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 THE JOURNAL OF SYMBOLIC LOGIC
 Volume 41, Number 1, March 1976

 A REDUCTION CLASS CONTAINING FORMULAS WITH
 ONE MONADIC PREDICATE AND ONE

 BINARY FUNCTION SYMBOL

 CHARLES E. HUGHES

 Abstract. A new reduction class is presented for the satisfiability problem for well-
 formed formulas of the first-order predicate calculus. The members of this class are
 closed prenex formulas of the form VxVyC. The matrix C is in conjunctive normal
 form and has no disjuncts with more than three literals, in fact all but one conjunct is
 unary. Furthermore C contains but one predicate symbol, that being unary, and one
 function symbol which symbol is binary.

 Introduction. An effective method is presented for constructing, from an
 arbitrary diadic partial implicational propositional calculus D, and an arbitrary
 one variable wff W, a first-order formula F such that W is derivable in D if and
 only if Fis a tautology of the first-order predicate calculus. Each such F is a member

 of the class 9 of closed prenex formulas of the form 3x~yC where C is in disjunctive
 normal form, has all unary conjuncts, except one which contains three literals, and
 has just a single monadic predicate symbol and a single binary function symbol.
 Using a result in [4] we are then able to conclude that there exists an effective method
 which produces, from an arbitrary first-order formula F1, a first-order formula of
 the above type F2 such that F1 is a tautology iff F2 is also one. Next, since a given
 formula F1 is satisfiable iff -F1 is not a tautology, we get that the class of formulas
 X, comprised of negations of all formulas from the class 9 above, forms a reduction
 class with respect to satisfiability. This class le is just the set of all closed prenex
 formulas VxVyC where C is in conjunctive normal form with one ternary disjunct,
 the rest being unary, and C has one monadic predicate and one binary function
 symbol.

 Partial calculi. Let P1, P2 ... be the set of all propositional variables in some
 formulation of the propositional calculus. Pn, will be used to denote the class of all
 well-formed formulas (wffs) of the implicational propositional calculus which
 involve only variables among {Pi, P2,... , pn}. A diadic partial implicational
 propositional calculus (PIPC) I is an inference system defined by a finite set of
 tautologies from P2. These tautologies are called the axioms of I. The rules of
 inference of I are modus ponens and substitution of wffs from P2, that is the
 normal propositional rules of inference restricted to the use of wffs from P2. Let
 W be an arbitrary member of P2. Then W is said to be derivable in I iff W may be
 deduced from the axioms of I by its rules of inference. The classes of wffs which
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 46 CHARLES E. HUGHES

 may be derived by diadic PIPC's were the subject of study in [4] and the results
 presented there form a basis for those shown here.

 Reduction classes. A class R of formulas of the first-order predicate calculus is
 called a reduction class with respect to satisfiability (respectively deducibility) if there
 exists an effective procedure ?b which maps first-order formulas F into members
 +(F) of R such that F is satisfiable, i.e. true under some interpretation (respectively
 a tautology) iff +(F) is also satisfiable (respectively a tautology).

 Reduction classes have been studied by a rather large number of authors in-
 cluding [1], [2] and [5]. The reduction class V presented here is most closely related
 to two classes recently announced by B6rger [1]. There, it was claimed that the

 classes V, and V2 of closed prenex formulas of the forms VxVyC and VxVyVzD,
 respectively, are each reduction classes for satisfiability, where C and D are both

 in conjunctive normal form with binary disjuncts, C has one monadic predicate,
 one monadic and one binary function, and finally D has one monadic predicate

 and one binary function symbol. Our result is both a strengthening and a weaken-

 ing of Bbrger's. It is stronger in that the formulas of V have the binary prefixes of

 V, while only having a single binary function symbol as those in V2. Our result is
 weaker since members of V have matrices which contain a ternary disjunct whereas
 those in V' and % have only binary disjuncts.

 Demonstration that V is a reduction class. Let D be an arbitrary diadic PIPC
 with axioms A1, A2,.*., An. Further let the formulas of D be written in prefix
 (polish) notation.

 We define, for each wff W contained in P2, a first-order formula F such that W
 is derivable in D iff F is a tautology. The formula F to be constructed will contain

 variables x and y, the one monadic predicate symbol T and the one binary function

 symbol f. As our first step we define a function K from the class of formulas P2
 into the class of first-order formulas.

 K(pl) = x,
 K(p2) = y, and
 K( v W1 W2) = f(K(W1), K( W2)), for W1 and W2 members of P2.

 Then, for example, if W = D 'p1P2 Z PIP2. we would have K(W) = f(f(x, y),
 f(x, y)). The first-order image of W, denoted W*, is defined to be VxVyT(K(W)),
 Vx or Vy being omitted if the variable x or y does not occur in K(W).

 Let, as noted above, A1, A2,* *. , A, be the axioms of D. Thefirst-order associate
 of D, denoted D, is defined to be

 Af & A* & ... & A* & VxVy((T(x) & T(f(x, y))) n T(y)).
 We shall now show the following.

 LEMMA 1. Let W be an arbitrary element in P2. Then W is derivable in D iff
 D D W* is a tautology of the first-order predicate calculus.

 PROOF. (I) Assume W is derivable in D. Then there exist wffs W1, , Wk
 where W = Wk and each Wi is either

 (a) an axiom, or
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 A NEW REDUCTION CLASS 47

 (b) the result of substituting a wff Y for all occurrences of one of the variables

 pi orp2 in some Ws, 1 < s < i, or
 (c) the result of applying modus ponens to some pair Ws, Wr, where s and r are

 less than i.

 We prove this part of our theorem by induction on k.

 k = 1. Then W must be an axiom. That is, W is At for some t, 1 < t < n.
 But then we have

 1. D-Hypothesis.

 2. A*-From the fact that (A & B & C) - B or (A & C) - A and (1).

 Hence D- z W* is a tautology.

 k > 1. Assume D v Wf for all i, 1 < i < k.
 Part a. If Wk is an axiom then D- D W* by our arguments for the k = 1 case.
 Part b. Substitution of a wff Y in P2 for a variable. By hypothesis, D - W*.

 We need to show that D - W* where W is obtained from Ws by substituting Y
 for all occurrences of p, (or P2).

 1. D D Wy-Tautology by inductive hypothesis.
 2. D-Hypothesis.

 3. W,*-MP (1 and 2).
 4. T(K(Wj))-Universal instantiation (3).
 5a. VxT(K(Wj))-Universal generalization (4); or
 Sb. VyT(K(W,)).
 6. T(K(W))-Universal instantiation. Substitution of K(Y) for x in 5a or y in Sb.
 7. W*-Universal generalization (6).

 Hence D - W* is a tautology.

 Part c. Modus ponens. We need show that if D v Ws* and D -W* are
 tautologies and Ws is - Wr W then D - W* is a tautology.

 1. D Ws*-Tautology by inductive hypothesis.
 2. D- Wy*-Tautology by inductive hypothesis.
 3. D-Hypothesis.

 4. VxVy((T(x) & T(f(x, y))) - T(y))-From the fact that (A & C) - C and 3.
 5. Ws*-MP (1 and 3).
 6. W,*-MP (2 and 3).
 7. T(f(K(Wr), K(W)))-Universal instantiation (5).
 8. T(K(Wr))-Universal instantiation (6).

 9. T(K(Wr)) & T(f(K(Wr), K(W)))-From fact that A v (B v (A & B)) and
 7 and 8.

 10. (T(K(Wr)) & T(f(K(Wr), K(W)))) - T(K(W))-Universal instantiation (4).
 11. T(K(W))-MP (9 and 10).
 12. W*-Universal generalization (11).

 And hence D - W* is a tautology.
 This completes our inductive proof that if W is derivable in D then i D- W* is a

 tautology.

 (II) It now remains to be shown that if D1 - W* is a tautology then W is deriv-
 able in D. Our proof in this direction will be semantic rather than syntactic as it
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 48 CHARLES E. HUGHES

 was in (I). That is, we shall use the fact that D - W* is a tautology iff it is true

 under all interpretations and in particular under the following interpretation.

 Domain of interpretation. The set of wffs (in prefix notation) in P2.

 Interpretation off. f is interpreted to be the binary operator which maps xl, x2

 to -Dxlx2, where of course xi and x2 are variables ranging over wffs in P2.
 Interpretation of T. Tis true for the argument x if and only if x is derivable in D.
 Now, with the above interpretation in mind, we shall show that 1 z> W* is

 true implies W is derivable in D. Our method of attack will be to first show that

 5 is true under our chosen interpretation, which we denote ID,
 D is true iff A* is true, for 1 < i < n, and VxVy((T(x) & T(f(x, y))) - T(y)) is

 true. But, treating the At's, we have that A4 is true under ID iff all substitution

 instances of Ai are derivable in D. This clearly shows that the A!"s are true under
 ID. Now VxVy((T(x) & T(f(x, y))) D T(y)) is true under ID if the derivability of
 wffs W1 and - W1 W2 implies the derivability of W2. But this is just modus ponens.

 Now, using the fact that D is true under ID, we may complete our proof by
 showing that the truth of W* under ID implies the derivability of Win D. But W*
 is true implies all substitution instances of W are derivable in D which clearly

 implies that W is derivable.

 This then completes the proof of this theorem.

 LEMMA 2. Let D be an arbitrary diadic PIPC and let W be a wif in P1, i.e.
 containing only the variable Pia Then some substitution instance of W is derivable in

 D iff] D S 3xT(K(W)) is a tautology.
 PROOF. First assume that some substitution instance W' of W is derivable in

 D. Then, by Lemma 1, D VxVyT(K(W')) is a tautology, where of course one of
 Vx or Vy might not appear. But then b v T(K(W')) and consequently D v
 3xT(K(W)) are each tautologies. (The latter is a tautology since T(K(W')) may
 be rewritten as T(K(W')) by an appropriate substitution for the variable x.

 Next assume that D : 3xT(K(W)) is a tautology. Then, using the interpretation
 appearing in the proof of Lemma 1, we may achieve the result via arguments
 similar to those given there.

 LEMMA 3. There exist effective procedures 01 and O2, where 01 maps recursively
 enumerable (r.e.) sets to diadic PIPC's and O2 maps natural numbers to member of
 P1 such that, if S is an arbitrary r.e. set and x is an arbitrary natural number, then

 X e S if 02(x) is derivable in 01(S). Furthermore, 02(X) is derivable if it has some
 substitution instance which is derivable.

 PROOF. Let S and x be as in the statement of the lemma. Davis [3] and others

 have demonstrated procedures O3 and 04 such that A3(S) is a Turing machine and
 04(x) is a configuration of A3(S) which is mortal iff x E S. In [4] we presented
 procedures 0, and 06 such that, if M is an arbitrary Turing machine and C is an
 arbitrary configuration, then 05(M) is a diadic PIPC, 06(C) is a wff containing only
 the variable Pi and C is mortal in M iff 06(C) is derivable in 05(M). Moreover, if
 W is some substitution instance of 06(C) then 06(C) is derivable in 05(M) iff W
 is also. This latter statement may be verified by an examination of Lemmas 1, 3

 and 4 of [4] in which the reader should observe the independence of the members
 of each of the 5 forms discussed there. The proof is then completed by letting

 01(S) = MO(O3(S)) and 02(x) = 06(04(x)).
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 A NEW REDUCTION CLASS 49

 LEMMA 4. There exists a fixed diadic PIPC 9 and an effective method f such

 that, if f is applied to an arbitraryfirst-order formula F, then F is a tautology if some
 substitution instance of +(F) is derivable in 9, where +(F) is in P1.

 PROOF. Let F be the class of numbers, under some Gbdel numbering g, of all

 tautologies of the first-order predicate calculus. F is r.e. since it may be defined

 by a finite set of axioms and a finite set of recursive rules of inference.
 Let F be an arbitrary first-order formula and let g(F) be the G6del number of

 F. Then F is a tautology iff some substitution instance of 02(g(F)) is derivable in
 ?b1Gs), where 01 and b2 are defined as in Lemma 3. The lemma is then shown by
 letting 9 be 0(s) and i(F) be O2(g(F)).

 THEOREM 1. The class 9 offirst-order formulas is a reduction class with respect

 to deducibility.

 PROOF. Let F be an arbitrary formula and let 9 and f be as in Lemma 4. By
 Lemma 4, F is a tautology iff some substitution instance of i(F) is derivable in 3.

 By Lemma 2, this is so iff , z xT(K(O(F))) is a tautology. But P v 3xT(K(O(F)))
 may be seen to be in 9 as follows: First it is of the following form:

 VxVyLj & VxVyL2 & ... & VxVyL, & VxVy((Ln+1 & L,+2) - L, 3) 3xLn + 49

 where each Li is a literal. This form may be successively rewritten as
 1. VxVy(Ll & L2 & .. & Ln & ((Ln+l & Ln+2) D Ln + 3 D 3XLn + 4
 2. -IVxVy(Ll & L2 & ... & Ln & -(Ln + & Ln+2 & Ln+ 3 V 3XLn + and then
 3. Sx3y(-iLi v -L2 V *.. v -1Ln V (Ln+1 &Ln+2 & -1Ln+3) v Ln4+4)

 Clearly form 3 belongs to class 9 proving the theorem.
 THEOREM 2. The class V offirst-order formulas is a reduction class with respect

 to satisfiability.

 PROOF. Let F be an arbitrary first-order formula. Then F is satisfiable iff F is
 not a tautology. But, by Theorem 1, there is a member F1 of .?, effectively com-

 putable from F, which is not a tautology iff -F is not a tautology. But then F is
 satisfiable iff -F1 is satisfiable and since mF1 is in V this completes the proof.
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