r}, \mathbf{s} \rangle$ remembers the initial guess. Thus, $\delta_2^*(\langle \mathbf{q}_1, \mathbf{q}, \mathbf{q} \rangle, \mathbf{x}) = \{\delta_1^*(\mathbf{q}_0, \mathbf{x}), \delta_1^*(\mathbf{q}, \mathbf{y}), \mathbf{q} \rangle\}$ for arbitrary $\mathbf{y}, |\mathbf{x}| = |\mathbf{y}|$ We accept if the initial guess was right and the second component is final, meaning **xy** is in **L**..

2. L = { $a^{m} b^{n} c^{t} | t = min(m,n)$ }

a.) Use the **Myhill-Nerode Theorem** to show L <u>is not</u> Regular. Define the equivalence classes $[a^ib^i]$, $i \ge 0$ Clearly $a^ib^ic^i$ is in L, but $a^jb^jc^i$ is not in L when $j \ne i$ Thus, $[a^ib^i] \ne [a^jb^j]$ when $j \ne i$ and so the index of R_L is infinite. By Myhill-Nerode, L is not Regular.

2. L = { $a^m b^n c^t | t = min(m,n)$ }

b.) Use the **Pumping Lemma for CFLs** to show **L** <u>is not</u> a CFL Me: **L** is a CFL

PL: Provides **N>0**

Me: **z** = **a**^N **b**^N **c**^N

PL: z = uvwxy, $|vwx| \le N$, |vx| > 0, and $\forall i \ge 0 uv^i wx^i y \in L$

Me: Since **|vwx| ≤ N**, it can consist of **a**'s and/or **b**'s or **b**'s and/or **c**'s but never all three.

Assume it contains no **c**'s then **i=0** decreases the number of **a**'s and/or the number of **b**'s, but not the **c**'s and so there are more **c**'s than the minimum of **a**'s and **b**'s.

Assume it contains **c**'s then **i=2** increases the number of **c**'s and maybe number of **b**'s, but not the **a**'s and so there are more than **N c**'s but just N a's.

2. L = { $a^{m} b^{n} c^{t} | t = min(m,n)$ }

 $\langle b \rangle \rightarrow b \langle b \rangle | b$

c.) Present a CSG for **L** to show it **is** context sensitive $G = (\{ A, B, C, \langle a \rangle, \langle b \rangle \}, \{ a, b, c \}, R, A)$ A \rightarrow aBbc | abc | a | b | λ $B \rightarrow aBbC \mid abC \mid$ // match a's, b's and c's a<a>bC | abC // allow more a's or b's $Cb \rightarrow bC$ // Shuttle C over to a c $Cc \rightarrow cc$ // Change C to a c $\langle a \rangle \rightarrow a \langle a \rangle | a$