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Abstract
We show that for every fixed k ≥ 3, the problem whether the termination/counter complexity
of a given demonic VASS is O(nk), Ω(nk), and Θ(nk) is coNP-complete, NP-complete, and
DP-complete, respectively. We also classify the complexity of these problems for k ≤ 2. This shows
that the polynomial-time algorithm designed for strongly connected demonic VASS in previous
works cannot be extended to the general case. Then, we prove that the same problems for VASS
games are PSPACE-complete. Again, we classify the complexity also for k ≤ 2. Interestingly,
tractable subclasses of demonic VASS and VASS games are obtained by bounding certain structural
parameters, which opens the way to applications in program analysis despite the presented lower
complexity bounds.
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1 Introduction

Vector addition systems with states (VASS) are a generic formalism expressively equivalent
to Petri nets. In program analysis, VASS are used to model programs with unbounded
integer variables, parameterized systems, etc. Thus, various problems about such systems
reduce to the corresponding questions about VASS. This approach’s main bottleneck is that
interesting questions about VASS tend to have high computational complexity (see, e.g.,
[7, 14, 15]). Surprisingly, recent results (see below) have revealed computational tractability
of problems related to asymptotic complexity of VASS computations, allowing to answer
questions like “Does the program terminate in time polynomial in n for all inputs of size
n?”, or “Is the maximal value of a given variable bounded by O(n4) for all inputs of
size n?”. These results are encouraging and may enhance the existing software tools for
asymptotic program analysis such as as SPEED [10], COSTA [1], RAML [11], Rank [2],
Loopus [16, 17], AProVE [9], CoFloCo [8], C4B [6], and others. In this paper, we give a full
classification of the computational complexity of deciding polynomial termination/counter
complexity for demonic VASS and VASS games, and solve open problems formulated in
previous works. Furthermore, we identify structural parameters making the asymptotic VASS
analysis computationally hard. Since these parameters are often small in VASS program
abstractions, this opens the way to applications in program analysis despite the established
lower complexity bounds.

The termination complexity of a given VASS A is a function L : N → N∞ assigning to
every n the maximal length of a computation initiated in a configuration with all counters
initialized to the n. Similarly, the counter complexity of a given counter c in A is a function
C[c] : N → N∞ such that C[c](n) is the maximal value of c along a computation initiated in
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23:2 Polynomial VASS Termination

input i ;
while ( i >0)

i := i −1;
j := i ;
while ( j >0)

j := j −1;

input i ;
while ( i >0)

i −−;
j :=0; Aux:=0;
while ( i >0)

i −−;
j ++;
Aux++;

while (Aux>0)
i ++;
Aux−−;

while ( j >0)
j −−;

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(−1, 0, 0) /* i-- */

(0, 0, 0)

(0,−1,−1) // j:=0; Aux:=0 //

(−1,+1,+1) // i--; j++; Aux++ //

(+1, 0,−1) // i++; Aux-- //

(0,−1, 0) // j-- //

Figure 1 A skeleton of a simple imperative program (left) and its VASS model (right).

a configuration with all counters set to the n. So far, three types of VASS models have been
investigated in previous works.

Demonic VASS, where the non-determinism is resolved by an adversarial environment
aiming to increase the complexity.
VASS Games, where every control state is declared as angelic or demonic, and the
non-determinism is resolved by the controller or by the environment aiming to lower and
increase the complexity, respectively.
VASS MDPs, where the states are either non-deterministic or stochastic. The non-
determinism is usually resolved in the “demonic” way.

Let us note that the “angelic” and “demonic” non-determinism are standard concepts in
program analysis [5] applicable to arbitrary computational devices including VASS. The use
of VASS termination/counter complexity analysis is illustrated in the next example.

▶ Example 1. Consider the program skeleton of Fig. 1 (left). Since a VASS cannot directly
model the assignment j:=i and cannot test a counter for zero, the skeleton is first transformed
into an equivalent program of Fig. 1 (middle), where the assignment j:=i is implemented
using an auxiliary variable Aux and two while loops. Clearly, the execution of the transformed
program is only longer than the execution of the original skeleton (for all inputs). For the
transformed program, an over-approximating demonic VASS model is obtained by replacing
conditionals with non-determinism, see Fig. 1 (right). When all counters are initialized to n,
the VASS terminates after O(n2) transitions. Hence, the same upper bound is valid also for
the original program skeleton. Actually, the run-time complexity of the skeleton is Θ(n2)
where n is the initial value of i, so the obtained upper bound is asymptotically optimal.

Existing results. In [4], it is shown that the problem whether L ∈ O(n) for a given demonic
VASS is solvable in polynomial time, and a complete proof method based on linear ranking
functions is designed. The polynomiality of termination complexity for a given demonic
VASS is also decidable in polynomial time, and if L ̸∈ O(nk) for any k ∈ N, then L ∈ 2Ω(n)

[13]. The same results hold for counter complexity. In [18], a polynomial time algorithm
computing the least k ∈ N such that L ∈ O(nk) for a given demonic VASS is presented (the
algorithm first checks if such a k exists). It is also shown that if L ̸∈ O(nk), then L ∈ Ω(nk).
Again, the same results hold also for counter complexity. The proof is actually given only for
strongly connected demonic VASS, and it is conjectured that a generalization to unrestricted
demonic VASS can be obtained by extending the presented construction (see the Introduction
of [18]). In [12], it was shown that the problem whether the termination/counter complexity
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of a given demonic VASS belongs to a given level of Grzegorczyk hierarchy is solvable in
polynomial time, and the same problem for VASS games is shown NP-complete. In [12], it
is also noted that the techniques designed to analyze the termination/counter complexity
for VASS games and the Grzegorczyk hierarchy are not applicable to VASS games and the
polynomial hierarchy. The reason is that Grzegorczyk classes are closed under function
composition (unlike the classes Θ(nk)) and player Angel can safely commit to a counterless
strategy when minimizing the complexity level in the Grzegorczyk hierarchy. However, the
problem whether L ∈ O(n2) for a given VASS game is shown PSPACE hard in [12], which
implies that counterless strategies are insufficient. Even the decidability of the L ∈ O(n2)
problem for VASS games is left open in [12]. As for VASS MDPs, the only existing result is
[3], where it is shown that the linearity of termination complexity is solvable in polynomial
time for VASS MDPs with a tree-like MEC decomposition.

Our contribution. For demonic VASS, we refute the conjecture of [18] and prove that for
general (not necessarily strongly connected) demonic VASS, the problem whether

L ∈ O(nk) is in P for k = 1, and coNP-complete for k ≥ 2;
L ∈ Ω(nk) is in P for k ≤ 2, and NP-complete for k ≥ 3;
L ∈ Θ(nk) is in P for k = 1, coNP-complete for k = 2, and DP-complete for k ≥ 3.

The same results are proven also for counter complexity.
Since the demonic VASS constructed in our proofs are relatively complicated, we write

them in a simple “imperative language” with a precisely defined VASS semantics. This
allows to present the overall proof idea clearly and justify technical correctness by following
the “control flow” of the VASS program, examining possible side effects of the underlying
“gadgets”, and verifying that the Demon does not gain anything by deviating from the ideal
execution scenario.

When proving the upper bounds, we show that every path in the DAG of strongly
connected components can be associated with the (unique) vector describing the maximal
simultaneous increase of the counters. Here, the counters pumpable to exponential (or
even larger) values require special treatment. We show that this vector is computable in
polynomial time. Hence, the complexity of a given counter c is Ω(nk) iff there is a path in the
DAG such that the associated maximal increase of c is Ω(nk). Thus, we obtain the NP upper
bound, and the other upper bounds follow similarly. The crucial parameter characterizing
hard-to-analyze instances is the number of different paths from a root to a leaf in the DAG
decomposition, and tractable subclasses of demonic VASS are obtained by bounding this
parameter. We refer to Section 3 for more details.

Then, we turn our attention to VASS games, where the problem of polynomial termina-
tion/counter complexity analysis requires completely new ideas. In [12], it was noted that
player Angel cannot use just counterless strategies when minimizing the complexity level in
the polynomial hierarchy. Clearly, the information about the “asymptotic counter increase
performed so far” must be taken into account by player Angel. However, it is not clear how to
extract the information needed for making the right decisions and whether this is achievable.
We show that player Angel can safely commit to a so-called locking strategy. A strategy
for player Angel is locking if whenever a new angelic state p is visited, one of its outgoing
transition is chosen and “locked” so that when p is revisited, the same locked transition
is used. The locked transition choice may depend on the computational history and the
transitions locked in previously visited angelic states. Then, we define a locking decomposition
of a given VASS that plays a role similar to the DAG decomposition for demonic VASS.
Using the locking decomposition, the existence of a suitable locking strategy for player Angel
is decided by an alternating polynomial time algorithm (and hence in polynomial space).

CVIT 2016
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1 input i ;
2 j :=0; k :=0; z :=0;
3 i f cond i t i on // demonic cho i c e //
4 then while ( i >0) do j ++; k:=k+i ; i −−; done
5 else j := i ∗ i ; k:= i ;
6 while ( i >0) do j := j+k ; i −−; done
7 choose : // a n g e l i c cho i c e //
8 while ( j >0) do j −−; z++ done
9 or : while (k>0) do k−−; z++ done

Figure 2 A simple program with both demonic and angelic non-determinism.

Thus, we obtain the following: For every VASS game, we have that L is either in O(nk) or
in Ω(nk+1). Furthermore, the problem whether

L ∈ O(nk) is NP-complete for k=1 and PSPACE-complete for k≥2;
L ∈ Ω(nk) is in P for k=1, coNP-complete for k=2, and PSPACE-complete for k≥3;
L ∈ Θ(nk) is NP-complete for k=1 and PSPACE-complete for k≥2.

The same results hold also for counter complexity. Similarly to demonic VASS, tractable
subclasses of VASS games are obtained by bounding the number of different paths in the
locking decomposition.

The VASS model constructed in Example 1 is purely demonic. To illustrate the applicab-
ility of VASS games in program analysis/synthesis, we give one more example.

▶ Example 2. Consider the program of Fig. 2. The condition at line 3 is resolved by the
environment in a demonic way. The two branches of if-then-else execute a code modifying
the variables j and k. After that, the controller can choose one of the two while-loops at
lines 8, 9 with the aim of keeping the value of z small. The question is how the size of z
grows with the size of input if the controller makes optimal decisions. A closer look reveals
that when the variable i is assigned n at line 1, then

the values of j and k are Θ(n) and Θ(n2) when the condition is evaluated to true;
the values of j and k are Θ(n2) and Θ(n) when the condition is evaluated to false.

Hence, the controller can keep z in Θ(n) if an optimal decision is taken. Constructing a
VASS game model for the program of Fig. 2 is straightforward (the required gadgets are
given in Fig. 3). Using the results of this paper, the above analysis can be performed fully
automatically.

2 Preliminaries

The sets of integers and non-negative integers are denoted by Z and N, respectively, and we
use N∞ to denote N ∪ {∞}. The vectors of Zd where d ≥ 1 are denoted by v,u, . . ., and the
vector (n, . . . , n) is denoted by n⃗.

▶ Definition 3 (VASS). Let d ≥ 1. A d-dimensional vector addition system with states
(VASS) is a pair A = (Q,Tran), where Q ̸= ∅ is a finite set of states and Tran ⊆ Q×Zd×Q

is a finite set of transitions such that for every q ∈ Q there exists p ∈ Q and u ∈ Zd such
that (q,u, p) ∈ Tran.

The set Q is split into two disjoint subsets QA and QD of angelic and demonic states
controlled by the players Angel and Demon, respectively. A configuration of A is a pair
pv ∈ Q× Nd, where v is the vector of counter values. We often refer to counters by their
symbolic names. For example, when we say that A has three counters x, y, z and the value of
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x in a configuration pv is 8, we mean that d = 3 and vi = 8 where i is the index associated
to x. When the mapping between a counter name and its index is essential, we use ci to
denote the counter with index i.

A finite path in A of length m is a finite sequence ϱ = p1,u1, p2,u2, . . . , pm such that
(pi,ui, pi+1) ∈ Tran for all 1 ≤ i < m. We use ∆(ϱ) to denote the effect of ϱ, defined as∑m

i=1 ui. An infinite path in A is an infinite sequence α = p1,u1, p2,u2, . . . such that every
finite prefix p1,u1, . . . , pm of α is a finite path in A.

A computation of A is a sequence of configurations α = p1v1, p2v2, . . . of length m ∈ N∞
such that for every 1 ≤ i < m there is a transition (pi,ui, pi+1) satisfying vi+1 = vi + ui.
Note that every computation determines its associated path in the natural way.
VASS Termination Complexity. A strategy for Angel (or Demon) in A is a function
η assigning to every finite computation p1v1, . . . , pmvm where pm ∈ QA (or pm ∈ QD)
a transition (pm,u, q). Every pair of strategies (σ, π) for Angel/Demon and every initial
configuration pv determine the unique maximal computation Compσ,π(pv) initiated in
pv. The maximality means that the computation cannot be prolonged without making
some counter negative. For a given counter c, we use max[c](Compσ,π(pv)) to denote the
supremum of the c’s values in all configurations visited along Compσ,π(pv). Furthermore, we
use len(Compσ,π(pv)) to denote the length of Compσ,π(pv). Note that max[c] and len can
be infinite for certain computations.

For every initial configuration pv, consider a game where the players Angel and Demon
aim at minimizing and maximizing the max[c] or len objective. By applying standard
game-theoretic arguments (see Appendix A), we obtain

sup
π

inf
σ

len(Compσ,π(pv)) = inf
σ

sup
π

len(Compσ,π(pv)) (1)

sup
π

inf
σ

max[c](Compσ,π(pv)) = inf
σ

sup
π

max[c](Compσ,π(pv)) (2)

where σ and π range over all strategies for Angel and Demon, respectively. Hence, there
exists a unique termination value of pv, denoted by Tval(pv), defined by (1). Similarly, for
every counter c there exists a unique maximal counter value, denoted by Cval[c](pv), defined
by (2). Furthermore, both players have optimal positional strategies σ∗ and π∗ achieving
the outcome specified by the equilibrium value or better in every configuration pv against
every strategy of the opponent (here, a positional strategy is a strategy depending only on
the currently visited configuration). We refer to Appendix A for details.

The termination complexity and c-counter complexity of A are functions N → N∞ where
L(n) = max{Tval(pn⃗) | p ∈ Q} and C[c](n) = max{Cval[c](pn⃗) | p ∈ Q}. When the
underlying VASS A is not clear, we write LA and CA[c] instead of L and C[c].

Observe that the asymptotic analysis of termination complexity for a given VASS A is
trivially reducible to the asymptotic analysis of counter complexity in a VASS B obtained
from A by adding a fresh “step counter” sc incremented by every transition of B. Clearly,
LA ∈ Θ(CB[sc]). Hence, the lower complexity bounds for the considered problems of
asymptotic analysis are proven for L, while the upper bounds are proven for C[c].

3 Demonic VASS

We start by classifying the computational complexity of polynomial asymptotic analysis for
demonic VASS. The following theorem holds regardless whether the counter update vectors
are encoded in unary or binary (the lower bounds hold for unary encoding, the upper bounds
hold for binary encoding).

CVIT 2016



23:6 Polynomial VASS Termination

VASS Program 1 Aφ

1 d2 += d1 ∗ e1; d3 += d2 ∗ e2; · · · ; dk += dk−1 ∗ ek−1;
2 foreach i = 1, . . . , v do
3 choose: xi += dk or x̄i += dk;
4 end
5 s0 += dk;
6 foreach i = 1, . . . , m do
7 choose: si += min(ℓi1, si−1) or si += min(ℓi2, si−1) or si += min(ℓi3, si−1);
8 end
9 f += sm ∗ n

▶ Theorem 4. Let k ≥ 1. For every demonic VASS A we have that L is either in O(nk) or
in Ω(nk+1). Furthermore, the problem whether

L ∈ O(nk) is in P for k = 1, and coNP-complete for k ≥ 2;
L ∈ Ω(nk) is in P for k ≤ 2, and NP-complete for k ≥ 3;
L ∈ Θ(nk) is in P for k = 1, coNP-complete for k = 2, and DP-complete for k ≥ 3.

The same results hold also for C[c] (for a given counter c of A).

The next theorem identifies the crucial parameter influencing the complexity of polynomial
asymptotic analysis for demonic VASS. Let D(A) be the standard DAG of strongly connected
components of A. For every leaf (bottom SCC) η of D(A), let Deg(η) be the total number
of all paths from a root of D(A) to η.

▶ Theorem 5. Let Λ be a class of demonic VASS such that for every A ∈ Λ and every leaf
η of D(A) we have that Deg(η) is bounded by a fixed constant depending only on Λ.

Then, the problems whether LA ∈ O(nk), LA ∈ Ω(nk), LA ∈ Θ(nk) for given A ∈ Λ and
k ∈ N, are solvable in polynomial time (where the k is written in binary). The same results
hold also for C[c] (for a given counter c of A).

Of course, the degree of the polynomial bounding the running time of the decision
algorithm for the three problems of Theorem 5 increases with the increasing size of the
constant bounding Deg(α).

From the point of view of program analysis, Theorem 5 has a clear intuitive meaning.
If A is an abstraction of a program P , then the constructs in P increasing the complexity
of the asymptotic analysis of A are branching constructs such as if-then-else that are not
embedded within loops. If P executes many such constructs in a sequence, a termination
point can be reached in many ways (“zigzags” in the P ’s control-flow graph).

3.1 Lower bounds
Since the asymptotic analysis of L is trivially reducible to the asymptotic analysis of C[c]
(see Section 2), all lower complexity bounds of Theorem 4 follow directly from the next two
lemmata.

▶ Lemma 6. Let k ≥ 2. For every propositional formula φ in 3-CNF there exists a demonic
VASS Aφ constructible in time polynomial in |φ| such that

if φ is satisfiable, then LAφ ∈ Θ(nk+1);
if φ is not satisfiable, then LAφ ∈ Θ(nk).

Proof. Let φ ≡ C1 ∧ · · · ∧Cm be a propositional formula where every Ci ≡ ℓi1 ∨ ℓi2 ∨ ℓi3 is a
clause with three literals over propositional variables X1, . . . , Xv (a literal is a propositional
variable or its negation). We construct a VASS Aφ with the counters
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in

out

– x
+ α
+ z

+ x
– α
+ z

– y

z += x ∗ y

in out

– y
+ x
+ α

+ y
– α

x += y

in out

– si−1
– ℓ

+ si
+ α

+ ℓ
– α

si += min(ℓ, si−1)

in in out in out out
ins1 ins2

ins1; ins2

in

in out

in out

out

ins1

insj

choose: ins1; or · · · or insj

Figure 3 The gadgets of Aφ.

x1, · · · , xv, x̄1, · · · , x̄v used to encode an assignment of truth values to X1, . . . , Xv. In the
following, we identify literals ℓij of φ with their corresponding counters (i.e., if ℓij ≡ Xu,
the corresponding counter is xu; and if ℓij ≡ ¬Xu, the corresponding counter is x̄u).
s0, . . . , sm used to encode the validity of clauses under the chosen assignment,
f used to encode the (in)validity of φ under the chosen assignment,
d1, . . . , dk and e1, . . . , ek−1 used to compute nk,
and some auxiliary counters used in gadgets.

The structure of Aφ is shown in VASS Program 1. The basic instructions are implemented
by the gadgets of Fig. 3 (top). Counter changes associated to a given transition are indicated
by the corresponding labels, where −c and +c mean decrementing and incrementing a given
counter by one (the other counters are unchanged). Hence, the empty label represents no
counter change, i.e., the associated counter update vector is 0⃗. The auxiliary counter α is
unique for every instance of these gadgets and it is not modified anywhere else.

The construct ins1; ins2 and choose: ins1; or · · · or insj are implemented by connect-
ing the underlying gadgets as shown in Fig. 3 (bottom). The foreach statements are just
concise representations of the corresponding sequences of instructions connected by ‘;’.

Now suppose that the computation of VASS Program 1 is executed from line 1 where all
counters are initialized to n. One can easily verify that all gadgets implement the operations
suggested by their labels up to some “asymptotically irrelevant side effects”. More precisely,

the z += x ∗ y gadget ensures that the Demon can increase the value of counter z by
val(x) + val(y) · (val(x) + n) (but not more) if he plays optimally, where val(x) and val(y)
are the values stored in x and y when initiating the gadget. Recall that the counter α is
unique for the gadget, and its initial value is n. Also note that the value of y is decreased
to 0 when the Demon strives to maximally increase the value of z.
The x += y gadget ensures that the Demon can add val(y) to the counter x and then reset
y to the value val(y) + n (but not more) if he plays optimally. Again, note that α is a
unique counter for the gadget with initial value n.
The si += min(ℓ, si−1) gadget allows the Demon to increase si by the minimum of val(ℓ)
and val(si−1), and then restore ℓ to val(ℓ) + n (but not more).

Now, the VASS Program 1 is easy to understand. We describe its execution under the
assumption that the Demon plays optimally. It is easy to verify that the Demon cannot gain
anything by deviating from the below described scenario where certain counters are pumped

CVIT 2016
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to their maximal values (in particular, the auxiliary counters are never re-used outside their
gadgets, hence the Demon is not motivated to leave any positive values in them).

By executing line 1, the Demon pumps the counter dk to the value Θ(nk). Then, the
Demon determines a truth assignment for every Xi, where i ∈ {1, . . . , v}, by pumping either
the counter xi or the counter x̄i to the value Θ(nk). A key observation is that when the
chosen assignment makes φ true, then every clause contains a literal such that the value of
its associated counter is Θ(nk). Otherwise, there is a clause Ci such that all of the three
counters corresponding to ℓi1, ℓi2, ℓi3 have the value n. The Demon continues by pumping s0
to the value Θ(nk) at line 5. Then, for every i = 1, . . . ,m, he selects a literal ℓij of Ci and
pumps si to the minimum of val(si−1) and val(ℓij). Observe that val(si−1) is either Θ(n) or
Θ(nk), and the same holds for val(si) after executing the instruction. Hence, sm is pumped
either to Θ(nk) or Θ(n), depending on whether the chosen assignment sets every clause to
true or not, respectively. Observe that the length of the whole computation up to line 9 is
Θ(nk), regardless whether the chosen assignment sets the formula φ to true or false. If sm
was pumped to Θ(nk), then the last instruction at line 9 can pump the counter f to Θ(nk+1)
in Θ(nk+1) transitions. Hence, if φ is satisfiable, the Demon can schedule a computation of
length Θ(nk+1). Otherwise, the length of the longest computation is Θ(nk). Also observe
that if the Demon starts executing Aφ in some other control state (i.e., not in the first
instruction of line 1), the maximal length of a computation is only shorter. ◀

Recall that the class DP consists of problems that are intersections of one problem in
NP and another problem in coNP. The class DP is expected to be somewhat larger than
NP ∪ coNP, and it is contained in the PNP level of the polynomial hierarchy. The standard
DP-complete problem is Sat-Unsat, where an instance is a pair φ,ψ of propositional
formulae and the question is whether φ is satisfiable and ψ is unsatisfiable. Hence, the DP
lower bounds of Theorem 4 follow directly from the next lemma (a proof is in Appendix B).

▶ Lemma 7. Let k ≥ 3. For every pair φ,ψ of propositional formulae in 3-CNF there exists
a demonic VASS Aφ,ψ such that LAφ,ψ ∈ Θ(nk) iff φ is satisfiable and ψ is unsatisfiable.

3.2 Upper bounds
The upper bounds of Theorem 4 are proven for C[c]. We need to consider a more general
setting when the counters are not initialized to n but to values polynomial in n.

Let A be a demonic VASS with d counters. For every counter c and every v ∈ Nd, we
define the function C[c,v] : N → N∞ where C[c,v](n) is the maximum of all Cval[c](pu)
where p ∈ Q and u = (nv(1), . . . , nv(d)). The main tool for proving the upper complexity
bounds of this section is the following proposition:

▶ Proposition 8. Let A be a strongly connected demonic VASS with d counters, and let
v ∈ Nd such that v(i) ≤ 2j·d for every i ≤ d, where j < |Q|. For every counter c, we have
that either C[c,v] ∈ Θ(nk) for some 1 ≤ k ≤ 2(j+1)·d, or C[c,v] ∈ Ω(2n). It is decidable in
polynomial time which of the two possibilities holds. In the first case, the k is computable in
polynomial time.

In [18], a special variant of Proposition 8 covering the subcase when v = 1⃗ is proven. In
the introduction part of [18], it is mentioned that a generalization of this result (equivalent
to Proposition 8) can be obtained by modifying the techniques presented in [18]. Although
no explicit proof is given, the modification appears feasible. We include a simple explicit
proof of Proposition 8, using the algorithm of [18] for the v = 1⃗ subcase as a “black-box
procedure”. We refer to Appendix B for details.
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To formulate the main result of this section, we extend the function C[c,v] so that v ∈ Nd∞.
Intuitively, the ∞ components of v correspond to counters that have already been pumped
to “very large” values and do not constrain the computations in A. As we shall see, “very
large” actually means singly exponential in n.

Let v ∈ Nd∞, and let Av be the VASS obtained from A by modifying every counter
update vector u into u′, where u′(i) = u(i) if v(i) ̸= ∞, otherwise u′(i) = 0. Hence, the
counters set to ∞ in v are never changed in Av. Furthermore, let v′ be the vector obtained
from v by changing all ∞ components into 1. We put CA[c,v] = CAv [c,v′].

For a given v ∈ Nd∞, we say that F : N → Nd is v-consistent if for every i ∈ {1, . . . , d} we
have that the projection Fi : N → N is either Θ(nk) if vi = k, or 2Ω(n) if vi = ∞. Intuitively,
a v-consistent function assigns to every n ∈ N a vector F (n) of initial counter values growing
consistently with v.

Given v ∈ Nd∞, a control state p ∈ Q, a v-consistent function F , an infinite family
Π = π1, π2, . . . of Demon’s strategies in A, a function S : N → N, and n ∈ N, we use
βn[v, p, F,Π, S] to denote the computation of A starting at pF (n) obtained by applying πn
until a maximal computation is produced or S(n) transitions are executed.

The next lemma says that if A is strongly connected, then all counters can be pumped
simultaneously to the values asymptotically equivalent to CA[c,v] so that the counters
previously pumped to exponential values stay exponential.

▶ Lemma 9. Let A be a strongly connected demonic VASS with d counters. Let v ∈ Nd∞,
and let F be a v-consistent function. Then for every counter ci such that vi ≠ ∞ and
CA[ci,v] ∈ Θ(nk) we have that Cval[c](pF (n)) ∈ Θ(nk) for every p ∈ Q. Furthermore, there
exist p ∈ Q, an infinite family Π of Demon’s strategies, and a function S ∈ 2O(n) such that
for every ci, the value of ci in the last configuration of βn[v, p, F,Π, S] is

Θ(nk) if CA[ci,v] ∈ Θ(nk);
2Ω(n) if vi = ∞ or CA[ci,v] ∈ 2Ω(n).

A proof of Lemma 9 uses the result of [13] saying that counters pumpable to exponential
values can be simultaneously pumped by a computation of exponential length from a
configuration where all counters are set to n (the same holds for polynomially bounded
counters, where the length of the computation can be bounded even by a polynomial). Using
the construction of Proposition 8, these results are extended to our setting with v-consistent
initial counter values. Then, the initial counter values are virtually “split into d boxes” of
size ⌊v/d⌋. The computations pumping the individual counters are then run for these smaller
initial vectors and concatenated. The details are in Appendix B.3.

Let VA : Nd∞ → Nd∞ be a function such that, for every v ∈ Nd∞,

VA(v)(i) =
{
k if vi ̸= ∞ and CA[ci,v] ∈ Θ(nk),
∞ otherwise.

Note that every SCC (vertex) η of D(A) can be seen as a strongly connected demonic
VASS after deleting all transitions leading from/to the states outside η. If the counters are
simultaneously pumped to v-consistent values before entering η, then η can further pump
the counters to Vη(v)-consistent values (see Lemma 9). According to Lemma 8, Vη(v) is
computable in polynomial time for every v ∈ Nd∞ where every finite vi is bounded by 2j·d
for some j < |Q|.

Observe that all computations of A can be divided into finitely many pairwise disjoint
classes according to their corresponding paths in DA (i.e., the sequence of visited SCCs of DA).
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For each such sequence η1, . . . , ηm, the vectors v0, . . . ,vm where v0 = 1⃗ and vi = Vηi(vi−1)
are computable in time polynomial in |A| (note that m ≤ |Q|). The asymptotic growth of
the counters achievable by computations following the path η1, . . . , ηm is then given by vm.
Hence, CA[ci] ∈ Ω(nk) iff there is a path η1, . . . , ηm in DA such that vm(i) ≥ k. Similarly,
CA[ci] ∈ O(nk) iff for every path η1, . . . , ηm in DA we have that vm(i) ≤ k. From this we
immediately obtain the upper complexity bounds of Theorem 4.

Furthermore, for every SCC η of DA, we can compute the set VectorsA(η) of all u such
that there is a path η1, . . . , ηm where η1 is a root of DA, ηm = η, and u = vm. The algorithm
is given in Appendix B.4. If Deg(η) is bounded by a fixed constant independent of A for every
leaf η of DA, then the algorithm terminates in polynomial time, which proves Theorem 5.

4 VASS Games

The computational complexity of polynomial asymptotic analysis for VASS games is classified
in our next theorem. The parameter characterizing hard instances is identified at the end of
this section.

▶ Theorem 10. Let k ≥ 1. For every VASS game A we have that L is either in O(nk) or
in Ω(nk+1). Furthermore, the problem whether

L ∈ O(nk) is NP-complete for k=1 and PSPACE-complete for k≥2;
L ∈ Ω(nk) is in P for k=1, coNP-complete for k=2, and PSPACE-complete for k≥3;
L ∈ Θ(nk) is NP-complete for k=1 and PSPACE-complete for k≥2.

The same results hold also for C[c] (for a given counter c of A).

Furthermore, we show that for every VASS game A, either L ∈ O(n2d|Q|) or L ∈ 2Ω(n). In
the first case, the k such that L ∈ Θ(nk) can be computed in polynomial space. The same
results hold for C[c].

In [12], it has been shown that the problem whether L ∈ O(n) is NP-complete, and if
L ̸∈ O(n), then L ∈ Ω(n2). This yields the NP and coNP bounds of Theorem 10 for k = 1, 2.
Furthermore, it has been shown that the problem whether L ∈ O(n2) is PSPACE-hard, and
this proof can be trivially generalized to obtain all PSPACE lower bounds of Theorem 10.
For the sake of completeness, we sketch the arguments in Appendix C.

The key insight behind the proof Theorem 10 is that player Angel can safely commit to a
simple locking strategy when minimizing the counter complexity. We start by introducing
locking strategies.

▶ Definition 11. Let A be a VASS game. We say that a strategy σ for player Angel is
locking if for every computation p1v1, . . . , pmvm where pm ∈ QA and for every k < m such
that pk = pm we have that σ(p1v1, . . . , pkvk) = σ(p1v1, . . . , pmvm).

In other words, when an angelic control state p is visited for the first time, a locking
strategy selects and “locks” an outgoing transition of p so that whenever p is revisited, the
previously locked transition is taken. Observe that the choice of a “locked” transition may
depend on the whole history of a computation.

Since a “locked” control state has only one outgoing transition, it can be seen as demonic.
Hence, as more and more control states are locked along a computation, the VASS game A
becomes “more and more demonic”. We capture these changes as a finite acyclic graph GA
called the locking decomposition of A. Then, we say that a locking strategy is simple if the
choice of a locked transition after performing a given history depends only on the finite path
in GA associated to the history. We show that Angel can achieve an asymptotically optimal
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termination/counter complexity just by using simple locking strategies. Since the height of
GA is polynomial in |A|, the existence of an appropriate simple locking strategy for Angel
can be decided by an alternating polynomial-time algorithm. As AP = PSPACE, this
proves the PSPACE upper bounds of Theorem 10. Furthermore, our construction identifies
the structural parameters of GA making the polynomial asymptotic analysis of VASS games
hard. When these parameters are bounded by fixed constants, the problems of Theorem 10
are solvable in polynomial time. Again, the parameters have a clear intuitive interpretation.

4.1 Locking sets and the locking decomposition of A
Let A be a VASS game. A Demonic decomposion of A is a finite directed graph DA defined
as follows. Let ∼ ⊆ Q × Q be an equivalence where p ∼ q iff either p = q, or both p, q

are demonic and mutually reachable from each other via a finite path leading only through
demonic control states. The vertices of DA are the equivalence classes Q/∼, and [p] → [q]
iff [p] ̸= [q] and (p,u, q) ∈ Tran for some u. For demonic VASS, DA becomes the standard
DAG decomposition. For VASS games, DA is not necessarily acyclic.

A locking set of A is a set of transitions L ⊆ Tran such that (p,u, q) ∈ L implies p ∈ QA,
and (p,u, q), (p′,u′, q′) ∈ L implies p ̸= p′. A control state p is locked by L if L contains an
outgoing transition of p. We use L to denote the set of all locking sets of A. For every
L ∈ L , let AL be the VASS game obtained from A by “locking” the transitions of L. That
is, each control state p locked by L becomes demonic in AL, and the only outgoing transition
of p in AL is the transition (p,u, q) ∈ L.

▶ Definition 12. The locking decomposition of A is a finite directed graph GA where the
set of vertices and the set of edges of GA are the least sets V and → satisfying the following
conditions:

All elements of V are pairs ([p], L) where L ∈ L and [p] is a vertex of DAL . When p is
demonic/angelic in AL, we say that ([p], L) is demonic/angelic.
V contains all pairs of the form ([p], ∅).
If ([p], L) ∈ V where p is demonic in AL and [p] → [q] is an edge of DAL , then ([q], L) ∈ V

and ([p], L) → ([q], L).
If ([p], L) ∈ V where p is angelic in AL, then for every (p,u, q) ∈ Tran we have that
([q], L′) ∈ V and ([p], L) → ([q], L′), where L′ = L ∪ {(p,u, q)}.

It is easy to see that GA is acyclic and the length of every path in GA is bounded
by |Q| + |QA|, where at most |Q| vertices in the path are demonic. Note that every
computation of A obtained by applying a locking strategy determines its associated path
in GA in the natural way. A locking strategy σ is simple if for every finite computation
p1v1, . . . , pmvm obtained by applying σ such that pm ∈ QA and pk ̸= pm for all k < m we
have that σ(p1v1, . . . , pmvm) depends only on the path in GA associated to p1v1, . . . , pmvm.

4.2 Upper bounds
Let A be a VASS game with d counters. For every p ∈ Q and v ∈ Nd, let CpA[c,v](n) =
Cval[c](pu) where u = (nv(1), . . . , nv(d)). We extend this notation to the vectors v ∈ Nd∞
in the same way as in Section 3.2, i.e., for a given v ∈ Nd∞, we put CpA[c,v] = CpAv

[c,v′].
Recall that v′ is the vector obtained from v by changing all ∞ components into 1, and Av
is the VASS obtained from A by modifying every counter update vector u into u′, where
u′(i) = u(i) if v(i) ̸= ∞, otherwise u′(i) = 0. The main technical step towards obtaining the
PSPACE upper bounds of Theorem 10 is the next proposition.

CVIT 2016



23:12 Polynomial VASS Termination

▶ Proposition 13. Let A be a VASS game with d counters. Furthermore, let ([p], L) be a
vertex of GA, v ∈ Nd∞, and ci a counter such that vi ̸= ∞. Then, one of the following two
possibilities holds:

there is k ∈ N such that for every v-consistent F there exist a simple locking Angel’s
strategy σv in AL and a Demon’s strategy πv in AL such that σv is independent of F and

for every Demon’s strategy π in AL, we have that max[ci](Compσv,π
AL (pF (n))) ∈ O(nk);

for every Angel’s strategy σ in AL, we have that max[ci](Compσ,πv
AL (pF (n))) ∈ Ω(nk).

for every v-consistent F there is a Demon’s strategy πv in AL such that for every Angel’s
strategy σ in AL, we have that max[ci](Compσ,πv

AL (pF (n))) ∈ 2Ω(n).

Proposition 13 is proven by induction on the height of the subgraph rooted by ([p], L).
The case when ([p], L) is demonic (which includes the base case when ([p], L) is a leaf) follows
from the constructions used in the proof of Proposition 8. When the vertex ([p], L) is angelic,
it has immediate successors of the form ([qi], Li) where Li = L ∪ {(p,ui, qi)}. We show that
by locking one of the (p,ui, qi) transitions in p, Angel can minimize the growth of ci in
asymptotically the same way as if he used all of these transitions freely when revisiting p.

Observe that every computation in A where Angel uses some simple locking strategy
determines the unique corresponding path in GA (initiated in a vertex of the form ([p], ∅)) in
the natural way. Hence, all such computations can be divided into finitely many pairwise
disjoint classes according to their corresponding paths in GA. Let ([p1], L1), . . . , ([pk], Lk) be
a path in GA where L1 = ∅. Consider the corresponding sequence v0, . . . ,vk where v0 = 1⃗
and vi is equal either to V[pi](vi−1) or to vi−1, depending on whether ([pi], Li) is demonic
or angelic, respectively. Here, V is the function defined in Section 3.2 (observe that the
component [p] of DAL containing p can be seen as a strongly connected demonic VASS after
deleting all transitions from/to the states outside [p]). The vector vk describes the maximal
asymptotic growth of the counters achievable by the Demon when the Angel uses the simple
locking strategy associated to the path. Furthermore, the sequence v0, . . . ,vk is computable
in time polynomial in |A| and all finite components of vk are bounded by 2d·|Q| because the
total number of all demonic ([pi], Li) in the path is bounded by |Q| (cf. Proposition 8).

The problem whether C[ci] ∈ O(nk) can be decided by an alternating polynomial-
time algorithm which selects an initial vertex of the form ([p], ∅) universally, and then
constructs a maximal path in GA from ([p], ∅) where the successors of demonic/angelic
vertices are chosen universally/existentially, respectively. After obtaining a maximal path
([p1], L1), . . . , ([pk], Lk), the vector vk is computed in polynomial time, and the algorithm
answers yes/no depending on whether vk(i) ≤ k or not, respectively. The problem whether
C[ci] ∈ Ω(nk) is decided similarly, but here the initial vertex is chosen existentially, the
successors of demonic/angelic vertices are chosen existentially/universally, and the algorithm
answers yes/no depending on whether vk(i) ≥ k or not, respectively. This proves the
PSPACE upper bounds of Theorem 10.

Observe that the crucial parameter influencing the computational hardness of the asymp-
totic analysis for VASS games is the number of maximal paths in GA. If |QA| and Deg([p], L)
are bounded by constants, then the above alternating polynomial time algorithms can be
simulated by deterministic polynomial time algorithms. Thus, we obtain the following:

▶ Theorem 14. Let Λ be a class of VASS games such that for every A ∈ Λ we have that
|QA| and Deg([p], L), where ([p], L) is a leaf of GA, are bounded by a fixed constant depending
only on Λ. Then, the problems whether LA ∈ O(nk), LA ∈ Ω(nk), LA ∈ Θ(nk) for given
A ∈ Λ and k ∈ N, are solvable in polynomial time (where the k is written in binary). The
same results hold also for C[c] (for a given counter c of A).
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A The Existence of Equilibrium Value in VASS Games

In this section, we sketch a proof for the equalities

sup
π

inf
σ

len(Compσ,π(pv)) = inf
σ

sup
π

len(Compσ,π(pv))

sup
π

inf
σ

max[c](Compσ,π(pv)) = inf
σ

sup
π

max[c](Compσ,π(pv))

used in Section 2. These results appear folklore and plausible. Still, they do not immediately
follow from the standard determinacy results for Borel objectives because the reward function
is not bounded. Due to the importance of these equalities, we believe they are worth a proof
sketch.

We prove the determinacy result for arbitrary finitely-branching games with countably
many vertices. Consider a game G = (V,→, c) where V is a countably infinite set of vertices
partitioned into the subsets VD and VA of demonic and angelic vertices, → ⊆ V × V is a
finitely-branching transition relation (i.e., every vertex v has only finitely many immediate
successors), and c : V → N is a cost function. Furthermore, we fix an initial vertex v̂. For
every maximal path α initiated in v̂, let max[c](α) be the supremum of the costs of all vertices
visited by α. We show that

sup
π

inf
σ

max[c](ασ,π) = inf
σ

sup
π

max[c](ασ,π)

where π and σ range over the strategies for Demon/Angel in G, and ασ,π is the unique
maximal path initiated in v̂ determined by π and σ.

Let Γ : NV∞ → NV∞ be a (Bellman) operator such that, for a given f : V → N∞, we have
that Γ(f) = g, where g : V → N∞ is defined as follows:

g(v) =
{

max
{
c(v),max{c(u) | v → u}

}
if v ∈ VD

max
{
c(v),min{c(u) | v → u}

}
if v ∈ VA

Since Γ is a continuous operator over the CPO of all functions V → N∞ with component-wise
ordering, there is the least fixed-point µΓ =

⊔∞
i=0 Γi(⊥) of Γ, where ⊥ is the least element

(i.e., a function assigning 0 to every vertex). Consider two memoryless strategies π∗ and σ∗

for Demon and Angel such that
for every v ∈ VD, the strategy π∗ selects a successor of v with the maximal µΓ value;
for every v ∈ VA, the strategy σ∗ selects a successor of v with the minimal µΓ value.

Now, it suffices to show that

µΓ(v̂) ≤ sup
π

inf
σ

max[c](ασ,π) ≤ inf
σ

sup
π

max[c](ασ,π) ≤ µΓ(v̂) (3)

The second inequality of (3) holds trivially. For the first inequality, observe that

inf
σ

max[c](ασ,π
∗
) ≤ sup

π
inf
σ

max[c](ασ,π)

Hence, it suffices to show µΓ(v̂) ≤ infσ max[c](ασ,π∗), which is achieved by demonstrating
Γi(⊥)(v̂) ≤ infσ max[c](ασ,π∗) for every i ∈ N (by induction on i). The last inequality in (3)
is proven similarly (using σ∗).
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VASS Program 2 Aφ,ψ

1 lines 1–8 of Aφ constructed for k − 1;
2 lines 1–8 of Aψ constructed for k − 1; /* all counters are fresh */
3 a += s(Aφ); b += s(Aψ); e += a ∗ b; /* a, b, e are fresh counters */
4 c += s(Aψ); d += s(Aψ); f += c ∗ d; /* c, d, f are fresh counters */

B Proofs for Section 3

B.1 A proof of Lemma 7
▶ Lemma 7. Let k ≥ 3. For every pair φ,ψ of propositional formulae in 3-CNF there exists
a demonic VASS Aφ,ψ such that LAφ,ψ ∈ Θ(nk) iff φ is satisfiable and ψ is unsatisfiable.

Proof. The structure of Aφ,ψ is given by the VASS Program 2. The program starts by
executing the first eight lines of the VASS Program 1 constructed for φ and k − 1, followed
by the first eight lines of the same program constructed for ψ and k − 1 where all variables
representing the counters are fresh and previously unused. According to the proof of Lemma 6,
the Demon can perform Θ(nk−1) transitions when executing the first two lines of the VASS
Program 2 regardless whether the formulae φ,ψ are satisfiable or not. Let s(Aφ) and s(Aψ)
be the counters of Aφ and Aψ corresponding to the counter sm of the VASS Program 1.
According to Lemma 1, we have the following:

If φ is satisfiable, then the counter s(Aφ) can be pumped to Θ(nk−1); otherwise, it can
be pumped only to Θ(n).
If ψ is satisfiable, then the counter s(Aψ) can be pumped to Θ(nk−1); otherwise, it can
be pumped only to Θ(n).

The instructions at lines 3 and 4 ensure that LAφ,ψ ∈ Θ(nk) iff the counter s(Aφ) can be
pumped to Θ(nk−1) and the counter s(Aψ) can be pumped only to Θ(n). More precisely,
the instructions at line 3 multiply the values of these two counters. Hence, if both values are
Θ(nk−1), the multiplication gadget executes Θ(n2k−2) transitions, which is beyond Θ(nk). If
one of the counter values is Θ(n) and the other is Θ(nk−1), the multiplication takes Θ(nk)
transitions. Finally, if both values are Θ(n), the multiplication takes Θ(n2) transitions. The
instructions at line 4 compute the square of the value stored in s(Aψ), which takes either
Θ(n2k−2) or Θ(n2) transitions, depending on whether the value of s(Aψ) is Θ(nk−1) or Θ(n),
respectively. So, the only case when these instructions produce a sequence of transitions of
length Θ(nk) is when the value of s(Aφ) is Θ(nk−1) and the value of s(Aψ) is Θ(n). ◀

B.2 A proof of Proposition 8
In this section we give a full proof of Proposition 8. We start by recalling the special variant
proven in [18].

▶ Proposition 15 (see [18]). Let A be a strongly connected demonic VASS with d counters.
For every counter c, we have that either C[c] ∈ Θ(nk) for some 1 ≤ k ≤ 2d, or C[c] ∈ Ω(2n).
It is decidable in polynomial time which of the two possibilities holds. In the first case, the k
is computable in polynomial time.

Our proof of Proposition 8 is obtained by modifying a given demonic VASS A into another
demonic VASS Â and applying Proposition 15 to Â.
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▶ Proposition 8. Let A be a strongly connected demonic VASS with d counters, and let
v ∈ Nd such that v(i) ≤ 2j·d for every i ≤ d, where j < |Q|. For every counter c, we have
that either C[c,v] ∈ Θ(nk) for some 1 ≤ k ≤ 2(j+1)·d, or C[c,v] ∈ Ω(2n). It is decidable in
polynomial time which of the two possibilities holds. In the first case, the k is computable in
polynomial time.

Proof. Let c1, . . . , cd be the counters of A. We start by constructing a VASS B that “pumps”
every ci to nv(i) from an initial configuration with all counters set to n (see VASS Program 3).
Since the components of v can be exponential in d, the trivial technique used in line 1 of
VASS Program 1 is not applicable because it requires Ω(2j·d) new counters and control states.
Hence, B needs to be constructed more carefully using repeated squaring. Let maxv be the
maximal component of v, and let ℓ = ⌊log(maxv)⌋. Then, for every 1 ≤ i ≤ d, there is a
vector t⃗i ∈ {0, 1}ℓ+1 computable in time polynomial in |A| such that v(i) = t⃗i ∗ (20, . . . , 2ℓ).
At line 2, the counter mj is pumped to Θ(n2j ). Note that when maximizing the value of
mj , the corresponding gadget (see Fig. 3) leaves 0 either in mj−1 or in α, and the value
of both counters is at most 1. The nested loop at lines 3–5 increase the counter sj by
t⃗i ∗ (20, . . . , 2ℓ) for every j = 1, . . . , d using the mi counters. Note that s0 is initialized to n,
so no computation is needed for j = 0. Also note that the if statement at line 4 is purely
symbolic—the condition t⃗i(j) = 1 is a constant denoting either true or false, and the two
instructions following then are either included into the code of B or not. At lines 7–9, the
values stored in s1, . . . , sd are added to the counters c1, . . . , cd. The gadget for the instruction
x += [y] “reads” the value of y destructively, i.e., the counter y is not restored to its original
value (cf. the gadget for x += y of Fig. 3).

Note that the VASS B has two distinguished control states in and out, and uses κ auxiliary
counters different from c1, . . . , cd. Hence, the total number of counters of B is d+ κ. The
transition update vectors of B are constructed so that the first d components specify the
updates for c1, . . . , cd. An important observation is that even if we extended B with a
transition (out, 0⃗, in) allowing for “restarting” the computation of B, this extra transition
would be of no use when maximizing the values of c1, . . . , cℓ. The best the Demon could do
is to maximize the value of all mj , then maximize all si, and then empty si by transferring
its content to ci. If the Demon violated from this scenario, leaving some positive values in
the auxiliary counters of B and then “restarting” the computation of B using the transition
(out, 0⃗, in), the resulting value of c1, . . . , cℓ would be only smaller.

Now we construct a VASS U with d+ κ counters by taking the union of A and B, where
the transition update vectors of A are extended so that they do not modify the extra κ

counters of B. Furthermore, for every control state p of A, we add to U the transitions
(p,−m⃗, in) and (out,−m⃗, p). Here, m = |Q| · M , where M is the maximal absolute value
of an update vector component in A. Observe that U is strongly connected and its size is
polynomial in the size of A.

We show that for every ci, where i ∈ {1, . . . , d}, the asymptotic growth of C[ci] in U is
the same as the asymptotic growth of C[ci,v] in A. Hence, it suffices to apply Proposition 15
to U .

Clearly, CA[ci,v] ∈ O(CU [ci]) because U can use the sub-VASS B to pump every cj to
Θ(nv(j)) and then simulate a computation of A. It remains to show CU [ci] ∈ O(CA[ci,v]).
To see this, it suffices to verify that the best strategy for the Demon who aims at maximizing
the value of ci in a computation of U initiated in a configuration with all counters set to n is
to start in the in state of the sub-VASS B and pump all c1, . . . , cd to their maximal values,
and then continue by simulating A without ever returning to the in state of the sub-VASS B.
Such a computation can be “simulated” by A from an initial configuration where every cj is
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VASS Program 3 The “pumping” VASS B

1 foreach j = 1, . . . , ℓ do
2 mj += mj−1 ∗ mj−1;
3 foreach i = 1, . . . , d do
4 if t⃗i(j) = 1 then a(i, j) += sj ; sj += mj ∗ a(i, j);
5 end
6 end
7 foreach i = 1, . . . , d do
8 ci += [si];

in out

– y
+ x

x += [y]

9 end

set to nv(j), which proves our claim.
Obviously, an extra “detour” to B is of no use if the counters c1, . . . , cd have previously

been pumped to their maximal values. As noted above, the Demon cannot gain anything by
deviating from the scenario when c1, . . . , cd are pumped just once at the beginning because
the total increase in the values of c1, . . . , cd brought by running the sub-VASS B could be
only smaller. So, the only reason why Demon might still wish to re-visit B by entering in
from a control state p of the sub-VASS A is a “shorter” path to some other control state q of
the sub-VASS A passing through the sub-VASS B. However, since A is strongly connected,
the Demon can always move from p to q via the control states of A and the total decrease in
every counter will be only smaller than the decrease caused by the transitions (p,−m⃗, in)
and (out,−m⃗, q). To sum up, the optimal strategy for Demon is to use the sub-VASS B
only at the beginning to pump all c1, . . . , cd to their maximal values, and then schedule an
appropriate computation of the sub-VASS A. ◀

B.3 A Proof of Lemma 9
First, let us restate Lemma 9.

▶ Lemma 9. Let A be a strongly connected demonic VASS with d counters. Let v ∈ Nd∞,
and let F be a v-consistent function. Then for every counter ci such that vi ≠ ∞ and
CA[ci,v] ∈ Θ(nk) we have that Cval[c](pF (n)) ∈ Θ(nk) for every p ∈ Q. Furthermore, there
exist p ∈ Q, an infinite family Π of Demon’s strategies, and a function S ∈ 2O(n) such that
for every ci, the value of ci in the last configuration of βn[v, p, F,Π, S] is

Θ(nk) if CA[ci,v] ∈ Θ(nk);
2Ω(n) if vi = ∞ or CA[ci,v] ∈ 2Ω(n).

Let A be a strongly connected VASS. For every cycle γ of A, let ∆(γ) be the sum of the
counter update vectors of the transitions executed along γ.

A proof of Lemma 9 uses the following result of [13]. Let E be the set of all counters
c such that CA[c] ∈ 2Ω(n). Then the exists in iteration scheme for E , i.e., a sequence of
cycles γ1, . . . , γk such that every counter strictly decremented by some ∆(γi) is strictly
incremented by

∑k
i=1 ∆(γi). Furthermore, E is precisely the set of all counters strictly

incremented by
∑k
i=1 ∆(γi). In [13], it is shown that an iteration scheme can be “iterated

exponentially many times”, producing a computation of length 2O(n) such that all counters of
E are simultaneously pumped to the value 2Ω(n) (see Lemma 10 in [13]). Furthermore, every
counter c such that CA[c] ∈ O(nk) can be pumped to the value Ω(nk) by a computation
of polynomial length (using the results of [18], it is easy to show that the length of the
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computation can be bounded by O(nk+1); for our purposes, even a singly exponential bound
is sufficient, so there is no need to go into the details).

The above mentioned results assume that the vector of initial counter values is n⃗. Now let
v ∈ Nd∞. Consider a VASS Âv obtained by first modifying A into Av (i.e., for every ci such
that vi = ∞, every counter update vector u of A is modified so that ui = 0, see Section 3.2),
and then extending Av into Âv by the construction of Proposition 8. That is, Âv is obtained
from Av by adding the gadget pumping every counter ci such the vi = k < ∞ to Θ(nk) from
an initial configuration where all counters are set to n. Now, the above results are applicable
to Âv. That is, for every counter ci such that vi ̸= ∞, there exist

a control state pi ∈ Q,
an infinite family τ i1, τ i2, . . . of strategies for player Demon in Âv,
a function Si : N → N such that Si ∈ 2O(n),

such that for every n ∈ N, the value of ci in the configuration reached by applying τ in from
pin⃗ until a maximal computation is obtained or Si(n) transitions are executed, is

Θ(nk) if CÂv
[c] ∈ Θ(nk),

2Ω(n) if CÂv
[c] ∈ 2Ω(n).

By applying the observations of Proposition 8, we can safely assume that pi = in where
in is the distinguished starting state of the pumping gadget, and the above computations
never revisit the control state in after passing through the control state out of the gadget.

For every i ∈ {1, . . . , d}, let Gadgeti(n) be the maximal value of ci achievable by running
the pumping gadget of Âv from the control state in where all counters are initialized to n
(cf. VASS Program 3). Recall that Gadgeti(n) ∈ Θ(nvi).

Let F be a v-consistent function. We define a function R : N → N such that R(n) is the
largest m satisfying the following conditions:

⌊Fi(n)/d⌋) ≥ Gadgeti(m) + |Q| · M for every i ∈ {1, . . . , d}, where Q are the control
states of A and M is the maximal absolute value of an update vector component of A;
Si(m) ·M ≤ ⌊Fi(n)/(d+1)⌋.

Observe that R ∈ Θ(n). For every n ∈ N and i ∈ {1, . . . , d} such that vi ̸= ∞, consider
a Demon’s strategy ϱin in A defined as follows: Let q be the control state visited by the
strategy τ iR(n) right after leaving the control state out of the pumping gadget of Âv. The
strategy ϱin takes the shortest path to q and then starts to behave exactly like τ iR(n). Note
that ϱin can faithfully simulate τ iR(n) for at least Si(R(n)) steps, which is sufficient to pump
the counter ci to Θ(nk) if Cv[ci] ∈ Θ(nk), or to 2Ω(n) if Cv[ci] ∈ 2Ω(n). The strategy πn
is obtained by “concatenating” all ϱin (for all counters ci such that vi ̸= ∞), where ϱin
is executed for Si(R(n)) steps since initiating the simulation of τ iR(n) (if τ iR(n) produces a
maximal computation, the simulation of τ iR(n) by ϱin terminates immediately). Hence, the
total length of the whole simulation is bounded by S(n) =

∑
i,vi ̸=∞ (|Q| + Si(R(n)). Observe

that S(n) ∈ 2O(n), and for every counter ci such that vi = ∞ we have that the value of ci
after performing πn in the above indicated way is at least ⌊Fi(n)/(d+1)⌋, which is 2Ω(n).

B.4 An Algorithm Computing VectorsA
In this section, we present an algorithm computing the set VectorsA(η) for every SCC η of
DA. Recall that VectorsA(η) consists of all u such that there is a path η1, . . . , ηm where η1
is a root of DA, ηm = η, and u = vm.
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Algorithm 4 Computing the function VectorsA
input : A Demonic decomposition D(A) of a demonic VASS A
output : The function VectorsA

1 foreach vertex µ of D(A) do
2 VectorsA(µ) := ∅
3 end
4 Aux := the set of all vertices of D(A)
5 foreach η ∈ Aux where η is a root of D(A) do
6 VectorsA(η) := {Vη (⃗1)}
7 Aux := Aux ∖ {η}
8 end
9 while Aux ̸= ∅ do

10 η := an element of Aux such that Pre(η) ∩ Aux = ∅
11 Aux := Aux ∖ {η}
12 foreach µ ∈ Pre(η) do
13 foreach v ∈ VectorsA(µ) do
14 VectorsA(η) := VectorsA(η) ∪ {Vη(v)}
15 end
16 end
17 end

The sets VectorsA(η) are computed by Algorithm 4. In particular, at lines 5–8, VectorsA(η)
is set to Vη (⃗1) for every root η of D(A). The algorithm then follows the top-down acyclic
structure of D(A) and computes VectorsA(η) for the remaining components.

C Proofs for Section 4

C.1 PSPACE lower bounds of Theorem 10
In this section, we prove the PSPACE lower bounds of Theorem 10. We use a modified
construction of Lemma 6 to obtain a reduction from the QBF problem. Intuitively, the
only change is that Angel determines the assignment for universally quantified propositional
variables. Let us note that in the original construction of [12], Angel also selected the clause
to be checked. Here, we use the construction of Lemma 6 based on the min gadgets. Let

ψ ≡ ∀x1 ∃y1 ∀x2 . . . ∃yv C1 ∧ . . . ∧ Cm

be a quantified Boolean formula where each clause Ci contains precisely three literals (recall
that the (in)validity of a given quantified Boolean formula is a PSPACE complete problem).

Consider the VASS game Aψ defined by the VASS Program 5, where k ≥ 2 is a constant.
Note that the only difference between Aψ and the demonic VASS Aφ (cf. the VASS Program 1)
is that the valuation for the universally quantified variables is chosen by Angel. Formally,
the gadget for D-choose is the same as the one for choose (see (Fig. 3), and the gadget
for A-choose is also the same except that the newly added in state of the gadget is angelic.
Note that all other states of Aψ, including the states in gadgets pumping the xi, yi counters,
are demonic. Using the observations of Lemma 6, it is easy to see that

if ψ is valid, then LAψ ∈ Θ(nk+1);
if ψ is not valid, then LAψ ∈ Θ(nk).

From this we immediately obtain the PSPACE lower bounds of Theorem 10.
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VASS Program 5 Aψ

1 d2 += d1 ∗ e1; d3 += d2 ∗ e2; · · · ; dk += dk−1 ∗ ek−1;
2 foreach i = 1, . . . , v do
3 A-choose: xi += dk or x̄i += dk;
4 D-choose: yi += dk or ȳi += dk;
5 end
6 s0 += dk;
7 foreach i = 1, . . . , m do
8 D-choose: si += min(ℓi1, si−1) or si += min(ℓi2, si−1) or si += min(ℓi3, si−1);
9 end

10 f += sm ∗ n

C.2 A Proof of Proposition 13
First, let us restate the proposition.

▶ Proposition 13. Let A be a VASS game with d counters. Furthermore, let ([p], L) be a
vertex of GA, v ∈ Nd∞, and ci a counter such that vi ̸= ∞. Then, one of the following two
possibilities holds:

there is k ∈ N such that for every v-consistent F there exist a simple locking Angel’s
strategy σv in AL and a Demon’s strategy πv in AL such that σv is independent of F and

for every Demon’s strategy π in AL, we have that max[ci](Compσv,π
AL (pF (n))) ∈ O(nk);

for every Angel’s strategy σ in AL, we have that max[ci](Compσ,πv
AL (pF (n))) ∈ Ω(nk).

for every v-consistent F there is a Demon’s strategy πv in AL such that for every Angel’s
strategy σ in AL, we have that max[ci](Compσ,πv

AL (pF (n))) ∈ 2Ω(n).

Convention. For notation simplification, we assume that the counter update vector u in
every transition (p,u, q) where p is angelic satisfies u = 0⃗ (a transition (p,u, q) where u ̸= 0⃗
can be split into (p, 0⃗, q′), (q′,u, q) where q′ is a fresh demonic state).

Let us fix a vertex ([p], L) of GA, a vector v ∈ Nd∞, and a counter ci such that vi ̸= ∞.
First, consider the case when ([p], L) is a leaf of GA. Then ([p], L) is demonic, and can be
seen as a strongly connected demonic VASS. The claim follows trivially by applying Lemma 9
to ([p], L) and v.

Now suppose that ([p], L) is a demonic vertex of GA with successors ([q1], L), . . . , ([qm], L).
Note that ([p], L) can be seen as a strongly connected demonic VASS after deleting all
transitions from/to the states outside ([p], L). Let F be a v-consistent function. By applying
Lemma 9 to ([p], L), the vector v, and F , we obtain an infinite family of Demon’s strategies Π
and a function S ∈ 2O(n) such that the vector G(n) of counter values in the last configuration
of βn[v, p, F,Π, S] satisfies the following for every ℓ ∈ {1, . . . , d}:

Gℓ(n) ∈ Θ(nk) if vℓ ̸= ∞ and Cp([p],L)[cℓ,v] ∈ Θ(nk);
Gℓ(n) ∈ 2Ω(n) if vℓ = ∞ or Cp([p],L)[cℓ,v] ∈ 2Ω(n).

Let u = V([p],L)(v), where V is the function defined in Section 3.2. Note that G is a
u-consistent function. If ui = ∞, we define πv as the strategy which behaves like the strategy
πn of Π for every computation of AL initiated in pF (n)). Clearly, max[ci](Compσ,πv

AL (pF (n))) ∈
2Ω(n) for every Angel’s strategy σ. If ui ̸= ∞, for every j ∈ {1, . . . ,m} we apply the induction
hypothesis to ([qj ], L), the vector u, the counter ci, and the u-consistent function G. Thus,
we obtain that for every j ∈ {1, . . . ,m} one of the following possibilities holds:



M. Ajdarów and A. Kučera 23:21

There exists a kj ∈ N, a simple locking Angel’s strategy σju in AL and a Demon’s strategy
πju in AL such that σju is independent of G and

for every Demon’s strategy π in AL, we have max[ci](Compσ
j
u,π

AL (qj G(n))) ∈ O(nkj );
for every Angel’s strategy σ in ALj , we have max[ci](Compσ,π

j
u

AL (qj G(n))) ∈ Ω(nkj ).
There is a Demon’s strategy πju in AL such that for every Angel’s strategy σ in AL we
have that max[ci](Compσ,π

j
u

AL (qj G(n))) ∈ 2Ω(n).

We distinguish two cases:

There is j ∈ {1, . . . ,m} such that the second possibility holds. Let πv be a Demon’s
strategy such that, for an initial configuration pF (n), πv starts by simulating the strategy
πn of Π until a configuration with the G(n) vector of counter values is reached. Then, πv
takes the shortest path to a configuration qjw, and then switches to simulating πju for
the initial configuration qjG(n′) where n′ ∈ N is the largest number such that G(n′) ≤ w.
The properties of πju (see above) imply that max[ci](Compσ,πv

AL (pF (n))) ∈ 2Ω(n) for an
arbitrary Angel’s strategy σ.
For all j ∈ {1, . . . ,m}, the first possibility holds. Let k be the maximum of all kj for
j ∈ {1, . . . ,m}. Furthermore, let σv be a simple locking strategy which for a computation
initiated in pF (n) behaves like the simple locking strategy σju when the computation
enters a control state of ([qj ], L). Note that a computation initiated in pF (n) cannot visit
an angelic control state before leaving the component ([p], L), and the decisions taken by
simple locking strategies may depend on the sequence of previously visited components
of GA. Hence, σv is a simple locking strategy. For every Demon’s strategy π, we have
that max[ci](Compσv,π

AL (pF (n))) ∈ O(nk) by our choice of k and the properties of σju
strategies (see above). Now consider the Demon’s strategy πv defined in the same way as
in the previous case, where j is the index such that k = kj . Then, the properties of πju
imply that max[ci](Compσ,πv

AL (pF (n))) ∈ Ω(nk) for an arbitrary Angel’s strategy σ.

Finally, suppose that ([p], L) is angelic. Then [p] = {p}, and let (p, 0⃗, q1), . . . , (p, 0⃗, qm)
be the outgoing transitions of p (see the Convention above). For every j ∈ {1, . . . ,m}, let
Lj = L ∪ {(p, 0⃗, qj)}. Let F be a v-consistent function. By induction hypothesis, for every
j ∈ {1, . . . ,m}, one of the following possibilities holds:

there exists a kj ∈ N, a simple locking Angel’s strategy σjv in ALj and a Demon’s strategy
πjv in ALj such that σjv is independent of F and

for every Demon’s strategy πj in ALj , we have max[ci](Compσ
j
v,π

j

ALj
(pF (n))) ∈ O(nkj );

for every Angel’s strategy σj in ALj , we have max[ci](Compσ
j ,πjv

ALj
(pF (n))) ∈ Ω(nkj ).

there is a Demon’s strategy πjv in ALj such that for every Angel’s strategy σj in ALj we
have that max[ci](Compσ

j ,πjv
ALj

(pF (n))) ∈ 2Ω(n).

Strictly speaking, the induction hypothesis applies to the initial configurations qj F (n), but
since p is a control state of ALj and (p, 0⃗, qj) is the only out-going transition of p in ALj ,
the above claim follows immediately.

Let us first assume that there exists j such that the first possibility holds. Then, we
fix a j such that kj is minimal, and we put k = kj . Consider a simple locking strategy σv
in AL which starts by locking the transition (p, 0⃗, qj) and then proceeds by simulating the
simple locking strategy σjv. For every Demon’s strategy π, we have that Compσv,π

AL (pF (n))
is the same computation as Compσ

j
v,π

ALj
(pF (n)). Hence, max[ci](Compσv,π

AL (pF (n))) ∈ O(nk)
by induction hypothesis.
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Now consider a Demon’s strategy πv in AL defined as follows. Let q1v1, . . . , qℓvℓ be a
computation in AL initiated in a configuration pF (n) such that qℓ is demonic. Furthermore,
let α ≡ q1

u1−→ q2
u2−→ · · · uℓ−1−−−→ qℓ be the associated path in AL. The mode of α is the j

such that (p, 0⃗, qj) is the last outgoing transition of p occurring in α. The j-th projection of
π, denoted by πj , is then obtained by concatenating all subsequences of α initiated by the
transition (p, 0⃗, qj) and terminated either by the next occurrence of p or by qℓ. Consider the
computation γj in ALj obtained by performing πj from the initial configuration p ⌊F (n)/m⌋,
where ⌊F (n)/m⌋(i) = ⌊Fi(n)/m⌋. The transition selected by πv after performing the
computation q1v1, . . . , qℓvℓ is the transition selected by πjv, after performing γj . Intuitively,
πv “switches” among the strategies π1

v, . . . , π
m
v according to the current mode, and thus

simulates computations of AL1 , . . . ,ALm initiated in p ⌊F (n)/m⌋. The computation first
reaching a terminal configuration is simulated completely. Hence, there exists j such that
Compσ,πv

AL (pF (n)) “subsumes” Compσ
j ,πjv

AL (p ⌊Fi(n)/m⌋), where σj is the “projection” of σ
into ALj . This implies max[ci](Compσ,πv

AL (pF (n))) ∈ Ω(nk) by induction hypothesis and our
choice of k.

Finally, assume that the second possibility holds for all j ∈ {1, . . . ,m}. Then, we
construct a Demon’s strategy πv in the same way as above, and conclude (by the same
reasoning) that max[ci](Compσ,πv

AL (pF (n))) ∈ 2Ω(n) for an arbitrary Angel’s strategy σ.
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