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Abstract. A collection of 10 “rules of thumb” is presented that helps to deter-
mine the decidability and complexity of a large number of Petri net problems.

1 Introduction

The topic of this paper is the decidability and complexity of verification problems for
Petri nets. I provide answers to questions like “is there an algorithm to decide if two
Petri nets are bisimilar?”, or “how much time is it needed (in the worst case) to decide
if a 1-safe Petri net is deadlock-free?”

My intended audience are people who work on the development of algorithms and
tools for the analysis of Petri net models and have some basic understanding of com-
plexity theory. More precisely, I assume that the reader is familiar with the notion of
undecidable problem, with the definitions of deterministic and nondeterministic com-
plexity classes like NP or PSPACE, with the notion of hard and complete problems for
a complexity class, and with the use of reductions to prove hardness and completeness
results. Theoreticians acquainted with the topic of this paper are warned: They won’t
find much in it that they didn’t know before.1 On the other hand, they might be inter-
ested in the paper’s unified view of complexity questions for 1-safe and general Petri
nets, and in a few simplifications in the presentation of some proofs.

When I was invited to write this paper, I hesitated for a while. I remembered the
statement of the Greek scepticist Gorgias:

Nothing exists;
if anything does exist, it is unknowable;
if anything can be known, knowledge of it is incommunicable.

and imagined a Greek chorus advising me not to write the paper because, in their opin-
ion:

All results about decidability and complexity of Petri nets were already ob-
tained in the early eighties;

�
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1 Only one result has not been published before, namely a PSPACE algorithm for the model-
checking problem of CTL and 1-safe Petri nets, presented in Section 4.



if there are new results, you have included them for sure in the paper “Decid-
ability issues for Petri nets – a survey” you wrote with Mogens Nielsen in 1994
[10];
if you haven’t included them in the survey, they are only of interest for spe-
cialists; moreover, these results just show that all interesting problems are in-
tractable – finer classifications, like NP-, PSPACE- or EXPSPACE-hardness
have no practical relevance.

Since, as you can see, I still decided to write the paper, I would like to anticipate my
answer to these three possible criticisms.

� There have been important recent developments about decidability and complexity
questions, of interest for the whole Petri net community.

During the late seventies and early eighties there was an outburst of theoretical work
on decidability and complexity problems for (Place/Transition) Petri nets. Well-known
computer scientists, like Rabin, Rackoff, Lipton, Mayr, Meyer, and Kosaraju, just to
mention a few, obtained a very impressive collection of results. The decidability of
most problems, like boundedness, liveness, reachability, language equivalence, etc. was
settled, and in many cases tight complexity bounds were obtained.

However, while these results were being obtained, two developments in computer
science opened new problems:

� In the late seventies, temporal logic was proposed as a query language for the
specification of reactive and distributed systems; a few years later, model-checking was
introduced as a technique for the verification of arbitrary temporal properties. How-
ell, Rosier, and Yen were the first to study the decidability and complexity of model-
checking problems for Petri nets in the second half of the eighties [17, 19, 20]. Today
most questions in this research field have been answered [9, 14].

� In the early eighties, process algebras were introduced for the formal description
of concurrent and reactive systems. It was seen that language equivalence was not an
adequate equivalence notion for this class of systems, since for instance it may consider
deadlock-free systems as equivalent to systems with deadlocks. New equivalence rela-
tions were introduced, like bisimulation and failures equivalence. In the early nineties,
the decidability of these equivalences for systems with infinite state spaces started to
receive a lot of attention, and led to renewed interest in Petri nets. Jančar proved only
a few years ago a fundamental result showing the undecidability for Petri nets of all
equivalence notions described in the literature [22, 21].

These two developments still had another effect. During the eighties, many re-
searchers started to study the relationship of process algebras to Petri nets. Net models
in which a place can carry at most one token, like condition/event systems or elemen-
tary net systems, turned out to be particularly useful for these studies. These nets, which
have by definition a finite number of states, became even more interesting after the in-
troduction of automatic model-checkers, when it was realised that they could be used to
model a large number of interesting systems which were within the reach of automatic
verification. The questions that had been asked and mostly solved for Place/Transition
nets were now asked again for these models. In the last years the complexity of classical
properties (reachability, liveness ����� ), model-checking problems for different temporal



logics, and equivalence problems for different equivalence notions, has been completely
determined [2, 23, 31].

� This paper has a different approach than the ’94 survey paper, and has been written
to complement it.

Research on the decidability and complexity of verification problems for Petri nets
has produced well over 100 papers, maybe even 150. Many of them have been published
in well-known journals, and are thus available in any good library. My survey paper with
Mogens Nielsen [10] summarises many results, and provides a rather comprehensive
list of references.

Petri net researchers often need information about the complexity of a particular
problem (the Petri net mailing list receives now and then postings with this kind of
requests). In most cases, a similar problem has already been studied in the literature,
and pointers to relevant papers can be found in [10]. If one is familiar with a number
of basic techniques, it is easy to apply these existing results to the new problem. How-
ever, acquiring this familiarity is at the moment a rather hard task, specially for Ph. D.
students: one has to go through many papers and distill an understanding which is not
explicitly contained in the papers themselves. The purpose of these pages is to make
this task a bit easier. Instead of listing results and references, I concentrate on a few
general results of broad applicability. I also provide “rules of thumb”, which I think can
be more useful than formal theorems.

� All researchers interested in the development and implementation of analysis algo-
rithms for Petri nets can greatly profit from some basic knowledge on the computational
complexity of analysis problems.

All researchers are regularly confronted with the problem of having to prove or
disprove a conjecture. Should one first try to find a proof or a counterexample? The
wrong choice can make one lose precious time. Complexity theory can often help by
showing that the truth or falsity of the conjecture implies an unlikely fact, like P � NP
or NP � PSPACE. I present here some examples in the form of three stories taken from
my personal experience:

Story I. After graduating in Physics, I became a Ph. D. student of computer science.
At that time I knew very little about theoretical computer science, and there were no
theoreticians in my environment. I started to work on the analysis of free-choice Petri
nets, a net class for which there was hope of finding efficient verification algorithms, and
more precisely I began to investigate the liveness problem. My hope was to efficiently
transform the problem into a set of linear inequations that could be solved using linear
programming. ‘Efficiently’ meant for me that the number and size of the equations
should grow quadratically, say, in the size of the net.

During the next four months I could not find any encoding, but I read some text-
books on theoretical computer science. I came across Garey and Johnson’s book on
the theory of NP-completeness [12], and I found the problem I was working on (more
precisely, its complement) in the list of NP-complete problems at the end of the book.
Since there exist polynomial algorithms for Linear Programming but the complement of



the liveness problem for free-choice nets was NP-complete, the existence of an efficient
encoding would imply P � NP, and so it was highly unlikely.

The NP-completeness of the non-liveness problem for free-choice Petri nets is proved
in Section 10.

Story II. Some years ago I refereed a paper submitted to the Petri net conference.
The paper contained a conjecture on the reachability problem for Petri nets that can
be stated as follows. Let

�
be a net, and let ��� and � be markings of

�
such that

� is reachable from ��� . Conjecture: � can be reached from ��� through a sequence
of transition firings which only visits intermediate markings of size ���	��
� � 
���� ,
where ����� � ��� are the sizes of

�
, � � and � , respectively. The author of the paper

had constructed a random generator of nets and markings and had tested the conjecture
in one thousand cases, always with a positive answer.

It is certainly possible to disprove the conjecture by exhibiting a counterexample,
but it is faster to use a complexity argument. I show this argument in Section 7.

Story III. I have recently come across a paper containing a characterisation of the set
of reachable markings of 1-safe Petri nets. A simple complexity analysis shows that the
characterization is most probably wrong, although I haven’t found a counterexample
yet. In order to formulate the characterisation we need some definitions and notations.
A siphon of a net is a subset of places � satisfying ��������� . A trap is a subset of
places � satisfying � � � � � . Given a net

�
�����������! "� and a set #$�%� , we define

the net
�'&

as the result of first removing all transitions of
�

not belonging to # , and
then removing all places that are not connected to any transition anymore.

Now, let
�

�(�������)�* "� be a net, and let ��� and � be markings of
�

such that the
Petri net � � �!���+� is 1-safe. The characterization states � is reachable from ��� if and
only if there exists a mapping ,.-/�10�2 3 satisfying the following three properties:

(1) for every place 4 , �5�647� �8� � ��4+�9
:%;=<?>@�6 A�	BC�!47��DE A�64F�*B�����G�,H�	B�� ,
(2) every nonempty siphon of

� >JI is marked at ��� , and
(3) every nonempty trap of

� >KI is marked at � .

where LKM is the set of transitions B such that ,H�NB��PO�Q .
I strongly believe that the proof of this result contains a mistake, and that a coun-

terexample exists. I show why in Section 3.2

� The classification of a problem as NP-, PSPACE- or EXPSPACE-hard does have
practical relevance

The complexity of Petri nets was first studied in the seventies, when NP-complete
problems were really intractable: computer scientists were unable to deal even with very
small instances due to the lack of computing power and of good theoretical results.
At that time it probably didn’t make so much difference for a practitioner whether a
problem was PSPACE-hard or only NP-complete. In my opinion, today’s picture is
very different:

2 After I wrote this paper, but before its publication, Stephan Melzer found a counterexample
with 5 places and 3 transitions.



– NP-complete problems are no longer “intractable”. It is certainly true that all known
algorithms that solve them have exponential worst-case complexity. However, to-
day there exist commercial systems for standard NP-complete problems, like sat-
isfiability of propositional logic formulas or integer linear programming problems,
that routinely solve instances of large size.

– The last years have witnessed a proliferation of model-checking tools, like COSPAN,
PEP, PROD, SMV, SPIN, and others (see [11] and [30] for comprehensive informa-
tion). Although the problems they solve are PSPACE-complete, they have been suc-
cessfully applied to the verification of many interesting finite state systems. Com-
mercial versions are starting to appear.

– Experimental tools for the analysis of timed-systems are starting to emerge. Ex-
amples are Hy-Tech, KRONOS, UPPAAL [11]. Many of the problems solved by
these tools are EXPSPACE-complete. The size of the instances they can handle is
certainly much smaller than in the case of model-checkers, but the results are very
promising.

– Theorem provers like HOL, Isabelle, PVS, and others are being applied with good
success to the verification of systems with infinite state spaces. They use heuristics
to try to solve particular instances of undecidable analysis problems.

My conclusion is that the old “tractable – intractable” classification has become too
rough. A finer analysis provides very valuable information about the size of instances
that can be handled by automatic tools, and about the possibility of applying existing
tools to a particular problem.

Organisation of the paper

The paper is divided into two parts. The first is devoted to 1-safe Petri nets, which are
Place/Transition Petri nets having the property that no reachable marking puts more
than one token in any place. Nearly all results hold for � -safe Petri nets (at most �
tokens on a place) too, assuming that the algorithms receive � as part of the input, which
implies in particular that � must be known in advance. The second part is devoted to
general Place/Transition nets. Both parts are divided into the same four sections. Each
section contains one or more “rules of thumb”. These are general informal statements
which try to summarise a number of formal results in a concise, necessarily informal,
but informative way. They could also be called “useful lies”: statements which do not
tell all the truth and nothing but the truth, but are more useful than a complicated formal
theorem with many ifs and buts. There is a total of 10 rules of thumb in the paper;
with their help I can solve most of the complexity questions I come across in my own
research.

Rules of thumb are displayed in the text like this:

Rule of thumb 0:
To find the rules of thumb, look for pieces of text within a box.



This is only a rule of thumb, because other pieces of text are also surrounded by a box,
in fact by a double box. They are fundamental formal results used to derive the rules of
thumb.

Fundamental results are displayed within a double box.

The first section contains a universal lower bound for “interesting” Petri net prob-
lems. The second section deals with upper bounds: for 1-safe Petri nets it is possible
to give an almost universal upper bound, whereas the case of general Petri nets is more
delicate. The third section deals with equivalence problems: are two given nets equiva-
lent with respect to a given equivalence notion? Upper and lower bounds are considered
simultaneously. Finally, the fourth section gives information about how far one can go
with polynomial time algorithms.

Only some of the results mentioned in the paper are proved; for others the reader
is referred to the literature. The results with a proof are those fulfilling two conditions:
they are very general, applicable to a variety of problems, and admit relatively simple,
non-technical proofs. I have devoted special effort to presenting proofs in the simplest
possible way. My goal was to produce a paper that could be read straight through from
beginning to end. I don’t know if the goal has been achieved, but I tried my best.
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2 Preliminaries

We assume that the reader is acquainted with the basic notions of net theory, like firing
rule, reachable marking, liveness, boundedness, etc., and also with other basic compu-
tation models like Turing machines. This section just fixes some notations.

Petri nets. A net is a triple
�

�(�������)�* "� , where � and � are finite sets of places and
transitions, and  � �6� � � �����N� � � � is the flow relation. We identify  with its
characteristic function �6� � � ��� �	� � � �@0��+Q ���
	 . The preset and postset of a place
or transition � are denoted by � � and � � , respectively. Given a set , � ��� � , we
denote � , ���� <?I ��� and , � ���� <?I��K� . A marking is a mapping � - � 0 2 3 .
A (Place/Transition) Petri net is a pair 3 � � � � � � � , where

�
is a net and � � is

the initial marking. A transition B is enabled at a marking � if �5��4+� O$Q for every
4��'� B . If B is enabled at � , then it can fire or occur, and its firing leads to the successor
marking ��� which is defined for every place 4 by

� � �647� �1�5�647� 
H A�	BC� 4+��D  A��4?�*B��
The expression � ;DK0 ��� denotes that � enables transition B , and that the marking

reached by the occurrence of B is ��� . A finite or infinite sequence ��� ;��D 0 ��� ;��DK0
����G G�G is called a firing sequence. The maximal firing sequences of a Petri net (i.e.,
the infinite firing sequences plus the finite firing sequences which end with a marking
that does not enable any transition) are called runs. Given a sequence � �(B � B!� �����*B!" ,

� #DK0 � � denotes that there exist markings � � �!� � ������� �!� "%$�� such that � ; �DK0
� � �����*� "&$'� ;�(DK0 ��� .

A Petri net is 1-safe if �5��4+�*)+� for every place 4 and every reachable marking � .
We encode a net �������)�* "� as two , �-, � , ��, binary matrices .*/10 and .325476 . The entry

.*/10 �64F�*B�� is � if there is an arc from 4 to B , and Q otherwise. The entry .3284 6 ��4?�*B�� is � if
there is an arc from B to 4 , and Q otherwise. The size of a net is the number of bits needed
to write down these two matrices, and is therefore ���1, �-, G9, ��, � . The size of a Petri net is
the size of the net plus the size of its initial marking. Markings are encoded as vectors



of natural numbers. The size of a marking is defined as the number of bits needed to
write it down as a vector, where each component is written in binary. Observe that the
size of a 1-safe Petri net is ���1, �-, G , ��, � , since the initial marking has size ���1, �-, � .

A labelled net is a fourtuple �������)�* � � � , where �6���*���* "� is a net and
�

is a mapping
that associates to each transition B a label

� �NB�� taken from some given set of actions��� 6 . Given � � ��� 6 , we denote by � �DJ0 ��� that there is some transition B such that

� ;DJ0 ��� and
� �NB�� ��� . A labelled Petri net is a pair � � �!� � � , where

�
is a labelled

net and � � is the initial marking.

Turing machines. In the paper we use single tape Turing machines with one-way infinite
tapes, i.e., the tape has a first but not a last cell. For our purposes it suffices to consider
Turing machines starting on empty tape, i.e., on tape containing only blank symbols. So
we define a (nondeterministic) Turing machine as a tuple � ���	�A��
P��� ��+�?�* "� , where� is the set of states, 
 the set of tape symbols (containing a special blank symbol),�9-9�	� � 
 � 0�� ��� � 
 � �7� ���3	 � the transition function,  � the initial state, and  the
set of final states. The size of a Turing machine is the number of bits needed to encode
its transition relation.

Linearly and exponentially bounded automata. We work several times with Turing
machines that can only use a finite tape fragment, or equivalently, with Turing machines
whose tape has both a first and a last cell. We call them bounded automata. If a bounded
automaton tries to move to the right from the last tape cell it just stays in the last cell.

A function � -J2 3 0 2 3 induces the class of ���	� � -bounded automata, which con-
tains for all ���1Q the bounded automata of size � that can use ����� � tape cells. Notice
that we deviate from the standard definition, which says that an automaton is ���	� � -
bounded if it can use at most ����� � tape cells for an input word of length � . Since we
only consider bounded automata working on empty tape, the standard definition is not
appropriate for us. When ���	� � � � and ���N� � ��� " we get the classes of linearly
bounded and exponentially bounded automata, respectively.

Complexity classes and reductions. In the paper we use some of the most basic com-
plexity classes, like P, NP, and PSPACE. We also use the class EXPSPACE, defined
by3 ������� �"!�#$�

��%&(' �*)
� �"!�#$�

�	� ",+ �
We always work with polynomial reductions, i.e., given an instance � of a problem A
we construct in polynomial time an instance - of a problem . . Many of the results
also hold for logspace reductions, or even log-lin reductions, but we do not address this
point.

3 Notice that some books (for instance [1]) define/10325462 7�89/;:=<?>A@CB DE462 7�89/�FHG�IAJLKNM
.



Part I

1-safe Petri nets





We study the complexity of analysis problems for 1-safe Petri nets. Given a 1-safe
Petri net � � �!� � � , where

�
� �6���*���* "� , we say that the possible markings of

�
or

just the markings of
�

are the set of markings that put at most one token in a place.
Clearly, there are ��� ��� possible markings. Each of the markings can be identified with
the set of places marked at it. Observe that the size of a marking is linear in the size of
the net.

3 A universal lower bound

In this section we obtain a universal lower bound for the complexity of deciding whether
a 1-safe Petri net satisfies an interesting behavioural property:

Rule of thumb 1:
All interesting questions about the behaviour of 1-safe Petri nets are
PSPACE-hard.

Notice that a rule of thumb is not a theorem. There are behavioural properties of 1-
safe Petri nets that can be solved in polynomial time. For instance, the question “Is the
initial marking a deadlock?” can be answered very efficiently; however, it is so trivial
that hardly anybody would consider it really interesting. So a more careful formulation
of the rule of thumb would be that all questions described in the literature as interesting
are at least PSPACE-hard. Here are 14 examples:

– Is the Petri net live?
– Is some reachable marking a deadlock?
– Is a given marking reachable from the initial marking?
– Is there a reachable marking that puts a token in a given place?
– Is there a reachable marking that does not put a token in a given place?
– Is there a reachable marking that enables a given transition?
– Is there a reachable marking that enables more than one transition?
– Is the initial marking reachable from every reachable marking?
– Is there an infinite run?
– Is there exactly one run?
– Is there a run containing a given transition?
– Is there a run that does not contain a given transition?
– Is there a run containing a given transition infinitely often?
– Is there a run which enables a transition infinitely often but contains it only finitely

often?

The PSPACE-hardness of all these problems is a consequence of one single funda-
mental fact, first observed by Jones, Landweber and Lien in 1977 [24]:

A linearly bounded automaton of size � can be simulated by a 1-safe
Petri net of size ���	� � � . Moreover, there is a polynomial time procedure
which constructs this net.



The notion of simulation used here is very strong: a 1-safe Petri net simulates a Tur-
ing machine if there is bijection � between configurations of the machine and markings
of the net such that the machine can move from a configuration � � to a configuration � �
in one step if and only if the Petri net can move from the marking �����5��� to the marking�������+� through the firing of exactly one transition.

Let
�

� �	����
@��� ��� �� � �* "� be a linearly bounded automaton of size � . The compu-
tations of � visit at most the cells � � ������� ��� " . Let � be this set of cells. The simulating
Petri net 3�� � � contains a place 4 �  � for each state  � � , a place 4 ��� � for each cell
� ��� , and a place 4 � �K�	� � for each symbol ��� 
 and for each cell � �
� . A token
on 4 �	 � signals that the machine is in state  . A token on 4 ����� signals that the machine
reads the cell � . A token on 4F�	�K�	� � signals that the cell � contains the symbol � . The
total number of places is , � , 
���G?� �P
 , � , � .

The transitions of 3�� � � are determined by the state transition relation of
�

. If
�  � ��� � �*��� � �/�  ���/� , then we have for each cell � a transition B �	 ���K�	� � whose input
places are 4 �  � , 4 ��� � , and 4 � �K��� � and whose output places are 4 �  � � , 4 �	� ����� � and 4 ��� � � ,
where � � is the cell to the right of � (this signals that the tape head has moved to the right)
unless � is the last cell, in which case ��� ��� . The last cell is an exception, because by
assumption the machine cannot move to the right from there. If �  �6���&�6��� � � �/�  ��� �
then we add a similar set of transitions; this time the first cell is the exception. The total
number of transitions is at most � G&, � , � G , 
 , � G � , and so ���N� � � , because the size of

�

is ���1, � , � G , 
 , � � .
The initial marking of 3�� � � puts one token on 4 � +�7� , on 4 ���9� � , and on the place

4F�	. ������ for � )��-)1� , where . denotes the blank symbol. The total size of the Petri
net is ���	� � � .

It follows immediately from this definition that each move of
�

corresponds to the
firing of one transition. The configurations reached by

�
along a computation corre-

spond to the markings reached along its corresponding run. These markings put one
token in exactly one of the places �74 �  �+,  � � 	 , in exactly one of the places
�74 ��� � ,�������	 , and in exactly one of the places �74 � �K�	��� ,3����� 	 for each cell
� ��� . So 3�� � � is 1-safe.

In order to answer a question about a linearly bounded automaton
�

we can con-
struct the net 3�� � � , which is only polynomially larger than

�
, and solve the corre-

sponding question about the runs of
�

. For instance, the question “does any of the
computations of

�
terminate?” corresponds to “has the Petri net 3�� � � a deadlock?”

It turns out that most questions about the computations of linearly bounded au-
tomata are PSPACE-hard. To begin with, the (empty tape) acceptance problem is PSPACE-
complete:

Given: a linearly bounded automaton
�

.
To decide: if

�
accepts the empty input.

Moreover, the PSPACE-hardness of this problem is very robust: it remains PSPACE-
complete if we restrict it to

– deterministic bounded automata,
– bounded automata having one single accepting state,



– bounded automata having one single accepting configuration.

Many other problems can be easily reduced to the acceptance problem in polyno-
mial time, and so are PSPACE-hard too. Examples are:

– does
�

halt?,
– does

�
visit a given state?,

– does
�

visit a given configuration?
– does

�
visit a given configuration infinitely often?

We obtain in this way a large variety of PSPACE-hard problems. Since 3�� � � is
only polynomially larger than

�
, all the corresponding Petri net problems are PSPACE-

hard as well. For instance, a reduction from the problem “does
�

ever visit a given
configuration?” proves PSPACE-hardness of the reachability problem for 1-safe Petri
nets. Furthermore, once we have some PSPACE-hard problems for 1-safe Petri nets we
can use them to obtain new ones by reduction. For instance, the following problems can
be easily reduced to the problem of deciding if there is a reachable marking that puts a
token on a given place:

– is there a reachable marking that concurrently enables two given transitions B � and
B � ?

– can a given transition B ever occur?
– is there a run containing a given transition B infinitely often?

13 out of the 14 problems at the beginning of the section (and many others) can be
easily proved PSPACE-hard using these techniques. The liveness problem, the first in
our list, is a bit more complicated. The interested reader can find the reduction in [2].

The solution to Story III

Recall the conjecture of Story III: Let
�

� �6�������! "� be a net, and let � � and � be
markings of

�
such that the Petri net � � � � � � is 1-safe. � is reachable from � � in�

if and only if there exists a mapping ,.- � 0 2 3 satisfying the following three
properties:

(1) for every place 4 , �5�647� �8� � ��4+�9
 : ;=<?>@�6 A�	BC�!47��DE A�64F�*B�����G�,H�	B�� ,
(2) every nonempty siphon of

� >JI is marked at ��� , and
(3) every nonempty trap of

� >KI is marked at � .

where ��, is the set of transitions B such that ,�	B�� OQ .
We show that if the conjecture is true, then the reachability problem for 1-safe Petri

nets belongs to NP. Since we know that this problem is PSPACE-hard, the truth of
the conjecture implies NP � PSPACE, which is highly unlikely. So, very probably, the
conjecture is false; one should look for a counterexample instead of trying to prove it.

We need a well-known result (see for instance [16]):



There is a polynomial time nondeterministic algorithm Feasible( � ) for the
problem of deciding if a system of linear equations � with integer coefficients
has a solution in the natural numbers.

It is easy to decide if every siphon of a net
�

is marked at a given marking � .
The following (deterministic) algorithm, due to Starke [33, 5], does it for you. It first
computes the largest siphon � contained in the set of places not marked at � . Clearly,
all nonempty siphons are marked at � if and only if � is empty.

Algorithm All Siphons Marked(
�

, � ):

variable: � of type set of places;

begin
�(- � set of places of 3 unmarked under � ;
while there is 4 � � and B*� �+4 such that B��� ��� do

� - � ��� � 4 	
od;
if � ��� then return true
else return false

end

The algorithm All Traps Marked is very similar: just change the loop condition to:
there is 4 ��� and B ��47� such that B���5� � . Clearly, these two algorithms run in
polynomial time.

The following nondeterministic algorithm checks conditions (1), (2) and (3). It first
guesses the set LKM of transitions, and checks that (2) and (3) hold. Then, it checks if
condition (1) holds for a vector , such that LKM � �+B��H� ,J,H�	B�� O Q 	 . For that, it
checks if the system of equations � containing the equations of condition (1) plus the
equation ,H�NB��$�+� for every B*�%LKM , and the equation ,H�NB�� �%Q for every B*� ��� LKM
has a solution.

Algorithm Check Conditions(
�

, � � , � ):

begin
guess a subset of transitions LKM of

�
;

if All Siphons Marked(
� >KI , �E� )

and All Traps Marked(
� >KI , � )

and Feasible( � )
then return true fi

end

Since the system of equations � has linear size in the net 3 , Feasible( � ) runs in poly-
nomial time in the size of the net. So Check Conditions runs in polynomial time, and
the problem of checking if conditions (1), (2), and (3) hold belongs to NP.



Remark Even if we didn’t know about the All Siphons Marked algorithm, we could
still conclude that the conjecture is probably false. Only from the existence of the pro-
cedure Feasible( � ) we can already conclude that the reachability problem for 1-safe
nets belongs to ���� , the second level of the polynomial-time hierarchy (see for instance
[1]). The general opinion of complexity theorists is that ���� � PSPACE is almost as
unlikely as NP � PSPACE.

4 A nearly universal upper bound

In this section we obtain a nearly universal upper bound matching the PSPACE-hard
lower bound of the last section:

Rule of thumb 2:
Nearly all interesting questions about the behaviour of 1-safe Petri nets
can be decided in polynomial space.

Observe that the rule of thumb says “nearly all” and no longer “all”. The reason is
that the literature contains at least one interesting question requiring more than polyno-
mial space. This exception to the rule is described at the end of the section.

We substantiate the rule of thumb with the help of temporal logics. Since their first
application to computer science in the late seventies by Pnueli and others, temporal
logics have become the standard query languages used to express properties of reactive
and distributed systems. A good introduction to the application of temporal logics to
computer science can be found in [6].

Temporal logics can be linear-time and branching-time: linear-time logics are in-
terpreted on the single computations of a system, while branching-time logics are in-
terpreted on the tree of all its possible computations. The most popular linear and
branching-time temporal logics are LTL (linear-time propositional temporal logic) and
CTL (computation tree logic). Most of the safety and liveness properties of interest
for practitioners, like deadlock-freedom, reachability, liveness (in the Petri net sense),
starvation-freedom, strong and weak fairness, etc. can be expressed in LTL or in CTL
(often in both).

We show that all the properties expressible in LTL and CTL can be decided in poly-
nomial space. Actually, we even show that they can be uniformly decided in polynomial
space, i.e., we prove that the degree of the polynomial does not depend on the property
we consider. More precisely, let , 3�, denote the size of a Petri net 3 , and let , � , denote
the length of a formula

�
(its number of symbols). For each of LTL and CTL we give

an algorithm that accepts as input a Petri net 3 and a formula
�

, and answers “yes”
or “no” according to whether the net satisfies the formula or not; the algorithm uses
�����9� , 3 ,�
+, � , ��� space, where � is a polynomial independent of 3 and

�
.

4.1 Linear-time propositional temporal logic

The formulas of LTL are built from a set Prop of atomic propositions, and have the
following syntax:



� - - � � � . /12 �
� �
� ��� � �
, � (

�
holds at the next state)� � # � � (

� � holds until
� � holds)

Usual abbreviations are B����
	 � ��� � � ,  � ��6�/� 0 # � (eventually
�

), and � � �

�  � � (always
�

).
LTL formulas are interpreted on computations. A computation is a finite or infinite

sequence � ���A�NQ ���A�!�7���A���?� ����� of sets of atomic propositions. Intuitively, �A� � � is the
set of propositions that hold in the computation after � steps. For a computation � and a
point � in the computation, we have that:

��� � , � � iff � ���A��� �
��� � , � � � iff not ����� �3, � � �
��� � , � � � � � � iff ���	�*, � � � and ��� � , � � �
��� � , �%, � iff there exists a point � 
 � in the computation, and

���	� 
 � , � �

��� � , � � � # � � iff for some � � � , we have ����� , � � � and
for all � , � ) ����� , we have ����� , � � �

We say that a computation � satisfies a formula
�

, denoted ��, � �
, if ���!Q , � �

.
The atomic propositions are intended to be propositions on the states of a system.

They can only be chosen after the class of systems on which the logic is to be applied
has been fixed. In the case of 1-safe Petri nets the states of the system are the markings,
and so the atomic propositions are predicates on the possible markings of the net. It
is then natural to have one atomic proposition per place. The markings satisfying the
atomic proposition 4 are those that put a token in 4 . Observe that a computation is now
a sequence of sets of places, and so a sequence of markings. In particular, the sequences
of markings obtained from the runs of 3 by removing the intermediate transitions are
computations. Abusing language, we also call these particular computations runs. We
now define that a Petri net 3 satisfies

�
if all its runs satisfy

�
. Here are some LTL

formulas that can be interpreted on the Petri net of Figure 1, which models a variation
of Lamport’s 1-bit mutual exclusion algorithm for two processes [26]:

(1) All runs are infinite (true for the net of Figure 1): � , B�����	 .
(2) All runs mark place ��4 � infinitely often (false): �� � 4 � .
(3) In all runs, if place ��	 8� becomes marked then place � 4 � will eventually become

marked (true): �A����	 8���� � 45� � .
Formula (1) expresses deadlock-freedom; formula (3) expresses that the requests of

the first process to the critical section are eventually granted.
The model-checking problem for LTL and 1-safe Petri nets consists of, given a 1-

safe Petri net 3 and a formula
�

, deciding whether 3 satisfies
�

or not.
The solution to the model-checking problem we give here makes use of automata

theory. We have to introduce automata on infinite words. Let
�

�.� � ������ � ��� �* "� be a



req_1

cs_1

idle_1

req_2

cs_2
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nid_1
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Fig. 1. A Petri net model of Lamport’s 1-bit mutex algorithm

nondeterministic automaton, where � is a finite alphabet, � is a finite set of states,  � is
the initial state, � � � � � � � is the transition relation, and  is a set of finite states.
The language of

�
, denoted by � � � � , is defined as the set of finite words accepted by�

. We define now the language of infinite words accepted by
�

, which we denote by����� � � . A word �
� � �L� � � � ����� belongs to ��� � � � if there is an infinite sequence of

states  � 9� �� ����� such that �  �	� �	 ��� � �*� � for every ����Q .
When we are interested in the language of infinite words of an automaton, then we

call it Büchi automaton.
We have the following important result:

Given an LTL formula
�

, one can build a finite automaton
���

and a
B üchi automaton . � such that �)� ��� � � ��� � . � � is exactly the set of
computations satisfying the formula

�
.

Since computations are sequences of sets of atomic propositions, the alphabet of the
automata

� �
and . � is the set � 	�
�� . In our case .*/12 � is the set of places of the net,

and so the alphabet of the automata is the set of all markings.
The construction of

� �
and . � exceeds the scope of this paper (see for instance

[37]). For our purposes, it suffices to know the following facts:



– The states of
� �

are sets of subformulas of
�

; the states of . � are pairs of sets of
subformulas of

�
. Since there are exponentially many sets of subformulas,

� �
and. � may have exponentially many states in , � , .

– Given two states  � �� � of
� �

or . � and a marking � , there is an algorithm which
decides using polynomial space whether �	 � �!� �� � �*�;� � .

We also need two automata
���

� �	� � � � � �� � � ��� � �* �� � and . � � �	� � � � � �� � � ��� � �* �� �
obtained from the Petri net 3 , as follows:

– � � is the set of reachable markings of 3 ;
–  � � is the initial marking ��� ;
– � � contains the triples of markings ��� � �!� � �!� � � such that � � ;DK0 � � for some

transition B ;
–  �� is the set of deadlocked reachable markings of 3 ;
–  �� � � , i.e.,  �� is the set of reachable markings of 3 .

Loosely speaking, both automata correspond to the reachability graph of 3 , with the
peculiarity that edges are labelled with the marking they come from.

� �
and . � differ

only in their final states. Clearly, � � � � � is the set of all finite runs of 3 , and ��� � . � �
the set of all infinite runs.

In order to solve the model-checking problem for input 3 ,
�

, let
�

be the prod-
uct of the automata

��� �
and

� �
, and let . be the product of the automata . � �

and . � , where the product � � ���A�� � ��� �! "� of two automata � � ��� � �� � � ��� � �* � � and
� � ��� � �� � � ��� � �* � � is defined in the usual way:

� � � � � � � � �(�	 ��� �� �7���� ��� ���	9� �� �+�C���J�+�  �� �� �� �*�3,/� 8� ���K�� �� �*� �9� and �	 �F���K�� �� �*� ���5	
 �% � �  �

Clearly, we have � � � � � � � � � � ���;� � ��� � and � � �	. � � � � � . � � ���;� � � . � � .4 So
the union of �)� � � and � � �	. � is the set of runs of 3 that do not satisfy

�
; in other

words, 3 satisfies
�

if and only if �)� � � ��� and � � �	. � � � .
We have reduced the model checking problem to the following one: Given 3 and�

, decide if �)� � � and � � � . � are empty. We have to solve this problem using only
polynomial storage space in the size of 3 and

�
. The first natural idea is to construct�

and . , and then use the standard algorithms for emptiness of automata for finite and
infinite words. Unfortunately, both

�
and . may have exponentially many states in , 3�,

and , � , .
At this point, complexity theory helps us by means of Savitch’s construction. Recall

that a nondeterministic decision procedure for a problem is an algorithm which can
return “yes” or fail, and satisfies the following property: the answer to the problem is
“yes” if and only if some (not necessarily all) execution of the algorithm returns “yes”.
A deterministic decision procedure always answers “yes” or ”no“.

4 The product of two Büchi automata doesn’t always accept the intersection of the languages,
but this is so in our case.



Savitch’s construction:
Given a nondeterministic decision procedure for a given problem using���	� � space, Savitch’s construction yields a deterministic procedure for
the same problem using � � �N� � space.

This construction makes our life easier: it suffices to give a nondeterministic algo-
rithm for the emptiness problem of

�
and . running in polynomial space. Actually, it

also suffices to give a nondeterministic algorithm for the nonemptiness problem: by Sav-
itch’s construction there exists a deterministic algorithm for the nonemptiness problem,
and by reversing the answer of this algorithm we obtain another one for the emptiness
problem.

The nondeterministic algorithm for the nonemptiness problem constructs
�

and .
“on the fly”. The algorithm keeps track of a current state of

�
or . , which is initially

set to the initial state. The algorithm repeatedly guesses a next state, checks that there
is a transition leading from the current state to the next state, and updates the current
state. In the case of

�
, the algorithm returns “true” when (and if) it reaches a final state:

Algorithm Nonempty A( 3 ,
�

)

variables:  of type state of
��� �

;
� of type state of

� �
(i.e., of type marking);

begin
�  �!�.� - � �  � � � �!� � � ;
while �  �!�.� is not a final state of

�
do

choose a state 5� of
� � �

such that �  �!� ��5� �*� � � �
and a marking � � such that � ;DK0 ��� for some transition B ;
�  � �.� - �(� 5���!��� � ;

od;
return true

end

In order to estimate the space used by Nonempty A, observe that all the operations
and tests can be performed in polynomial space. For that, recall that given two states � �� � � � � � and � �;� � , there is an algorithm which decides using polynomial space
whether �  � �!� �� � � � � � � . The algorithm needs to store one state  of

� � �
and a

marking � of 3 . Since the states of
� � �

are sets of subformulas of
�

,  has quadratic
size in , � , . Since � has linear size in , 3�, , polynomial space suffices.

The case of . is a bit more complicated. Since . has finitely many states, � � � . �
is nonempty if and only if there exists a reachable final state  such that there is a loop
from  to itself. So the algorithm proceeds as in the case of

�
, but, at some point,

it guesses that the current final state will be revisited; it then stores the current state
to be able to check if the guess is true. The rest of the algorithm checks the guess
nondeterministically.



Algorithm Nonempty B( 3 ,
�

):

variables: � �!��� of type state of . � (i.e., of type marking); ���� of type state of . � � ;
flag of type boolean;



begin
�	 �!�.� - �.�	 � � � �!� � � ; � � ��� - ������� 4 0 ;
while 	
��� ������ 4�0 do

choose a state 5� of
� � �

such that �  �!� ��5� � �;� � �
and a marking � � such that � ;DK0 ��� for some B ;
�  � �.� - � �  � �!� � � ;
if �	 �!�.� is a final state then

choose between � � ��� - ������� 4 0 and � � ��� - � 6�/� 0
fi

od;
�	 � �!� � � - � �  � �.� ;
repeat

choose a state 5� of
��� �

such that �  �!� ��5� � �;� � �
and a marking � � such that � ;DK0 ��� for some B ;
�  � �.� - � �  � �!� � �

until �  � �.� �(�	��?�!� � � ;
return true

end

Again, Nonempty B( 3 ,
�

) uses only polynomial space. Since the deterministic al-
gorithm obtained after the application of Savitch’s construction to Nonempty A and
Nonempty B also needs polynomial space, the model-checking problem for LTL be-
longs to PSPACE.

Observe that the only properties of 1-safe nets we have used in order to obtain this
result are:

– a state has polynomial size (actually, even linear) in , 3�, , and

– given two markings � �!� � , it can be decided in polynomial space if � ;DJ0 ���
for some transition B .
These conditions are very weak, and so the PSPACE result can be extended to a

number of other models. As observed in [35], conditions (1) and (2) hold for other Petri
net classes, like condition/event systems, elementary net systems, but also for process
algebras with certain limitations to recursion, and for several other models based on a
finite number of state machines communicating by finite means. The conditions also
hold for bounded Petri nets, assuming that the bound is also given to Nonempty A and
Nonempty B as part of the input. This assumption is necessary, because the bound of a
bounded Petri net (the maximal number of tokens a place can contain under a reachable
marking) can be much bigger than the size of the net, and so we may need more than
polynomial space in order to just write down a reachable marking.

The PSPACE result can also be extended to more general logics, like the linear-time
mu-calculus, for which the translation into automata still works (see for instance [4]).

4.2 Computation Tree Logic

Some interesting properties of Petri nets cannot be expressed in LTL. An example is
liveness (in the Petri net sense). Recall that a transition is live if it can always occur



again. One possibility to express this to allow existential or universal quantification on
the set of computations starting at a marking. CTL introduces this quantification on top
of LTL’s syntax The syntax of CTL is

� - - � � � . /12 �
� �
� � � � �� , � existential next operator� , � universal next operator��� � � # � ��� existential until operator� � � ��# � � � universal until operator

Disjunction and implication are defined as usual. Other abbreviations are B�� �
	 �

��� � � ,
�  � �

��� B�����	 # � � (possibly
�

),
� � � �

� �  � � (always
�

),
�  � �� � B�� �
	 # � � (eventually

�
) and

� � � �
� �  � � (

�
holds at every state of some com-

putation).
CTL formulas are interpreted on computation trees, which are possibly infinite trees

where each node � is labelled with a set of atomic propositions �A�	� � . A path of a
computation tree that cannot be extended to a larger path is called a computation; notice
that it is a computation in the LTL sense. The intuition is that the nodes of the tree
correspond to the states of a system; a state may have an arbitrary number of successors,
corresponding to different computations. �A�	� � is the set of atomic propositions that
hold at node (state) � . For a tree � and a node � we have that:

� ����, � � iff � � �A�N� �
� ����, � � � iff not ��� �*� , � � �
� ����, � � � � � � iff � ����, � � � and � ����, � � �
� ����, � � , � iff for every child � � of � , � ��� � , � �

� ����, � � , � iff for some child � � of � , � ��� � , � �

( � must have at least one child)
� ����, � � � � �+# � � � iff for all computations � �%� � � �C�'� �����

there exists ����Q such that � � , � � �
and for every � , Q )�� � � , ��� , � � �

� ����, � ��� � � # � �	� iff for some computation � �%� � � � � � �����
there exists ����Q such that � � , � � �
and for every � , Q )�� � � , ��� , � � �

If the tree � is clear from the context we shorten � �*��, � �
to � , � �

. We say that a
tree � satisfies a formula

�
if ��
�
7B ��� � , � �

.
Observe that

� , � is equivalent to � � , � � , i.e.,
� , and

� , are dual operators.
So actually we could remove

� , from the syntax without losing expressive power. It
might seem that the existential and universal until operators are also dual of each other,
but this is not true. The dual operator of the universal until is the existential weak until,
with syntax

��� � ���� � �	� , and the following semantics:

� ����, � ��� � ����� � ��� iff � �*� , � ��� � � # � ��� � � �A� � � �
It holds that � � � � # � ��� �

� ��� � � ����� � � ���



In order to use CTL to specify properties of a 1-safe Petri net 3 , we choose again
the places of 3 as atomic propositions. With this choice a computation tree is a tree of
sets of places, and so a set of markings. We can associate to 3 a computation tree � � as
follows: the root is labelled with the initial marking ��� ; the children of a node labelled

by � are labelled with the markings � � such that � ;DJ0 � � for some transition B .
We say that 3 satisfies

�
if the tree � � satisfies

�
.

The computation tree corresponding to the the net of Figure 1 is shown in Figure
2. Essentially, the tree is just the unfolding into a tree of the reachability graph of the
net. Different nodes in the tree can be labelled with the same marking, but all subtrees

{idle_1,id_1,idle_2,id_2}

{req_1,nid_1,idle_2,id_2} {idle_1,id_2,req_2,nid_2}

{req_1,nid_1,
 req_2,nid_2}

{req_1,nid_1,
 req_2,nid_2}

{cs_1,nid_1,
 idle_2,id_2}

{idle_1,id_1,
 cs_2,nid_2}

... ... ... ...

Fig. 2. Computation tree of the Petri net of Figure 1

whose roots are labelled with the same marking are isomorphic. Given a formula
�

and
a marking � , either all or none of the nodes labelled by � satisfy

�
. So it makes sense

to say that � satisfies
�

, meaning that all nodes labelled by � satisfy
�

.
Here are some CTL queries on the Petri net of Figure 1:

– No reachable marking puts tokens in � 4 � and � 4 � (true):
� �A� � � 4 � � � � 4 � � .

– The output transition of the place /10�� � is live (true):
� � �  A�!/ 0�� � ����� � � .

– The initial marking is reachable from every reachable marking (true):� � �  A����� � 0	� �����
��������� ����� � 0� ���
– Eventually place � 4 � becomes marked (false):

�  � 4 �
– There is a run that never marks ��4 � (true):

� � � � 4 �
– If /10�� � becomes marked, then eventually ��4 � becomes marked (false):� �A� /10�� � � �  � 4 � �

We show that the model checking problem for CTL is in PSPACE. It follows from
the discussion above that it suffices to give a polynomial space algorithm for the syntax

� - - �84 , � � � , � � � � � , � , � , � � � � # � ��� , ��� � ��� � � ���
We give a (deterministic) algorithm Check( � ,

�
) with a marking � and a formula

�

as parameters which answers “true” if � satisfies
�

, and “false” otherwise. The model-
checking problem is then solved by Check( � � , � ).

Check( � ,
�

) is a recursive procedure on the structure of
�

, i.e., Check( � , � �9� � � ������� � � " � ),
where � � is some operator of the logic, calls Check( � ,

� � ), ����� , Check( � ,
� " ).



Algorithm Check( � ,
�

):

begin
if
�

�14 then
if �5�647� � � then return true else return false fi

elseif
�

�
� � � then return not Check( � ,

� � )
elseif

�
�
� � � � � then return Check( � ,

� � ) and Check( � ,
� � ))

elseif
�

�
� , � � then

for every � � such that � ;DJ0 ��� for some transition B do
if Check( ��� , � � ) then return true fi

od
elseif

�
�
��� � � # � ��� then return EU( � ,

� � , � � )
elseif

�
�
��� � ����� � ��� then return EWU( � ,

� � , � � )
fi

end

It remains to define the procedures EU( � ,
� � , � � ) and EWU( � ,

� � , � � ). We start with
EU( � ,

� � , � � ).
It is not possible to deterministically explore the infinitely many computations start-

ing at � , and check directly if one of them satisfies
� ��# � � . The reader might feel

tempted to give a nondeterministic algorithm which explores one of the computations,
and then apply Savitch’s technique. This seems to be a good idea, but in fact doesn’t
work! There is a rather subtle problem. Consider the formulas

� " �
� � �

�����

� � 4�� #�45� � ����� � #�49"&$'� � #�49" �
where 4 � ������� � 4 " are places. We obtain a checking algorithm

� " through � applications
of Savitch’s technique. It is easy to give a � � , 3 , � -space nondeterministic algorithm for��� 4�� #�45� � . Unfortunately, the deterministic algorithm obtained by Savitch’s technique
requires � � , 3�, � � space, the algorithm for

��� ��� 4+� #�45� � #�49� � � � , 3�, � � space, and the
algorithm for

� " no less than � � , 3 , �1" � space. So the degree of the polynomial in , 3�,
depends on the formula we are considering.

We proceed in a different way. In a fist step we reduce the problem to the explo-
ration of a finite number of finite paths. We extend the syntax of CTL with new op-
erators

� � � � #�� � ��� , one for each natural number � . Loosely speaking, a node satisfies��� � � #�� � ��� if in at least one of the computations starting at it we find a node satisfying� � after at most � steps, and all nodes before it satisfy
� � . Formally:

� �*� , � ��� � � #�� � ��� iff for some computation � �%� � � � � � �����
there exists � , Q�) � )��PD � such that
� � , � � � and � � , � � � for every � , Q ) � � �

It follows immediately from this definition that if � ��� satisfies
� � � �+# � � � � for some

number � then it also satisfies
� � � � # � ��� .

Now, let � be an arbitrary node of � � , and let � be the number of places of 3 . We
prove

� , � ��� � � # � ����� � ��� � � # � + � ���



It suffices to prove that � , � ��� � � # � �	� implies � , � � � � � # � + � ��� . Assume that � sat-
isfies

��� � � # � �	� . Then, � � contains a computation � � � � � � � � ����� satisfying
� � # � � :

� � , � � � for some � �$Q and � � , � � � for every � , Q ) � ��� . If � ) � & D+� , then
this computation satisfies

� �+# � + � � , and so ��, � � ��# � + � � . Let us now consider the case
�E� � & . Let ���+��� ��� ����� be the sequence of markings corresponding to �9� � � �'� ����� .
Since 3 is 1-safe and has � places, it has at most � & reachable markings. So there are
indices �5� and �9� , Q ) �5� ���9��) � , such that � � � �1� � � . Since the markings labelling
the successors of a node are completely determined but the marking labelling the node
itself, � � contains another computation starting at � � and labelled by

�E� �����!� � � � � � � � � � � �'� �����

Loosely speaking, the sequence of markings of the new computation is obtained from
the old sequence by “cutting out” the piece � � � � � �����!� � � and “glueing” the two ends
� � � and � � � � � . In this new sequence the marking � � appears at the position � DE� � � D
�8� � , and so closer to ��� than in the original computation. We now iterate the “cutting
and glueing” procedure until � � appears before the � & -th position. The computation
so obtained satisfies

� �+# � + � � , and so ��, � � �+# � + � � .
So we have solved our first problem: instead of a potentially infinite number of

computations, it suffices to explore finitely many paths containing at most � & nodes,
and check that at least one of them satisfies

� ��# � + � � (more precisely, that at least one
of them can be extended to a computation satisfying

� ��# � + � � ).
We construct EU( � ,

� � , � � ) with the help of another algorithm Path( � , ��� , � , � ,�
), still to be designed, with the following specification:

Path( � , ��� , � , � ,
�
) returns “true” if and only if � � has a path � � ��������� such

that
– � � is labelled by � and ��� is labelled by � � ,
– � � , � �

for every � , Q ) � � �
, and

– � � , ��� .

We can take:

Algorithm EU( � ,
� � , � � )

constant: � � number of places of 3 ;

begin
for every marking � � of 3 and every Q ) � � � & do

if Path( � , � � , � � , � � ,
�
) then return true

od;
return false

end

Since each iteration of the for loop can reuse the same space, the space used by
EU( � ,

� � , � � ) is the space used by Path( � , � � , � � , � ) plus the space needed to store
��� and

�
. So Path( � , � � , � � , � ) should use at most polynomial space for every

� �� & . A backtracking algorithm, which would be the obvious choice, does not meet this



requirement, because it stores all the nodes of the computation being currently explored
having still unexplored branches, and there can be exponentially many of those.

A trick frequently applied in complexity theory5 helps us out of the problem. Loosely
speaking, for each reachable marking ��� � , we explore all paths leading from � to ��� �
and containing � ���� 
 � nodes, and then, reusing the same space, all paths leading from
��� � to ��� and containing � ���� 
�� nodes. This trick of splitting the paths into two parts
is applied recursively until paths having at most 2 nodes are reached.

Algorithm Path( � , � � , � , � ,
�
)

constant: � � number of places of 3 ;

begin
if
�

�1Q then
if � �%��� and Check( � , � )
then return true fi

fi;
if
�

��� then

if � ;DK0 ��� for some transition B
and Check( � ,

�
) and Check( � � , � )

then return true fi
fi;
for every marking � � � of 3 do

if Path( � , � � � , � , true, � �� � ) and Path( � � � , � ,
�

, � , � �� � )
then return true fi

od;
return false

end

In order to estimate the space complexity of Path( � , � � , � ,
�
), let � � � � be the

maximum over all markings � of the space needed by Check( � ,
�

), and let �9� � � �)� � �
be the maximum over all pairs of markings � , � � of the space needed by Path( � ,
��� , � , � ,

�
). Then we have

�9� � � �)�*Q � �1����� � � ���
�9� � � �)� �7� �1�����	��
 � � � � �C�	�?� � � 	&, 3�, �
�9� � � �)� � � �1�����	��
 � � � � � � ��� �� � � � � � � � � ��� �� � � 	&, 3�, �

and so, in particular

� � � � � ��� & � �%�������
�� � � � �C�	�?� � � 	 
 � G&, 3 , � �1�����	��
�� � � � �C��� � � �7	 
+, 3�, � �
It remains to construct EWU( � ,

� � , � � ). The interested reader can easily prove that
for every node � of � �

��, � ��� � ����� � ��� � � ��� � ���� � + � �	�
5 In fact, this trick lies at the heart of Savitch’s technique.



where the semantics of
� � � �� � � � ��� is given by

� ����, � ��� � ����� � � ��� iff ��, � ��� � � # � � ��� or
there exists a path � � � � � � � � �����*� �
such that � � , � � � for every Q ) � ) �

So we can take
Algorithm EWU( � ,

� � , � � )
constant: � � number of places of 3 ;

begin
if EU( � ,

� � , � � ) then return true
else

for every marking � � of 3 do
if Path( � , ��� , � � , 6 /� 0 , � & ) then return true

od;
return false

end

This completes the definition of Check( � ,
�

). It is easy to see that it runs in polyno-
mial space in , 3�, and , � , , but let us determine the space complexity a bit more precisely.
We have:

�?�647� �%��� , 3 , �
� � � � � � �7� �%�����	��
�� �?� � � � �	� � � �7�7	 
 , 3�, �

� � � � � �%����� � � �*�
� � ��� � �+# � � � � �%��� �9� � �?� � �F��� & � 
+, 3�, �

�%�����	��
�� �?� � � � �	� � � �7�7	 
 , 3�, � �
� � ��� � � #�� � ��� � �%�����	��
�� �?� ��� � � # � �	� � � �9� � � ��6�/� 0?��� & �7	 
+, 3 , �

�%�����	��
�� �?� � � � �	� � � � �7	 
 , 3�, � �
and so we finally get � � � � �1��� , � ,?G , 3�, � � .
4.3 An exception

The most interesting exception to Rule of Thumb 2 is the controllability property. Let
�K� be a subset of transitions of a 1-safe Petri net 3 �(�6���*���* � ���+� , and let B*� � � � � .
We say that � � controls B by a sequence � �5� �� if for every occurrence sequence
� � �DK0 � such that the projection of � onto � � is � , the transition B cannot occur
at � . The intuition is that � � can control B in the sense that once the sequence � has
occurred, possibly interleaved with transitions of � � � � , B cannot occur until transitions
of � � occur again. We say that � � can control B if � � can control B by at least one
sequence � .

The controllability problem is defined as follows:

Given: a 1-safe Petri net with a set � of transitions, � � �H� , B � � �P� �
To decide: if � � can control B .

Jones, Landweber and Lien show in [24] that controllability is EXPSPACE-complete.



4.4 A remark on action-based temporal logics

We have defined LTL and CTL as state-based logics, because in order to know if a run
satisfies a property one only needs information about the states – the markings – visited
during its execution, and not about which transitions lead from a marking to the next.
It is possible to define action-based versions of these logics, in which the identities of
the markings visited during the execution of a run is irrelevant, while the information
is carried by the sequence of transitions that occur. These action-based versions are
particularly useful for labelled Petri nets.

The action-based version of LTL – tailored for labelled Petri nets – looks as follows:
the set of basic propositions contains only one element, namely the proposition true.
The operators , and # are replaced by a set of relativised operators ,�� , #�� , where �
is a subset of a certain finite set of actions Act. A computation is now a finite or infinite
sequence � ��� �L� � �&� ����� of actions. Let �

� ���
� � ��� ��� � ����� . We have:

��, �%B�����	 always
��, �%, � � iff ����	� , � ��� � , and �

� �
� , � �

��, � � � # � � � iff for some � �Q we have �
� � � , � � � and

for all � , Q ) � ) � , we have � � � � and �
� & � , � � �

In order to interpret the logic on a 1-safe labelled Petri net 3 , we choose Act as
the set of labels carried by the transitions of 3 . We say that 3 satisfies a formula

�

if all the sequences of transition labels obtained from the runs of 3 by removing the
markings satisfy

�
.

Similarly, in the action-based version of CTL the operators of the logic
� , ,

� , ,���
�����C# ����� � , and

� �
����� # ����� � are replaced by sets of relativised operators

� , � ,
� , � ,���

�����C# � ����� � , and
� �

�����C# � ����� � . Computation trees are now trees whose edges are la-
belled with actions. The semantics is exactly what one expects.

It is easy to prove that the model-checking problem for these two new logics can be
reduced to the model-checking problem for their state-based versions. More precisely:
given a labelled 1-safe Petri net 3 and a formula

�
of action-based LTL (CTL), one

can construct in polynomial time an unlabelled 1-safe Petri net 3 � and a formula
� � of

state-based LTL (CTL) such that 3 satisfies
�

if and only if 3 � satisfies
� � . It follows

that the model-checking problem for the action-based LTL and CTL is also in PSPACE.
In Section 8 we study the model checking problems for temporal logics and arbitrary

Petri nets. There, the distinction between state-based and action-based logics plays a
much more important rôle.

5 Deciding equivalences

In this section we investigate the complexity of deciding if two labelled 1-safe Petri nets
are equivalent with respect to a given equivalence notion.

Since the early eighties many different equivalence notions have been presented
in the literature. Van Glabbeek has classified them in several papers, e.g. [36]. Most of
these equivalences fit between the so-called trace equivalence, which is a process theory



counterpart of the classical language equivalence used in formal language theory, and
bisimulation equivalence. An equivalence notion X fits between trace and bisimulation
equivalence if bisimilar systems are X-equivalent, and X-equivalent systems are trace
equivalent.

Trace and bisimulation equivalences are defined as follows. Let 3 be a labelled
Petri net, where transitions are labelled with the elements of a set of actions Act. The
set of traces of 3 , denoted by � �N3 � is the set of words � � ������� " � ��� 6 � such that
there exist markings � �7������� ��" satisfying ��� � �D 0 ��� � �D 0 ����� � (D 0 ��" 6. Two Petri
nets 3 � and 3�� are trace equivalent if � �N3 � � ��� �N3���� .

A relation � between the sets of markings of two nets is a (strong) bisimulation if
for every pair �6� � � � � �*��� and for every action � � ��� 6 ,

– if � � �DJ0 ���� , then � � �DK0 ���� for some marking � �� such that ������ �!���� �-��� ,
and

– if ��� �DJ0 ���� , then ��� �D 0 ���� for some marking � �� such that �6���� �!���� �*��� .

Two Petri nets 3 � and 3 � are (strongly) bisimilar if there exists a (strong) bisimulation
� containing the pair ��� ��� � � � � � of initial markings of 3 � and 3 � .

We have the following

Rule of thumb 3:
Equivalence problems for 1-safe Petri nets are harder to solve than
model-checking problems, but they need at most exponential space.

We provide a first piece of evidence for this rule of thumb by showing that the
equivalence problem for 1-safe Petri nets and any equivalence notion fitting between
trace and bisimulation equivalence is PSPACE-hard. It turns out that all the concrete
equivalences mentioned in the literature have at least DEXPTIME-hard equivalence
problems, and so this general PSPACE-hardness lower bound can possibly be improved.

We proceed by reduction from the following PSPACE-hard problem

Given: a 1-safe Petri net 3 , a place 4 of 3
To decide: if some reachable marking of 3 puts a token on 4 .
We start by labelling each transition of 3 with the same label, say � . 3 is now

a labelled net. We put 3 side by side with the labelled net 3 � consisting of a loop
containing one single place marked with one token and one single transition labelled by� . We denote the resulting Petri net by 3��P3 � .

Now, we consider two labelled nets. The first one is 3���3 � ; the second is a small
modification of it obtained by adding a new output transition to the place 4 of 3 . The
new transition has 4 as unique input place, no output places, and carries a label different
from � , say � .

The following holds:

– If some reachable marking puts a token on 4 , then the two nets are not trace equiv-
alent: the second one can do a � , while the first one can’t.

6 Recall: � 	
�� �� denotes that there is a transition � labelled by � such that � �
�� �� .



– If no reachable marking puts a token on 4 , then the two nets are bisimilar: the
relation containing all pairs �6� � � � � � , where � � is a reachable marking of the
first net and � � a reachable marking of the second net, is clearly a bisimulation.

Therefore, given any equivalence notion X fitting between trace and bisimulation
equivalence, we can solve the PSPACE-hard problem above by constructing the two
nets and deciding if they are X-equivalent. So the equivalence problem for any such
notion is PSPACE-hard.

Apart from this little result, the real evidence supporting the rule of thumb above is
the work of Rabinovich [31] and Jategaonkar and Meyer [23]. This last paper contains a
table with the complexity of 18 equivalence notions. Bisimilarity and many variants of
it are DEXPTIME-complete, while trace equivalence, failures equivalence, and several
variants of them are EXPSPACE-complete. They also consider so-called partial order
equivalences, for which the concurrent execution of two actions is not equivalent to their
interleaved execution (i.e., a system that executes � and � in parallel is not considered
to be equivalent to a system which chooses between executing � and then � , or � and
then � ). The complexity results (up to some open problems) are similar.

6 Can anything be done in polynomial time?

We have seen that all interesting problems for arbitrary 1-safe Petri nets are at least
PSPACE-hard, and so that there is very little hope of finding polynomial algorithms for
them. The natural question to ask is if there are important subclasses of 1-safe Petri nets
for which one could solve at least some problems in polynomial time. In this section
we get some general answers in the form of rules of thumb.

A first rule, which tends to be surprising for many people is

Rule of thumb 4:
Most interesting questions about the behaviour of acyclic 1-safe Petri
nets are NP-hard.

Here, as in Section 3, a word of warning is required about the meaning of “inter-
esting”. Liveness is certainly an interesting question for arbitrary 1-safe nets, but not
for the acyclic ones: 1-safe acyclic Petri nets are always non-live, because no transition
can fire more than once. Interesting questions for 1-safe acyclic Petri nets, all of them
NP-hard, are

– Is a given marking reachable from the initial marking?
– Is there a reachable marking which marks a given place?
– Is there a reachable marking which does not mark a given place?
– Is there a reachable marking which enables a given transition?
– Is the initial marking reachable from every reachable marking?
– Is there a run containing a given transition?
– Is there a run that does not contain a given transition?



Let us prove NP-hardness of the second problem: Is there a reachable marking
which marks a given place? We present a polynomial time construction which asso-
ciates to a boolean formula in conjunctive normal form an acyclic 1-safe Petri net. The
net nondeterministically selects a truth assignment for the variables of the formula, and
then checks if the formula is true under the assignment. The construction is illustrated
in Figure 3 by means of an example.

A A A

C

C

C

1

1

1 2 31 2 3

2

2

3

3

- - -x x xx x x

True

Fig. 3. Acyclic net corresponding to the formula
F������ ���AM�� F��	�	� ��
����� M�� F���
�� ��� M

It seems7 that in order to obtain classes with polynomial decision algorithms one
has to impose local constraints on the net’s structure. Here “local constraint” means a
constraint which can be shown not to hold by looking at only a small part of the net.
For instance, “every transition has exactly one input place” is a local constraint; if the
constraint does not hold, then one can always point at a particular transition in the net,
together with its input places, and show that the constraint is not satisfied because of
this transition. A constraint like “the net is acyclic” is not local, because the smallest
circuit of the net may be the net itself.

The two following local constraints have been very intensely studied in the litera-
ture:

– the conflict-freeness constraint: 4 � � �74 for every place 4 with more than one output
transition; in the case of 1-safe Petri nets this constraint is equivalent to “every place
has at most one output transition” for nearly all purposes;

7 Although I don’t know of any formal proof.



– the free-choice constraint: if �64F��B�� is an arc from a place to a transition, then so is
�649����B!� � for every place 49��� � B and for every transition B �'�'47� .

Unfortunately, it is not possible to summarise the results of the research on conflict-
free and free-choice Petri nets in a concise and general rule of thumb. But we can still
say:

Rule of thumb 5:
Many interesting questions about 1-safe conflict-free Petri nets are solv-
able in polynomial time.
Some interesting questions about live 1-safe free-choice Petri nets are
solvable in polynomial time (and liveness of 1-safe free-choice Petri
nets is decidable in polynomial time too).
Almost no interesting questions for 1-safe net classes substantially
larger than free-choice Petri nets are solvable in polynomial time.

Among the “many” interesting polynomial questions for conflict-free nets are all
those that can be expressed in the fragment of CTL with syntax

� - - �14 , � � , � � � � � , � , � , �  �

(see [7]). Among the “some” interesting polynomial questions for live free-choice nets
are the following [5]:

– Is there a reachable marking which marks a given place?
– Is there a reachable marking which does not mark a given place?
– Is there a reachable marking which enables a given transition?
– Is the initial marking reachable from every reachable marking?
– Is there a run that does not contain a given transition?

Interestingly, the reachability problem for 1-safe live free-choice nets is NP-complete
[8], and so it is unlikely that it will ever be added to this list.



Part II

General Petri nets





In this second part of the paper we consider arbitrary (finite) Place/Transition Petri
nets. The possible markings of a net

�
or just the markings of

�
are now the set of

all mappings ��0 2 3 , where � is the set of places of
�

. Observe that, contrary to
the 1-safe case, there is no a priori relation between the size of a net and the size of its
markings. Notice also that the set of reachable markings may be infinite.

7 A universal lower bound

This section is the counterpart of Section 3 for Place/Transition Petri nets. The rule of
thumb is now:

Rule of thumb 6:
All interesting questions about the behaviour of (Place/Transition) Petri nets
are EXPSPACE-hard. More precisely, they require at least � � ��� " � -space.

In particular, all the questions we asked about 1-safe Petri nets can be reformulated
for Petri nets, and turn out to have at least this space complexity. As in the case of 1-safe
Petri nets, this is a consequence of one single fundamental fact:

A deterministic, exponentially bounded automaton of size � can be simulated
by a Petri net of size ���	� � � . Moreover, there is a polynomial time procedure
which constructs this net.

In order to answer a question about the computation of an exponentially space
bounded automaton

�
, we can construct the net that simulates

�
, which has size ���	� � � ,

and solve the corresponding question. If the original question requires � " space, as is
the case for many properties, then the corresponding question about nets requires at
least � � ��� " � -space.

The fundamental fact above was first proved by Lipton [27]. Mayr and Meyer
proved in [29] that it is possible to make the simulating net reversible (a net is re-
versible if for each transition B there is a reverse transition B which “undoes” the effect
of B ). Since reversible nets are equivalent to commutative semigroups, the construction
by Mayr and Meyer has important applications in mathematics.

Since Mayr and Meyer’s construction is more involved than Lipton’s, and since
reversibility is not a main concern for this paper, we consider Lipton’s construction in
detail. It would have been easier to refer to Lipton’s paper, but unfortunately it only
exists as an old Yale report, quite difficult to find.

Bounded automata and general Place/Transition Petri nets do not “fit” well. It is not
appropriate to model a cell of a bounded automaton as a place, as we did in the 1-safe
case, because the cell contains one out of a finite number of possible symbols, while the
place can contain infinitely many tokens, and so the same information as a nonnegative



integer variable. So we use an intermediate model, namely counter programs. It is well-
known that so-called bounded counter programs can simulate bounded automata (see
below), and we show that Petri nets can simulate bounded counter programs.

A counter program is a sequence of labelled commands separated by semicolons.
Basic commands have the following form, where l, l � , l � are labels or addresses taken
from some arbitrary set, for instance the natural numbers, and � is a variable over the
natural numbers, also called a counter:

l: �'- � ��
 �
l: �'- � � D �
l: goto l � unconditional jump
l: if � �%Q then goto l � conditional jump

else goto l �
l: halt

A program is syntactically correct if the labels of commands are pairwise different,
and if the destinations of jumps correspond to existing labels. For convenience we can
also require the last command to be a halt command.

A program can only be executed once its variables have received initial values. In
this paper we assume that the initial values are always Q . The semantics of programs
is that suggested by the syntax. The only point to be remarked is that the command� - � - � � D+� fails if � � Q , and causes abortion of the program. Abortion must be
distinguished from proper termination, which corresponds to the execution of a halt
command. Observe in particular that counter programs are deterministic.

A counter program � is � -bounded if after any step in its unique execution the
contents of all counters are smaller than or equal to � . We make use of a well known
construction of computability theory:

There is a polynomial time procedure which accepts a deterministic
bounded automaton

�
of size � and returns a counter program � with

���	� � commands simulating the computation of
�

on empty tape; in
particular,

�
halts if and only if � halts. Moreover, if

�
is exponen-

tially bounded, then � is � � ( -bounded.

Now, it suffices to show that a � � ( -bounded counter program of size ���N� � can be
simulated by a Petri net of size ���N� � � . This is the goal of the rest of this section.

Since a direct description of the sets of places and transitions of the simulating net
would be very confusing, we introduce a net programming notation with a very simple
net semantics. It is very easy to obtain the net corresponding to a program, and execution
of a command corresponds exactly to the firing of a transition. So we can and will look
at the programming notation as a compact description language for Petri nets.

A net program is rather similar to a counter program, but does not have the possi-
bility to branch on zero; it can only branch nondeterministically. However, it has the
possibility of transferring control to a subroutine. The basic commands are as follows:



l: � - � � 
 �
l: � - � �AD �
l: goto l � unconditional jump
l: goto l � or goto l � nondeterministic jump
l: gosub l � subroutine call
l: return end of subroutine
l: halt

Syntactical correctness is defined as for counter programs. We also assume that
programs are well-structured. Loosely speaking, a program is well-structured if it can
be decomposed into a main program that only calls first-level subroutines, which in
turn only call second-level subroutines, etc., and the jump commands in a subroutine
can only have commands of the same subroutine as destinations.8 We do not formally
define well-structured programs, it suffices to know that all the programs of this section
are well-structured.

We sketch a (Place/Transition) Petri net semantics of well-structured net programs.
The Petri net corresponding to a program has a place for each label, a place for each
variable, a distinguished halt place, and some additional places used to store the call-
ing address of a subroutine call. There is a transition for each assignment and for each
unconditional jump, and two transitions for each nondeterministic jump, as shown in
Figure 4. We illustrate the semantics of the subroutine command by means of the pro-
gram

1: gosub 4;
2: gosub 4;
3: halt;
4: goto 5 or goto 6;
5: return;
6: return

The corresponding Petri net is shown in Figure 5. Observe that the places 1 calls 4 and
2 calls 4 are used to remember the address from which the subroutine was called.

Clearly, the Petri net corresponding to a net program with � commands has ����� �
places and ���	� � transitions, and its initial marking has size ���	� � . So it is of size ����� � � .

Let � be a � � ( -bounded counter program with ���N� � commands. We show that �
can be simulated by a net program 3������ with ���	� � commands, which corresponds to
a Petri net of size ���	� � � . Unfortunately, the construction of 3�� ��� requires quite a bit
of low-level programming. But the reward is worth the hacking effort.

The notion of simulation is not as strong as in the case of 1-safe Petri nets. In
particular, net programs are nondeterministic, while counter programs are deterministic.
A net program 3 simulates a counter program � if the following property holds: �
halts (executes the command halt) if and only if some computation of 3 halts (other
computations may fail).

Each variable � of 3 (be it a variable from � or an auxiliary variable) has an
auxiliary complement variable � . 3 takes care of setting � � � � ( at the beginning

8 Here we consider the main program as a zero-level subroutine, i.e., jump commands in the
main program can only have commands of the main program as destinations.
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of the program. We call the code that takes care of this 3 � " � ; ����� .9 The rest of 3H����� ,
called 3�� ��� � ��� , simulates � and takes care of keeping the invariant � � � � ( D � .

We design 3�� ��� ����� first. This program is obtained through replacement of each
command of � by an adequate net program. Commands of the form � - �+�A
 � ( � - �

� D � ) are replaced by the net program �'- � ��
 � � �'- � � D � ( �'- � � D�� � �'- � � 
 � ).
Unconditional jumps are replaced by themselves. Let us now design a program

Test " ( � ,ZERO, NONZERO)

to replace a conditional jump of the form

l: if � �%Q then goto ZERO
else goto NONZERO

The specification of Test " is as follows:

If � ��Q ( � ) � ) � � ( ), then some execution of the program leads to ZERO
(NONZERO), and no computation leads to NONZERO (ZERO); moreover the
program has no side-effects: after any execution leading to ZERO or NONZERO
no variable has changed its value.

Actually, it is easier to design a program Test �" ( � ,ZERO, NONZERO) with the same
specification but a side-effect: after an execution leading to ZERO, the values of � and
� are swapped.10 Once Test �" has been designed, we can take:

Program Test " ( � , ZERO, NONZERO):

Test �" ( � , continue, NONZERO);
continue:Test �" ( � , ZERO, NONZERO)

because the values of � and � are swapped Q times if �HO Q or twice if � � Q , and so
Test " has no side effects.

The key to the design of Test �" lies in the following observation: Since � never
exceeds � � ( , testing � �1Q can be replaced by nondeterministically choosing

– to decrease � by � , and if we succeed then we know that �'O Q , or
– to decrease � by � � ( , and if we succeed then we know that � � � � ( , and so � �%Q .

If we choose wrongly, that is, if for instance � �1Q holds and we try to decrease � by � ,
then the program fails; this is not a problem, because we only have to guarantee that the
program may (not must!) terminate, and that if it terminates then it provides the right
answer.

Decreasing � by � is easy. Decreasing � by � � ( is the difficult part. We leave it for
a routine Dec " to be designed, which must satisfy the following specification:

9 Recall that by definition all variables of � have initial value � . Therefore, if we need
� :=J 
 (

initially, then we have to design preprocessing code for it.
10 Executions leading to NONZERO must still be free of side-effects.



If the initial value of 4 is smaller than � � ( , then every execution of Dec " fails.
If the value of 4 is greater than or equal to � � ( , then all executions terminating
with a return command have the same effect as 4�- �%4 D�� � ( � 4�- � 4 
 � � ( ; in
particular, there are no side-effects. All other executions fail.

Test �" proceeds by transferring the value of � to a special variable 4 " , and then calling
the routine Dec " , which decreases 4 " by � � ( . In this way we need one single routine
Dec " , instead of one for each different variable to be decreased, which leads to a smaller
net program.

Program Test �" ( � , ZERO, NONZERO):

** initially 4 " �1Q and 4 " ��� � ( **
goto nonzero or goto ������� ;

nonzero: �'- � � D � ; � - � � 
 � ; goto NONZERO;
loop: �'- � � D � ; � - � � 
 � ; 4 " - �84 " 
 � ; 4 " - � 4 " D � ;

goto exit or goto loop
exit: gosub ���	��
 ; goto ZERO

** the routine called at ���	� 
 is Dec " ( 49" ) **

It is easy to see that Test �" meets its specification: if �8O5Q , then we may choose
the nonzero branch and reach NONZERO. If � � Q , then � ��� � ( . After looping� � ( times on ������ the values of � , � and 48" , 4�" have been swapped. The values of
4�" and 49" are swapped again by the subroutine Dec " , and then the program moves to
ZERO. Moreover, if � ��Q then no execution reaches the NONZERO branch, because
the program fails at � - � � D � . If � O%Q , then no execution reaches the ZERO branch,
because 4 " cannot reach the value � � ( , and so Dec " fails.

The next step is to design Dec " . We proceed by induction on � , starting with Dec � .
This is easy, because it suffices to decrease 4 by � ��� � � . So we can take

Subroutine Dec � ( 4 ):
4�- �14�D � ; 4"- � 4 
 � ;
4�- �14�D � ; 4"- � 4 
 � ;
return

Now we design Dec ��� � under the assumption that Dec � is already known. The definition
of Dec ��� � contains two copies of a program Test �� , called with different parameters. We
define this program by substituting � for � everywhere in Test �" . Test �� calls the routine
Dec � at the address � 	 �� . Notice that this is correct, because we are assuming that the
routine Dec � has already been defined.

The key to the design of Dec ��� � is that decreasing by � ����� � amounts to decreasing� ��� times by � ��� , because

� ����� � �(�	� ��� � � � � ��� GL� ���
So decreasing by � ����� � can be implemented by two nested loops, each of which is
executed � ��� times, such that the body of the inner loop decreases 4 by � . The loop



variables have initial values � ��� , and termination of the loops is detected by testing the
loop variables for Q . This is done by the Test �� programs.

Subroutine Dec ��� � ( 4 ):
** Initially - � � � ��� ��� � , - � �%Q � � � **
** The initialisation is carried out by N � " � ; **

outer loop: - � - ��- � D � ; - � - � - � 
 � ;
inner loop: � � - ��� � D � ; � � - � � � 
 � ;

4�- �84 D � ; 4�- � 4 
 � ;
Test �� ( � � , inner exit , inner loop);

inner exit: Test �� ( - � , outer exit, outer loop);
outer exit: return

Observe also that both instances of Test �� call the same routine at the same label.
It could seem that Dec ��� � swaps the values of - � , - � and � � , � � , which would be

a side-effect contrary to the specification. But this is not the case. These swaps are
compensated by the side-effects of the ZERO branches of the Test �� programs! Notice
that these branches are now the inner exit and outer exit branches. When the
program leaves the inner loop, Test �� swaps the values of � � and � � . When the program
leaves the outer loop, Test �� swaps the values of - � and - � .

This concludes the description of the program Test " , and so the description of the
program 3 � ��������� . It remains to design 3 � " � ; ����� . Let us first make a list of the initial-
isations that have to be carried out. 3 � ��� ����� contains

– the variables � � ������� � � � of � with initial value Q ; their complementary variables
� � ������� � � � with initial value � � ( ;

– a variable 4 with initial value Q ; its complementary variable 4 with initial value � � ( ;
– two variables - � ��� � for each � , Q )�� ) ��D � , with initial value � ��� ; their comple-

mentary variables - � � � � for each � , Q ) � )� D � , with initial value Q .
Now, the specification of 3 � " � ; ����� is simple

3 � " � ; ����� uses only the variables in the list above; every successful execution
leads to a state in which the variables have the correct initial values.

3 � " � ; � ��� calls programs Inc � ( � � , ����� , � � ) with the following specification:

All successful executions have the same effect as

� � - ��� � 
 � � � ;
����� ;

� � - ��� � 
 � ���
In particular, there are no side-effects.

These programs are defined by induction on � , and are very similar to the family of Dec �
programs. We start with Inc � :



Program Inc � ( � � ������� � � � ):

� � - � � �@
 � ; � � - ��� � 
 � ;
�����

� �.- ��� ��
 � ; � �(- � � ��
 �
and now give the inductive definition of Inc ��� � :

Program Inc ��� � ( � � ������� � � � ):

** Initially - � � � ��� ��� � , - � �%Q � � � **
outer loop: - � - ��- � D � ; - � - � - � 
 � ;
inner loop: � � - ��� � D � ; � � - � � � 
 � ;

� � - ��� � 
 � ;
�����

� �(- � � � 
 � ;
Test �� ( � � , inner exit , inner loop);

inner exit: Test �� ( - � , � ��� ��� ����� � , outer loop);
outer exit: �����

It is easy to see that these programs satisfy their specifications. Now, let us consider
N � " � ; ����� . Apparently, we face a problem: in order to initialise the variables � � ������� � � �
to � � ��� � the variables - � and � � must have already been initialised to � � � ! Fortunately,
we find a solution by just carrying out the initialisations in the right order:

Program N � " � ; ����� :
Inc � ( -?�?���+� );
Inc � ( -&�7���
� );
�����

Inc "&$�� ( - "&$'� ��� "&$'� );
Inc " ( 4?� � � ������� � � � )

This concludes the description of 3������ , and it is now time to analyse its size.
Consider 3�� ��� ����� first. It contains two assignments for each assignment of � , an un-
conditional jump for each unconditional jump in � , and a different instance of Test &
for each conditional jump. Moreover, it contains (one single instance of) the routines
Dec " , Dec "&$�� , ����� , Dec � (notice that Test " calls Dec " , which calls Dec "%$�� , etc.). Both
Test " and the routines have constant length. So the number of commands of 3 � ���������
is ���	� � .

3 � " � ; � ��� contains (one single instance of) the programs Inc � � ) � ) � . The
programs Inc � , ����� , Inc "&$'� have constant size, since they initialise a constant number of
variables. The number of commands of Inc " is ���	� � , since it initialises ���	� � variables.

So we have proved that 3H����� contains ���	� � commands. It follows that its corre-
sponding Petri net has size ���	� � � , which concludes our presentation of Lipton’s result.

The solution to Story II

Recall the conjecture of Story II: given a net
�

and two markings � � and ��� , if � � is

reachable from � � then it is reachable from � � through a sequence � � ; �DK0 � � ; �DK0



G G G ; (DK0 � " �8� such that all the markings � �7������� � ��" have size ���	� 
H� � 
���� ,
where ����� �?��� are the sizes of

�
, ��� and � respectively.

Let � be the constant such that ���?������� � ��" have size at most �/G=�	�P
 ��� 
 ��� . If the
conjecture is true, then the following nondeterministic algorithm solves the reachability
problem, since it may always answer “true” when � is reachable:

Algorithm Reachable(
�

, � � , � ):

variable: ��� of type marking;

begin
��� - �1��� ;
while � � ��8� do

choose a marking � � � of size at most � G?�N� 
�� � 
����
such that ��� ;DJ0 ��� � for some transition B ;
if there is no such marking then stop;
��� - �8��� � ;

od;
return true

end

Since the algorithm only visits markings of size � G �	� 
�� � 
H�'� , it runs in linear
space. By Savitch’s construction there is a deterministic algorithm which uses quadratic
space. Since the reachability problem requires exponential space, the conjecture is false.

8 Upper bounds

The general exponential space lower bound of the last section is almost the best we can
hope for, because Rackoff gave in [32] an almost matching exponential space upper
bound for the covering and boundedness problems for Petri nets. More precisely, the
upper bound is � � � "�� ��� " � space, very close to the � � � � " � lower bound. The covering
problem consists of deciding if there exists a reachable marking � such that � � � �
for a given marking � � , i.e., if there exists a reachable marking � covering ��� ; the
boundedness problem consists of deciding if the number of reachable markings is finite.

Yen showed some years later in [38] that the same upper bound holds for the prob-
lem of deciding if there exists a firing sequence

��� # �DK0 ��� # �DK0 G G G # +DJ0 � &
satisfying a given predicate  A�6� �7������� � � & �1� � ������� �1� & � constructed using the follow-
ing syntax:11

 - - �8� �*�647�3� ��, � ���647� O
�
� � �647� O�� �F�647�3, � � �647� � � �?�647�-, � � �647� �1� �F�647�
�
# � �	B�� O � , � # � �NB�� � ��, � # � �	B�� � �

�
# � �	B�� O

�
#�� �NB � �3, � # � �NB�� �

�
#�� �	B � �3, � # � �	B�� �

�
#�� �NB � � � �  � ,? � �  �

11 The syntax is actually more general, see [38] for the details.



where 4 is a place, B and B � are transitions, � is a constant, and
�
# �	B�� denotes the

number of times that B occurs in � . Both the covering and the boundedness prob-
lem can be reduced to Yen’s problem. The covering problem for a marking � �

�	� �7������� �*� " � corresponds to deciding if there exists a firing sequence �H� # �DK0 � �
such that � � ��45� � � � ��� ����� ����� ��49" � � � " . The boundedness problem can be
easily shown to be equivalent to the problem of deciding if there exists a sequence
�E� # �DK0 ��� # �DK0 ��� such that ��� �645� � � ���?��48� ��� ����� � ��� �649" � ��� � �649" � and
��� ��48� � O ��� ��45� � � ������� ��� �649" � O8���F�649" � . Observe however that the reachability
problem cannot be reduced to Yen’s problem, because the predicate �5��47� ��� does not
belong to the syntax. The reachability problem was shown to be decidable by Mayr [28]
and shortly after with a simpler proof by Kosaraju [25], but all known algorithms are
non-primitive recursive. Closing the gap between the exponential space lower bound
and the non-primitive recursive upper bound is one of the most relevant open problems
of net theory.

Is it possible to give more general results about the properties that are decidable,
and the properties that are decidable in exponential space? In particular, we would like
to show that all the properties of a certain temporal logic are decidable, or decidable in
exponential space. As we are going to see, there is a very significant difference between
state-based logics and action-based logics, and so we consider them separately.

8.1 The state-based case

We have the following very general rule of thumb:

Rule of thumb 7:
The model-checking problems of all interesting state-based logics are
undecidable.

As in the 1-safe case, we first have to choose a set of atomic propositions. We
take again .*/ 2 � ��� , i.e., the atomic propositions are the places of 3 . We say that a
marking � satisfies the proposition 4 if � is marked at 4 . Observe that a computation
is no longer a sequence of markings; a computation is a sequence of sets of places, as in
the 1-safe case, but the markings of general Place/transition nets are not sets of places
anymore.

With this choice of atomic propositions we can only express that a place is marked
or not; we can say nothing about the number of tokens it contains. Unfortunately, even
with this restricted expressive power the model checking problems for LTL and CTL
turn out to be undecidable.

The proof is in both cases by reduction from the following problem, which is known
to be undecidable:

Given: a counter program � with counters initialised to Q .
To decide: if � halts.



We simulate once again counter programs by net programs. Given a counter pro-
gram � , we obtain a net program 3 �6� ��� through replacement of each counter com-
mand

l: if � �1Q then goto l � else goto l �
by the net program

l: goto test l � or goto test l � ;
test l � :goto l � ;
test l � :goto l �

while other commands are replaced by themselves.
The net program 3�������� simulates � in a much weaker sense than that of Section

7. 3 ������� has a honest run that exactly mimics the (unique) execution of � : whenever
� executes the command

�
, 3�������� chooses the same branch as � . However, it also has

many other runs that “cheat”, i.e., runs that at some point choose the wrong branch. The
labels test l � and test l � correspond to two places of 3 � � ��� which can be used
to test if the program has cheated or not when executing the conditional jump.

Suppose that there exists a temporal logic formula Halt with the following property:

3 ������� satisfies Halt if and only if the honest execution of 3 ������� halts.12

Since the honest run exactly mimics the execution of the counter program � , 3 �������
satisfies Halt if and only if � halts. Therefore, the problem of deciding if Halt is satisfied
by a given Petri net 3 is undecidable. It follows that the model-checking problem of
those logics in which Halt was expressed is undecidable as well.

We construct in CTL and LTL very simple formulas LTL-Halt and CTL-Halt. We
first define a formula Cheat without temporal operators. Cheat is the conjunction over
all conditional jumps l: if � � Q then goto l � else goto l � of the formulas:

� � ��� � � � � �K� � � � ��� � � � � � � �
If a run visits a marking satisfying Cheat, then we know that it is dishonest: if the
marking satisfies � � ��� � �%� � �K� , then at some conditional jump the run has taken the
l � branch even though ��O Q ; if � � ��� � � � � � �K� , then the run has taken the l � branch
even though � �1Q . Now, we define

� L � D�� ��� 6 �  A� ��� 	 � B ��� � � B��
where halt is the place in the net semantics corresponding to all the halt commands.
A run satisfies LTL-Halt if at some point it cheats or it halts. 3 �6� ��� satisfies LTL-Halt
iff every run satisfies LTL-Halt. Since the honest run is the only one that doesn’t cheat,
3 � � ��� satisfies LTL-Halt iff the honest run halts.

The formula CTL-Halt is :

	 L � D
� ��� 6 �
�  A����� 	 �FB ��� � � B��

12 Since �  F� M is just a shorthand description of a Petri net, it makes sense to ask if �  F� M
satisfies a property formalised as a temporal formula.



It follows immediately from the semantics of formulae that 3 ������� satisfies CTL-
Halt if and only if it satisfies LTL-Halt.

Since the formula CTL-Halt only contains the operator
�  , the fragment of CTL

that extends propositional logic with the operators
�  and its dual

� � could still be
decidable. Unfortunately, a different proof [9] shows that this is not the case.

8.2 The action-based case

As mentioned above, the action-based case is very different from the state-based case:

Rule of thumb 8:
The model-checking problems of all interesting branching-time, action-based
logics are undecidable. The model-checking problems of all interesting linear-
time, action-based logics are decidable.

The undecidability of branching-time logics in the action-based case is an immedi-
ate consequence of the following fact: given an unlabelled Petri net 3 and a formula�

of state-based CTL there is a labelled net 3 � and a formula
� � of action-based CTL

such that 3 satisfies
�

if and only if 3 � satisfies
� � .

The net 3�� is obtained by labelling the transitions of 3 with some label, say � ,
and then adding for each place 4 a new transition B � having 4 as only input place, no
output place at all, and labelled by 4 . The formula

� � is obtained through replacement
of each atomic proposition 4 by

� , � 6 /� 0 , and of each temporal operator
� , ,

� , ,���
�����C# ����� � , � � ����� # ����� � by

� ,�� � � , � ,�� � � , ��� �����C#�� � �������	� , and
� �

����� #
� � � ����� � , re-
spectively. Observe that 4 holds iff the transition B � can occur, i.e., iff

� , � 6 /� 0 holds.
We cannot use the same technique to prove the undecidability of the model-checking

problem for LTL, because the problem is decidable! As in the 1-safe case, the model-
checking algorithm is based on automata theory. Given an LTL formula

�
, one can build

a finite automaton
� �

and a B üchi automaton . � such that � � � � �%� � � �	. � � is exactly
the set of computations satisfying the formula

�
. In the action-based case both

� �
and. � are automata over the alphabet Act.

In the 1-safe case, given a net 3 and a formula
�

, we first constructed two automata� � �
and . � � such that � � � � � �
� � � �	. � � � is exactly the set of computations violating

the formula
�

. In the general case we proceed exactly in the same way. The second step
was to construct two finite automata

� �
and . � from the Petri net 3 , which were

both essentially equal to the reachability graph of the net. Here we have a problem: the
automata

� �
and . � can be defined just as in the 1-safe case, but since 3 may now

have infinitely many reachable markings, they are not guaranteed to be finite.
The solution to this problem is easy: instead of constructing two automata

� �
and. � out of the Petri net 3 , we construct two labelled Petri nets � � � � and �� � � out

of the automata
� � �

and . � � in the following obvious way:

– the places of � � � are the states of
� �

;
– for each transition  �DK0 5� in

� �
add a transition to � � � , labelled by � , with 

and 5� as input and output place.



� � � is constructed analogously. Now we construct the products 3 � � � � and 3 �
� � � , where the product 3 � � 3 � of two Petri nets 3 � and 3 � is another Petri net
defined in the following way:

– the set of places of 3 is the union of the sets of places of 3 � and 3�� ;
– for each pair of transitions B � of 3 � and B � of 3 � labelled by a same action � , the

product 3 contains a transition �NB � ��B � � also labelled by � ; the input (output) places
of �	B � ��B � � are the union of the input (output) places of B � and B � .
The two following results are easy to prove:

– ����� . � � � � � . � � ���� holds if and only if the Petri net 3 � � � � has a run which
marks some place corresponding to a final state of . � infinitely often.

– �)� � � � � � � � � � �� � holds if and only if the Petri net 3 � � � � has a reachable
dead marking which marks some place corresponding to a final state of

� �
.

Finding a run of 3 � � � � that marks some place from a given set  "� of final
places infinitely often is equivalent to deciding if there exists a firing sequence �� # �DK0
��� # �DK0 ��� # �DJ0 ��� in the net 3 � 3�. � such that

� �
� < �

� � ��4+� ��� � �647��� �����
� <�� �

� � �647�$�+�7�

where � denotes the set of all places. By Yen’s result, introduced at the beginning of
this section, the problem can be solved in exponential space in the size of 3 � � � � .
In a more detailed analysis [14], Habermehl shows that this problem is EXPSPACE-
complete in the size of 3 and PSPACE-complete in the length of

�
.

Finding a dead reachable marking of 3 � � � � that marks some place from a given
set  "� of final places can be reduced to and is at least as hard as the reachability
problem. Therefore, there exist so far no primitive recursive algorithms for it.

As in the 1-safe case, these results can be generalised to any logic for which the
translation into automata theory holds [9].

9 All equivalence problems are undecidable

This section’s rule of thumb has a rather negative flavour:

Rule of thumb 9:
All equivalence problems for Petri nets are undecidable.

This rule is supported by a recent and very nice result due to Jančar, showing that every
equivalence notion between trace and bisimulation equivalence is undecidable for Petri
nets.13 Jančar himself has presented his result very clearly in [22]; here we do it in a
slightly different way. We proceed by reduction from the problem
13 Actually, the result is a bit stronger, since bisimulation can be replaced by an even finer equiv-

alence.



Given: a counter program � ,
To decide: if � halts (recall that all counters are initialised to Q ).

which is known to be undecidable.
Although the result can be presented directly by constructing two Petri nets out of

� (and this is the way the proof in [22] goes), we prefer to use again a net programming
language with a very simple net semantics, this time a language of guarded commands.
A program is a sequence of instructions, and instructions are expressions of the form

l : [ guard ���
����� ��� �D?DFD?DFD D 0 command �

guard �	�
����� ��� �D?DFD?DFD D 0 command �

�����

guard " �
����� ��� (

D?D?DFD?DJD/0 command " ]

where l is a label, action � , ����� , action " are actions, a guard is either the special string
true or a conjunction of expressions of the form �8O Q (no guards of the form � �

Q are allowed), and the possible commands are skip, goto l , halt, or a sequence of
assignments � � - � � � 
 � � �����

� � " - � � " 
 � , where the � � are pairwise different.
Operationally, an instruction is executed as follows: one of the guards that evaluate

to true at the current state is nondeterministically selected (if no guard evaluates to true,
the program aborts). Then, two things happen: the action of the selected guard is sent to
the environment, and its command is executed (if the command contains the assignment
� - �+� D � and � �8Q holds, then the program aborts). If the command is a jump goto
l, then execution continues at the instruction with label l. If the command is skip or an
assignment, then execution continues with the next instruction. An observer can only
see the actions executed by the program, but not the values of its variables, or the label
of the instruction being currently executed.

Guarded command programs can be easily translated into labelled Petri nets. Figure
6 shows the labelled net corresponding to the instruction

1 : [ � O�Q �DK0 � - � �AD �
true

�DK0 � - � � 
 �
� O Q � - O�Q �DK0 goto 3
true

�DK0 halt ]

(where we assume that the instruction following 1 in the program is labelled by 2).
There is a place for each variable and each label, plus a special place halt. There is
a transition for each alternative, labelled by the alternative’s action. The semantics of
a program is obtained by merging places of the nets corresponding to its instructions
carrying the same label. We identify a program with its corresponding labelled Petri net.
In particular, two programs are trace or bisimulation equivalent if their corresponding
labelled nets are.

Given a counter program � , we construct two net programs 3 � ����� and 3��?�����
satisfying the following two properties:

(1) if � halts, then 3 � ����� and 3 � ����� are not trace equivalent, and
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Fig. 6. Net corresponding to an instruction

(2) if � does not halt, then 3 � ����� and 3 � ����� are bisimilar.

For the proof of these properties it is very useful to characterise trace and bisimula-
tion equivalences in terms of two-person games. We describe first the features common
to both trace and the bisimulation games. The board of the games are the two programs
3 � � ��� and 3 � ����� in their initial states. The games are played by two players, Alice
and Bob, who alternate moves. Alice makes the first move. A move is the execution of
(one of the alternatives of) an instruction in either 3 � ����� or 3 � � ��� , and is named after
the action corresponding to the executed alternative. That is, an � -move is the execution
of an alternative of the form guard �DK0 command. If Alice makes an � -move in one of
the programs, then Bob can only answer with an � -move in the other program. It may
help your intuition to imagine that Alice wishes the programs to be non-equivalent,
while Bob wishes them to be equivalent. The winner of a game is decided as follows:

– if Alice has no move available, then Bob wins;
– if Bob cannot answer to Alice’s move, then Alice wins;
– if the game does not terminate, then Bob wins.

If you find the idea of a non-terminating game awkward, think of chess without the
50-move rule. If a position with only the two kings on the board is reached, then the
game goes on forever. In the trace and bisimulation games a situation like this is not a
draw, but a win for Bob. Bob only wins after infinite time, which can make the game
rather tedious, but that’s his problem: the winning condition is well defined, and every
game has a winner.

We describe now the differences between the trace and bisimulation games, which
are surprisingly small. In a trace game, Alice chooses one of the programs at the be-
ginning of the game, and makes all her moves in this program; Bob must make all his
moves in the other program. In a bisimulation game, Alice chooses one of the programs
before each move, and makes her next move in this program. For instance, in the bisim-
ulation game Alice can make her first move in the first program (Bob must answer in
the second), and her second move in the second program (Bob must answer in the first).



A strategy for a player is a function which gets the list of moves played so far and
yields the player’s next move. A strategy is winning if a player that sticks to it wins all
games. We have the following nice result (see for instance [34]), which at least in the
case of the trace game is intuitively very plausible:

In the trace and bisimulation games for 3 � ����� and 3 � ����� :
if Alice has a winning strategy, then the two programs are not equivalent; if
Bob has a winning strategy, then the two programs are equivalent.

So the properties (1) and (2) that 3 � � ��� and 3 � ����� – both to be constructed – have
to satisfy can be reformulated as follows:

(1) if � halts, then Alice has a winning strategy in the trace game, and
(2) if � does not halt, then Bob has a winning strategy in the bisimulation game.

It is time to start with the definition of 3 � ����� and 3 � ����� . To make things a bit
simpler, assume without loss of generality that the counter program � contains one
single halt instruction, and that this instruction is the last one.14 The programs 3 � �����
and 3 � ����� look as follows:

Program 3 � ����� :
start:[ true

� �
�

 �D?D?DJD 0 - - ��- 
 � ];

3 ������� ;
halt: [ - O Q �

�
� �DFD?D D 0 halt ]

Program 3 � ����� :
start:[ true

� �
�

 �DFD?DJD 0 �A- ��� 
 � ];

3 ������� ;
halt: [ - O�Q �

�
� �D?DFD D 0 halt ]

where the program 3�������� still has to be defined. Observe that the two programs differ
only in the first instruction. After this instruction is executed, - � �?��� � Q in 3 � ����� ,
and - �%Q ��� � � in 3 � � ��� .

The program 3�������� is obtained by replacing each command of � but the unique
halt command through an instruction of the new language. The instructions correspond-
ing to assignments and jumps are:

l: � - � ��
 � is replaced by l: [
�����	� � " �D?D?DJD 0 �'- � � 
 � ]

l: � - � � D � is replaced by l: [
�����	� 
�� �D?D?DJD 0 �'- � � D � ]

l: goto l � is replaced by l: [
�����	� �� ���D?D?DJD 0 goto l � ]

Conditional jumps are the delicate part. A command of the form

l: if � �%Q then goto ZERO
else goto NONZERO

is replaced by the following sequence of two instructions:
14 If there are several halt instructions, we can replace them by jumps to a new label at the end

of the program, and place there a unique halt command.



l : [ � OQ "��1"�� � ���D?DFD?DFD D 0 goto NONZERO

true
� � ���D?DFD D 0 skip

� OQ � - O�Q � � ���D?D?DJD 0 - - ��- D � ; �A- ��� 
 � ]

� OQ � �AO�Q � � ���DFD?D D 0 - - ��- 
 � ; ��- ����D � ];

l � : [ true
� � ���D?DFD D 0 goto ZERO ]

This completes the description of 3 � ����� and 3��?����� . Before going on, we observe
that the program 3��6� ��� has an honest run that mimics the execution of � , and looks
as follows: whenever � executes a command, 3 ������� executes its corresponding in-
struction. If the command is a conditional jump and � takes the NONZERO-branch,
then 3 � ����� chooses the nonzero alternative of the corresponding instruction; if � takes
the ZERO branch, then 3 �6� ��� chooses the first of the two zero alternatives, namely

true
� � ���DFD?D D 0 skip, and then it executes the goto ZERO instruction.

There is an important difference between 3 � ����� and 3��?� ��� . Assume that in both
3 � � ��� and 3��?����� we execute the start action, followed by the honest execution of
3 �6� ��� . If and when the honest execution terminates, we can execute the halt action
in 3 � � ��� , because - has been set to � by the start action, but we cannot execute it in
3 �?� ��� , because - still has the value Q there.

We are now ready to describe the winning strategies for Alice and Bob in the differ-
ent games.

Assume that � halts. Here is the strategy for Alice in the trace game. Alice chooses to
play on 3 � ����� , and so Bob is forced to play on 3 � ����� . Alice sticks to the following
sequence of moves, completely disregarding Bob’s answers: she plays the start-move,
continues with the moves of the honest execution of 3 ������� , and – if the honest run
terminates – finishes with a halt-move.

We show in the first place that, if Alice follows this strategy, then from the second
move on Bob is forced to play exactly the same moves as Alice (i.e., exactly the same
alternatives in the same commands). When Alice plays a nonzero move, Bob can only
answer with a unique nonzero move, so this case is easy. When Alice plays a zero move,
it seems that Bob can choose between three zero-answers, namely

true
� � ���DFD?DJD/0 skip

� OQ � - O Q � � ���DFD?DJD 0 - - ��- D � ; �A- ��� 
 �
� OQ � �AO�Q � � ���D?DFD D 0 - - � -�
 � ; ��- ����D �

But remember: Alice is playing the honest run, and so she only plays a zero-move when
� � Q . So, whenever Alice plays a zero move, Bob observes that the guard � O Q
evaluates to false, and so that his only move is true

� � ���D?DFD D 0 skip.
Let us now see that Alice’s strategy is winning. Since � halts, the honest run termi-

nates, and so eventually Alice plays a halt move.15 All along the game Bob has patiently
15 Incidentally, observe that Alice can indeed play halt, because she set � to � with her start move,

and she never touched � during the honest execution.



repeated Alice’s moves, waiting for a chance, but his efforts are in vain: he cannot reply
to Alice’s halt move, because in his program 3 � ����� the variable - has the value Q , and
so the guard - O�Q of the halt move evaluates to false. So Bob loses.

Assume that � does not halt. Here is the strategy for Bob in the bisimulation game.
Alice has to play the start move in one of the two programs, and Bob just replies with the
start move in the other program. Then, as long as Alice plays the honest run of 3 �������
(possibly switching between the two programs), Bob patiently repeats her moves in the
other program.16 If Alice deviates from the honest run by playing one of

� OQ � - O Q � � ���DFD?DJD 0 - - ��- D � ; �A- ��� 
 �
� OQ � ��O Q � � ���DFD?D D 0 - - � -�
 � ; ��- ��� D �

in one of the programs, Bob replies with

true
� � ���DFD?DJD 0 skip

in the other program. If Alice deviates from the honest run by playing

true
� � ���DFD?DJD 0 skip

in one of the programs at a point in which � OQ , Bob replies with one of

� OQ � - O Q � � ���DFD?DJD 0 - - ��- D � ; �A- ��� 
 �
� OQ � ��O Q � � ���DFD?D D 0 - - � -�
 � ; ��- ��� D �

in the other program, depending on which guard is enabled. 17 After this move, Bob
goes on playing exactly the same moves as Alice.

Let us see that Bob wins all games. If Alice sticks to the honest execution, then,
since � does not halt, she never plays a halt-move, and since all other moves can be
mimicked by Bob without problems, the game never terminates: a win for Bob. So
Alice’s only chance to win is to deviate from the honest run at some point. Observe that
just before deviating we have - � �?��� � Q in 3 � � ��� and - � Q � � � � in 3��F����� . We
show that by deviating Alice digs her own grave: she allows Bob to reply in such a way
that after his move all variables have exactly the same value in 3 � ����� and 3 � ����� ! Bob
then wins easily by playing the same moves as Alice.

Alice can deviate from the honest run in three different ways. She can play

� OQ � - O Q � � ���DFD?DJD 0 - - ��- D � ; �A- ��� 
 �
to which Bob replays true

� � ���DFD?DJD 0 skip, and then we have - � Q ��� � � in both
programs. She can also play

� OQ � ��O Q � � ���DFD?D D 0 - - � -�
 � ; ��- ��� D �
16 He has no choice anyway!
17 Observe that exactly one of the two guards is enabled, because the start action makes the

assertion �����
:

� true, and the other actions keep this assertion invariant.



and after Bob’s reply we have - � �F��� �%Q in both programs. Finally, she can play

true
� � ���DFD?DJD 0 skip

at a state in which ��O�Q , and after Bob’s reply we have either - � Q ��� � � or- ���F��� �1Q in both programs, depending on his answer.

9.1 Partial-order equivalences are also undecidable

As we mentioned in Section 5, the literature contains many so-called partial-order
equivalence notions which do not fit between trace and bisimulation equivalence. So
Jančar’s result might seem not to apply for them. But it does. Say that two transitions
B � and B � are concurrently enabled at a marking � if �5�647���1 A��4?�*B � ��
 A�64F��B � � for
every place 4 , and say that a Petri net is sequential if no reachable marking enables two
transitions concurrently. It is easy to see that the Petri nets 3 � ����� and 3 � � ��� we have
constructed above are sequential. So, actually, we have just proved that any equivalence
relation which fits between trace and bisimulation equivalence for the class of sequen-
tial Petri nets is undecidable. Partial-order equivalences turn out to fit between trace
and bisimulation equivalence for sequential nets. Actually, this is what one would ex-
pect: partial-order equivalences should distinguish concurrency from interleaving, but
if there is no concurrency at all then there is also nothing to distinguish.

10 Can anything be done in polynomial time?

The general EXSPACE-hardness bound of Section 7 raises the question if there are
better results (PSPACE, NP, polynomial problems) for classes of Place/Transition Petri
nets. Since a complete treatment of this question is out of the scope of this paper, we
concentrate on how far can one go with polynomial algorithms. Obviously, we cannot
expect to go further than for 1-safe Petri nets. So the first question is if at least some
problems for conflict-free nets and free-choice nets that are not necessarily 1-safe can
still be solved in polynomial time. The answer is a qualified “no”. Even though [18, 39]
contain some polynomial algorithms for conflict-free Petri nets, most of the important
problems for these two classes become at least NP-hard. For instance, the reachability
problem for conflict-free Petri nets is NP-complete [8], and the liveness problem for
free-choice Petri nets is co-NP-complete (i.e., it is the complement of an NP-complete
problem) [24, 5] (the proof is sketched below as the solution to Story I). Notice that the
liveness and reachability problems for arbitrary Petri nets are much harder, and so these
NP-completeness results can also be seen as positive results.

Is there any interesting constraint leading to polynomial algorithms for many prob-
lems? There seems to be essentially a single non-trivial one: every place has exactly
one input transition and exactly one output transition (“exactly” can also be generalised
to “at most”) The Petri nets satisfying this constraint have been called marked graphs,
synchronisation graphs, and T-systems. Two of the oldest papers in net theory show that
many problems for these nets can be solved using simple graph algorithms or linear
programming [3, 13]. So let us formulate our last rule of thumb:



Rule of thumb 10:
Many interesting problems about marked graphs are solvable in polyno-
mial time. Almost no interesting problems about Petri net classes sub-
stantially larger than marked graphs are solvable in polynomial time.

The solution to Story I

The non-liveness problem for free-choice Petri nets can be formulated as follows:

Given: a free-choice Petri net 3 ,
To decide: if 3 is non-live.

Membership in NP is non-trivial; it follows from Commoner’s theorem [15, 5]. NP-
hardness, on the contrary, is very easy to prove by a reduction, first presented in [24],
from the satisfiability problem for boolean formulas in conjunctive normal form.18 Fig-
ure 7 shows the Petri net corresponding to the formula

������� � �+� � � � � � � � � � �+� � ��� � � � �+�
and we explain the construction on this example. Loosely speaking, the Petri net works
as follows: first, the variables are nondeterministically assigned truth values by firing
either the transition � � or � � for each variable � � . Once all variables have been assigned
a value, a transition � � is enabled if and only if the assignment makes the clause � �
false. For instance, � � is enabled if and only if the transitions �'� � � � � � � have fired; this
corresponds to the assignment �'��- � ����� 4 0 , � � - � 6 /� 0 , � � - ������ 4 0 , which is the only
assignment making � � false. So we have that the place False gets tokens if and only if
the formula is false under the assignment. If the formula is satisfiable, then there is an
assignment making the formula true, and for this assignment the place False never gets
marked. So the Petri net is not live. On the contrary, if the formula is unsatisfiable, then
the place False can always get marked again, and the net is live.
Since the formula is satisfiable, the Petri net of Figure 7 is non-live.

11 Conclusions

I’d like to conclude by listing the 10 rules of thumb of the paper. You can find them
in Table 11. I’ve allowed myself to suppress the word “interesting” from all the rules,
since it should no longer lead to confusion.
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The 10 Rules of Thumb

1. All questions about the behaviour of 1-safe Petri nets are PSPACE-hard.
2. Nearly all questions about the behaviour of 1-safe Petri nets can be solved in polynomial

space.
3. Equivalence problems for 1-safe Petri nets are harder to solve than model-checking prob-

lems. They need at most exponential space.
4. Most questions about the behaviour of acyclic 1-safe Petri nets are NP-hard.
5. Many questions about 1-safe conflict-free Petri nets are solvable in polynomial time.

Some questions about live 1-safe free-choice Petri nets are solvable in polynomial time
(and liveness of 1-safe free-choice Petri nets is decidable in polynomial time too).
Almost no questions for 1-safe net classes substantially larger than free-choice Petri nets
are solvable in polynomial time.

6. All questions about the behaviour of Petri nets are EXPSPACE-hard.
7. The model-checking problems for Petri nets and all state-based logics are undecidable.
8. The model-checking problems for Petri nets and all branching-time, action-based logics

are undecidable.
The model-checking problems for Petri nets and all linear-time, action-based logics are
decidable.

9. All equivalence problems for Petri nets are undecidable.
10. Many questions about marked graphs are solvable in polynomial time.

Almost no questions about Petri net classes substantially larger than marked graphs are
solvable in polynomial time.

Table 1.
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