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 THE JOURNAL OF SYmBOLIc LoGic

 Volume 41, Number 1, March 1976

 TWO VARIABLE IMPLICATIONAL CALCULI OF PRESCRIBED
 MANY-ONE DEGREES OF UNSOLVABILITY

 CHARLES E. HUGHES

 Abstract. A constructive proof is given which shows that every nonrecursive r.e.
 many-one degree is represented by the family of decision problems for partial implica-
 tional propositional calculi whose well-formed formulas contain at most two distinct
 variable symbols.

 Introduction. Let Pl, P2,.** be the set of all propositional variables in some
 formulation of the propositional calculus. Pn will be used to denote the class of
 all well-formed formulas (wffs) of the implicational propositional calculus which
 involve only variables among {Pi, P2, , pj} An n-adic partial implicational
 propositional calculus (PIPQ), I, is an inference system defined by a finite set of
 tautologies from Pn. Its rules of inference are modus ponens and substitution of
 wffs from Pn. The decision problem for I is the problem to decide of an arbitrary
 member W of P,, whether or not W is derivable (deducible) in L We denote W
 being derivable in I by A W. The general decision problem for n-adic PIPC's,

 denoted by 4, is the family of decision problems which ranges over all such
 systems.

 n-adic PIPC's have been studied for n = 3 by Hughes and Singletary [3], for
 n = 2 by Wajsberg [6] and for n = 2 and n = 1 by Gladstone [1]. In [3] it was
 shown that every nonrecursive r.e. many-one (but not one-one) degree is repre-
 sented by f3. In [6] it was shown that no n-adic PIPC, for n < 3, can derive all
 tautologies of the full implicational calculus where substitution of arbitrary wffs
 was allowable. In [1] Gladstone demonstrated that the set of all tautologies of Pi
 (respectively P2) cannot be derived by any 1-adic (respectively 2-adic) PIPC.
 Gladstone posed the problem as to whether or not there exists a 1-adic or
 2-adic (hereafter called diadic) PIPC whose decision problem is recursively
 unsolvable. We address ourselves here to diadic calculi and demonstrate not
 only the existence of an unsolvable instance but we also precisely categorize the
 degree structure of the general decision problem f2. Our results, first announced
 in [2], parallel those given in [3] for f3. Our construction techniques are however
 quite different from any others previously used in the study of PIPC's in as
 much as we simulate halting problems for Turing machines as opposed to words
 problems for restrictions of Post's canonical forms (see, e.g., [7] and [5]).

 Turing machines. A Turing machine M is a combinatorial system defined by a
 tape alphabet E, a state set Q and a Turing table T. For this paper the tape alphabet
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 40 CHARLES E. HUGHES

 of all machines is {O, 1}, where 0 represents the blank symbol. The Turing table T
 is a set of quadruples each of the form qaDs where q, s E Q, and D E {R, L, 0, 1}.
 Each pair qa such that q E Q, a E {O, 1} is called a discriminant and at most one
 quadruple in T may start with qa. M possesses an infinite tape with but a finite
 number of 1 marks recorded on it. At any given time M is in some state q E Q

 and is scanning some one square of its tape. A configuration C of M is an instan-
 taneous description of M's current status and is represented by a sequence of the

 form b1b2 ... biqabi+,- * * bi+ h where h > 0 a is the scanned symbol, i ? 0, q is a
 state symbol and b1b2... biabi + 1 ... + his the smallest segment of the tape
 containing all squares marked with 1 and the scanned square. If M is a con-

 figuration C, as described above, then the quadruple starting with qa, if it exists,
 determines the next configuration C' of M in the following manner:

 qaRs E T-M moves one square to the right of the current scanned square and
 changes state to s.

 qaLs E T-M moves one square to the left of the current scanned square and
 changes state to s.

 qabs E T-where b E {O, 1}. M changes the symbol in the scanned square to b
 and goes to state s.

 C' as determined above is then called the immediate successor of C in M. Any C
 which contains a discriminant qa such that no quadruple in T starts with qa is
 called terminal and has no immediate successor.

 Let C1 and C2 be arbitrary configurations of M. Then C2 is said to be derivable
 from C1 if there exists some sequence S1, . *, Sm, m ? 1, of configurations such
 that S1 = C1, Sm = C2 and if m > 1, Si+1 is the immediate successor Si, for
 1 < i < m. A configuration C1 is said to be mortal if there exists a terminal con-
 figuration C2 such that C2 is derivable from C1. The halting problem for M is the
 problem to decide for an arbitrary configuration C of M whether or not C is
 mortal. The general halting problem for Turing machines, denoted J is then the
 class of all such problems.

 Reduction of _i to f2. Let M be an arbitrary Turing machine with tape alphabet
 {O, 1}, state set Q = {q1, * * *, qn} and Turing table T. From the description of M we
 shall now construct a diadic PIPC, D, whose decision problem is of the same many-
 one degree as the halting problem for M. Prior to demonstrating D we have need
 of the following abbreviations for certain classes of wffs.

 I(p) is defined to abbreviate the wff [p p].

 'DO(p) is [p I I(p)], i.e., [p v [p D p]].
 'D1(p) is [p -DO(p)]

 ej(P) is [p 'Dj(p)]
 U2(P) is [p 'l(D )
 U3(P) is [p D U2(P)1
 TF1(p) is [p D PA
 T2(P) is [p - j(p)].
 Tn (p) is [p T. - j(p)].
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 TWO VARIABLE IMPLICATIONAL CALCULI 41

 Now let C = aj1 * * * aihqmaj1 ... alk be an arbitrary configuration of M. Then
 define C* to be the wff [Tm(Ijl ... *DIkI(Pl) V i *... *Di1I(P1)], where [A v B]
 abbreviates [[A - B] -DB], for any wffs A and B. We shall construct D in such a
 manner that FDC* iff C is a mortal configuration of M.

 The axioms of D are as below, where the outer set of brackets are standardly
 omitted in order to better expose premise and conclusion. In studying these axioms
 the reader should be aware of the following intent. Axiom sets 1 through 8 are
 designed to effect the derivation of the tautology C* iff C is a terminal configura-

 tion of M. The remainder of the axioms are specified in such a way as to cause C2
 to be derived from C* by a single application of modus ponens iff C1 is the im-

 mediate successor of C2 in M, that is to say, they cause D to simulate M in reverse.
 This, of course, implies that, for C a configuration of M, FDC* iff C is mortal.
 The reader should also note that any wff which may be abbreviated as C*, for
 some configuration C of M, has a unique such abbreviation.

 I1. [Ul(pi) V IApi)] .
 2. [6,I(pi) V I(pD)] - [V1I(p1) V (DI(pi)].
 3. [UI(pl) V FD(P2)] D' VAI(pV) v 'DjF(P2)], Vi, i {O, l}.
 4. VAI(p0 V P2] ' [V2D1I(Pl) V P2].
 5- [AI(p0) V P2] D [e34DJI(p) V P2], Vie {O, }.
 6. [V2(i(Pl) V P2] ' [e2(jgDi(P1) V P2], Vi, j {O, l}.
 7. [V@i(Pl) V P2] ' [V3Fi'i(pl) v P2], Vij e {O, 1}.
 8. [V3Di(Pl) V P2] D [Fk(Di(Pl) V P2], whenever qkaj is a terminal discriminant

 of M.

 9. [TkFDi(Pl) V P2] D [Th(Dj(Pl) V P2], whenever qhajaiqk e T.
 lOa. [TFkDOI(Pl) V I(pi)] [ThFOI(Pl) V I(p)],

 b. [TFkDlI(pl) v I(pl)] D [ThFDOI(pl) V (D(P1)],
 c. [TkDJI(P1) V ,j(P2)] D [TDOI(pl) V Di(Dj(P2)],
 d. [Tk4>o40o40i(Pl) V '(P2)] [Th(oD0?(Pl) v '(P2)],
 e. [TYkD1(Do((P1) V '(P2)] ' [[ThaoDi(Pl) V (DAPA,
 f. [TkFio(0j(p1) V DM(P2)] D ['thDO4Dj(Pl) V DiIrM(P2)],

 Vi, j, m e {O, 1} whenever qhOLqk e T.
 1 la. [TFk(oDOl(Pl) V '(P2)] ['F [Tl(pl) V (P2)],

 b. [Tk YDl(Pl) V I(p2)] [ThDl(Pl) V 'lI(P2)],

 c. [Tk(Ii('l(Pl) V (Ij(P2)] _Z [Th('l(Pl) V siq)J(P2)],
 Vi, j e {O, 1} whenever qklLqk e T.

 12a. [Tk(DOI(pl) V '(Pi)]- [ThDoI(Pl) V I(p)],

 b. [Trk(OI(Pl) V (DO(i(PA )] [ThDOoI(Pl) V (Di(PA)]
 c. [TkF1(PJ) V '(p2)] ['hoD0l(Pl) V I(P2)],
 d. [Tk'1yDo(Pl) V '(PA)] ' [TFh'Do'DO'Di(Pl) V '(p2)],
 e. [TFk(DQOF(pl) V oD(kj(P2)] D [TDO(DODiQ(Pl) V 'DJ(P2)],
 f. [Tk(Dl(Pl) V O(Di(Pp2)] D [ThFDODl(Pl) V Di(P2)],

 Vi, j e {O, 1} whenever qhORqk e T.
 13a. [Tk(DOI(Pl) V I1(P2)] D ['Th(I(pl) V P2],

 b. [TkDl(Pl) V (D1(P2)] [Th(DlDl(Pl) V P2],
 c. [Tk(Do(Di(Pl) V (DA(P2)] ' [Fh(Dl1Fo(D0(Pl) V P2]

 Vi e {O, 1} whenever qhlRqk e T.
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 42 CHARLES E. HUGHES

 We shall now set about proving that the halting problem for M and the decision
 problem for D are equivalent in the sense of many-one degrees. We do this through

 a series of relatively simple lemmas.

 LEMMA 1. If C is a mortal configuration of M then FDC*.

 PROOF. This may be seen by observing the axioms of D in order to verify the
 following which was noted previously:

 (a) FDC*, whenever C1 is a terminal configuration of M, and
 (b) FDC*, whenever C2 FM C1 and FDC*.

 Axioms sets 1 through 8 are used to achieve (a). Axiom set 9 simulates prints in
 reverse, 10 and 11 left moves in reverse and 12 and 13 right moves in reverse.

 LEMMA 2. A wif of the form [[A1 V B] D [A2 v B]J can take the form [X v Y],
 where A1, A2, B, C, Xand Yare wffs, iffB is A2 V C.

 PROOF. By definition [[A1 v B] D [A2 v C]] is an abbreviation of

 [[[A1 B] B] [A2 v C]]

 and [X v Y] is an abbreviation of [[X - Y] D Y]. But then Y must be identified
 with both B and A2 V C and hence B must be A2 V C.

 LEMMA 3. Every theorem of D may be abbreviated into a substitution instance of
 one of the following forms:

 Form 1. Axioms contained in axiom sets 2 through 13.

 Form 2. C*, where C is a mortal configuration of M.

 Form 3. [VI(p1) v (jl ... *DjjI(p1)], where x ? 0, Im E {0, 1} for m e (1,***,
 x - 1), andjx = 1.

 Form 4. [e2Dil ... * I(pl) v Ojl *... *jjI(pl)], where y > 1, x> 0, O.m E {0, 1}
 form e(1, ,y - 1),iy = 1,jme{0, I}forme(1, ...,x - 1), andjx = 1.

 Form 5. [V30i1 ... *I I(pl) V j, *... *DjjI(pl)], where y > 1, x > 0, im E {0, 1}
 forme{1,...,y},iy=0only ify= ,IJme{0, 1}forme{1,...,x-1},andjx=1.

 PROOF. Our proof is by induction on m, the number of lines in the proof of a

 theorem B of D. Let B1, B2, * * *, Bm be a proof of B, where Bm is B and each Bj is
 either a substitution instance of an axiom or is obtained by modus ponens with
 minor premise Bq and major premise Br, q, r < m.

 Case 1. m = 1. But then Bm is either of Form 1, or of Form 3 with x = 0.
 Case 2. m > 1. Assume the conclusion holds for all positive integers less

 than m.

 Case 2a. Bm is a substitution instance of an axiom. Then the result follows from
 Case 1.

 Case 2b. Bq is of Form 2 and B, is of Form 1. Then B, must be a substitution
 instance of an axiom in 9, 10, 11, 12, or 13 and Bm is of Form 2.

 Case 2c. Bq is of Form 3 and B, is of Form 1. Then B, must be a substitution
 instance of an axiom in 2, 3, 4 or 5 and Bm is

 (i) of Form 3 if Br is an instance of 2 or 3;

 (ii) of Form 4 if B, is an instance of 4; or
 (iii) of Form 5 if B, is an instance of 5.

 Case 2d. Bq is of Form 4 and B, is of Form 1. Then B, must be a substitution
 instance of an axiom in 6 or 7 and Bm is
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 TWO VARIABLE IMPLICATIONAL CALCULI 43

 (i) of Form 4 if B, is an instance of 6; or
 (ii) of Form 5 if Br is an instance of 7.

 Case 2e. Bq is of Form 5 and B, is of Form 1. Then B, must be a substitution
 instance of an axiom in 8 and Bm is of Form 2 where C is a terminal configuration

 of M.

 The above 5 cases are exhaustive since a theorem of Form 1 may not interact

 with another of this form nor may a theorem of Form 2, 3, 4 or 5 interact with

 another of these kinds. This is seen to be true in light of Lemma 2.

 LEMMA 4. Every wff which can be abbreviated into a substitution instance of any
 of the forms of Lemma 3 is a theorem of D.

 PROOF. The lemma is established by considering each form separately.
 Form 1. Trivially true since all substitution instances of axioms are theorems.

 Form 2. This was established in Lemma 1.

 Form 3. Axiom 1 is of Form 3 where x = 0. Form 3, for x = 1, is derived by
 one application of modus ponens with minor premise axiom 1 and major premise
 axiom 2. If all instances of Form 3 for x < m are derivable then axiom set 3 allows

 us to derive all instances for x = m.

 Form 4. All instances of Form 4 for y = 1 are derivable from one application
 of modus ponens with an instance of Form 3 as minor premise and an instance of

 axiom 4 as major premise. Successive applications of instances of axiom 6 may be

 used to derive instances of Form 4 where y > 1.
 Form 5. All instances for y = 1 are derivable from one application of modus

 ponens with an instance of Form 3 as minor premise iand an instance of axiom 5
 as major premise. For y > 1 the desired result is achieved with an instance of
 Form 4 as minor premise and an instance of axiom 7 as major premise.

 LEMMA 5. The halting problem for M is of the same many-one degree as the

 decision problem for D.
 PROOF. Let C be an arbitrary configuration of M. Then C is mortal in M iff

 FDC*. This follows from Lemmas 1 and 4. Hence the many-one degree of the

 halting problem for M is less than or equal to that of the decision problem for D.

 Next let B be a wff of the diadic implicational calculus. By Lemmas 3 and 4,

 B is a theorem of D iff B is of one of Forms 1 through 5. One can easily check to
 see if B is of Form 1, 3, 4, or 5. If not, then we can determine if B is a theorem as
 follows. First determine if there exists a configuration C of M such that B is C*.
 If not, B is not a theorem. If so, then B is a theorem iff C is mortal. (Note. If such

 a C exists it may be seen to be unique.) But then the decision problem for D is of
 a many-one degree less than or equal to the degree of the halting problem for M.

 Hence the lemma is proved.
 THEOREM. (I) The general halting problem for Turing machines over the alphabet

 {O, 1} is many-one reducible to the general decision problem for diadic partial

 implicational propositional calculi (A).
 (II) Every nonrecursive r.e. many-one degree is represented by f2.

 (III) Every nonrecursive r.e. one-one degree is not represented by f2.
 PROOF. (I) follows from Lemma 5 and the fact that M was chosen arbitrarily.

 (II) is a consequence of (I) and Overbeek's Turing machine results [4]. (III) was

 shown in [3] for all .n, n > 1, hence for f2.
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 44 CHARLES E. HUGHES

 Partial equivalence propositional calculi. A partial equivalence propositional

 calculus (PEPC) is a system similar to a PIPC except that its one connective is

 equivalence, denoted by the symbol _, and in place of modus ponens it has the

 analogous rule of inference: if A and A _ B then B. The results presented in this
 paper for diadic PIPC's may also be shown for diadic PEPC's. This may be done
 by parallelling the constructions and proofs presented in the previous section with
 the one change of replacing each occurrence of - by _ and interpreting A v B

 as (A _ B) B.

 Acknowledgements. The author wishes to express his sincere appreciation to

 Justin C. Walker of the National Bureau of Standards for his constructive criticisms

 of the work presented here and most importantly for his insight in finding flaws
 in a number of previous unsuccessful attacks on the problem.
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