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Abstract

The Skolem problem and the related Positivity problem for linear recurrence sequences are outstanding
number-theoretic problems whose decidability has been open for many decades. In this paper,
the inherent mathematical difficulty of a series of optimization problems on Markov decision
processes (MDPs) is shown by a reduction from the Positivity problem to the associated decision
problems which establishes that the problems are also at least as hard as the Skolem problem as
an immediate consequence. The optimization problems under consideration are two non-classical
variants of the stochastic shortest path problem (SSPP) in terms of expected partial or conditional
accumulated weights, the optimization of the conditional value-at-risk for accumulated weights, and
two problems addressing the long-run satisfaction of path properties, namely the optimization of
long-run probabilities of regular co-safety properties and the model-checking problem of the logic
frequency-LTL. To prove the Positivity- and hence Skolem-hardness for the latter two problems, a
new auxiliary path measure, called weighted long-run frequency, is introduced and the Positivity-
hardness of the corresponding decision problem is shown as an intermediate step. For the partial
and conditional SSPP on MDPs with non-negative weights and for the optimization of long-run
probabilities of constrained reachability properties (aU b), solutions are known that rely on the
identification of a bound on the accumulated weight or the number of consecutive visits to certain
sates, called a saturation point, from which on optimal schedulers behave memorylessly. In this
paper, it is shown that also the optimization of the conditional value-at-risk for the classical SSPP
and of weighted long-run frequencies on MDPs with non-negative weights can be solved in pseudo-
polynomial time exploiting the existence of a saturation point. As a consequence, one obtains
the decidability of the qualitative model-checking problem of a frequency-LTL formula that is not
included in the fragments with known solutions.
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1 Introduction

Markov decision processes (MDPs) (see, e.g., [40]) constitute one of the most prominent
classes of operational models combining randomization and non-determinism and are widely
used in verification, articifical intelligence, robotics and operations research. Consequently,
a vast landscape of optimization problems on MDPs has been studied. The task usually
is to find a strategy resolving the non-deterministic choices, called a scheduler, such that
a certain objective quantity is optimized or to decide whether the optimal value exceeds a
given rational threshold (threshold problem).

Stochastic shortest path problems (SSPPs) are one important type of such optimization
problems on MDPs equipped with weights. These problems ask for a scheduler maximizing or
minimizing the expected accumulated weight before reaching a designated goal state. In the
classical setting, only schedulers reaching the goal almost surely are taken into consideration.
This classical SSPP is known to be solvable in polynomial time using graph-based algorithms
and linear-programming techniques [10, 20, 3]. For various purposes, the requirement that the
goal has to be reached almost surely, however, is not appropriate. This applies, e.g., to work
on the semantics of probabilistic programs when no guarantee on almost sure termination can
be given [25, 30, 9, 15, 36], to the analysis of the behavior of fault-tolerant systems in error
scenarios which occur with low probability, or to the trade-off analysis when combinations of
utility and cost constraints can be achieved with positive probability, but not almost surely
(see, e.g., [5]). This motivates a switch to non-classical variants of the SSPP: The conditional
SSPP [8] asks for a scheduler optimizing the conditional expected accumulated weight
before reaching the goal under the condition that the goal will indeed be reached and the
partial SSPP [16, 38] assigns weight 0 to all executions not reaching the goal. Both variants
increase the algorithmic difficulties. In the special case of MDPs with non-negative weights,
exponential-time algorithms for the partial and conditional SSPP exploit the monotonicity
of accumulated weights and rely on the existence of a saturation point (a bound for the
accumulated weight) from which on optimal schedulers behave memorylessly. Apart from
a PSPACE lower bound and approximation algorithms [38], no algorithms are known for
solving the partial or conditional SSPP in integer-weighted MDPs.

Conditional expectations also play a crucial role in risk management: The conditional
value-at-risk is an established risk measure quanitfying the expected loss in bad cases [45, 1].
Given a probability value p, the value-at-risk of a random variable X is defined as the worst
p-quantile. Quantile queries on the distribution of path lengths have been studied in [44].
The conditional value-at-risk is the expectation of X under the condition that the outcome
is worse than the value-at-risk. For MDPs, the conditional value-at-risk has been studied for
mean-payoffs and for weighted reachability where on each run only once a terminal weight
is collected when a target state is reached [31]. In this paper, we consider the conditional
value-at-risk for the more general accumulated weight before reaching the goal, i.e. for the
classical SSPP. To the best of our knowledge, this problem has not been studied.

Other typical optimization problems arise in the context of verification, asking for worst-
case schedulers that minimize or maximize the probability of a given path property. While
such problems are well-understood, e.g., for properties given by linear temporal logic (LTL)-
formulas or non-deterministic Büchi-automata [19], there has been increasing interest in
ways to quantify the degree to which a property is satisfied not only by the probability
(see [28]). Approaches in this direction include the work on robust satisfaction of temporal
specifications [32, 43], coverage semantics [17], robustness distances [13], and the more general
model-measurement semantics [29] among others. Furthermore, this has lead to different
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notions quantifying to which degree a property is satisfied in the long-run: Frequency-LTL
has been introduced in [23, 24] as an extension of LTL by a frequency modality that makes
assertions on the portion of time (or relative frequency of positions in paths) where a
given event holds. While [23, 24] presents model-checking algorithms for Markov chains
and arbitrary frequency-LTL formulas, the presented model checking algorithms for MDPs
are restricted to fragments of frequency-LTL. We address the model checking problem for
frequency-LTL formulas not contained in these fragments. Further, the concept of long-run
probabilities [4] has been introduced for reasoning about the probabilities of path properties
when the system is in equilibrium and can, e.g., be useful to formalize refined notions of
long-run availability. In [4], a pseudo-polynomial time algorithm that exploits the existence
of a saturation point for the computation of optimal long-run probabilities of constrained
reachability properties (aU b) is provided. Here, we study long-run probabilities of general
regular co-safety properties.

Contributions. The main contribution of the paper is to provide evidence for the mathe-
matical difficulty of the series of decision problems described above in terms of a reduction
from the Positivity problem of linear recurrence sequences. The Positivity problem is closely
related to the Skolem problem, a prominent number-theoretic decision problem for linear
recurrence sequences, and the decidability of both problems has been open for many decades
(see, e.g., [27]). As it is well-known that the Skolem problem is reducible to the Positivity
problem, the provided reductions establish that the investigated decision problems are also at
least as hard as the Skolem problem. In the middle column of Table 1, these Skolem-hardness
results are listed:

Table 1 Overview of the results.

optimization problem threshold problem Positivity- exponential-time algorithm
on MDPs and hence Skolem-hard for using a saturation point for

partial SSPP (1) weights in Z, Thm. 3 weights in N [16]
(PSPACE-hard, Prop. 15)

conditional SSPP (2) weights in Z, Thm. 5 weights in N [8]
(PSPACE-hard [8])

conditional value-at-risk weights in Z, Thm. 6 weights in N, Thm. 12
for the classical SSPP (3)
long-run probability (4) regular co-safety properties, constrained reachability aU b [4]

Thm. 9 (NP-hard [4])
model checking of Prmax

M (G>ϑ
inf (ϕ)) = 1? Prmax

M (G>ϑ
inf (aU b)) = 1?

frequency-LTL (5) for an LTL-formula ϕ, Thm. 11 Cor. 14

To obtain these results, we construct an MDP-gadget in which a linear recurrence relation
can be encoded. Together with different gadgets encoding initial values of a linear recurrence
sequence, we use this gadget to establish Positivity-hardness for problems (1)-(3). Afterwards,
we introduce a notion of weighted long-run frequency for constrained reachability properties
that can be seen as a generalization of classical limit-average weights and serves here as a
technical vehicle to provide a connective link to long-run probabilities and the model-checking
problem of frequency-LTL. The Positivity-hardness for problems (4) and (5) is obtained via
the Positivity-hardness of the threshold problem for weighted long-run frequencies by showing
how to encode integer weights in terms of the satisfaction of a fixed co-safety property. The
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138:4 On Skolem-Hardness and Saturation Points in Markov Decision Processes

Positivity-hardness of (4) and (5) is somehow surprising: The non-probabilistic variant (4) is
shown to be decidable in [4], while our results show that Positivity-hardness of (4) holds even
for a simple fixed co-safety property given by a very small counter-free non-deterministic
finite automaton. Likewise, Positivity-hardness of (5) is established already for the restriction
to the almost-sure satisfaction problem of a simple fixed frequency-LTL formula.

For special cases of some of the problems studied here it is known that optimal values
can be computed in exponential time exploiting a saturation point. We extend this picture
by showing analogous results for problems (3) and (5) (see Table 1). In particular, we
provide a simple exponential time algorithm for the computation of the optimal conditional
value-at-risk for the classical SSPP. Further, we pinpoint where the Positivity-hardness
of the model checking problem of frequency-LTL arises: We observe that the techniques
of [4] allow to solve the qualitative model-checking problem for a frequency-LTL formula
with only one constrained reachability (aU b) property under a frequency-globally modality.
Our Positivity-hardness result for model checking frequency-LTL uses an only slightly
more complicated fixed formula where a Boolean combination of atomic propositions and
constrained reachability properties occurs in the scope of the frequency-globally modality. In
particular, the Positivity-hardness does not require deeper nesting of temporal operators.

Related work. Besides the above cited work that presents algorithms for special cases of the
investigated problems, closest to our work is [2] where Skolem-hardness for decision problems
for Markov chains have been established. The problems are to decide whether for given
states s, t and rational number p, there is a positive integer n such that the probability to
reach t from s in n steps equals p and the model checking problem for a probabilistic variant
of monadic logic and a variant of LTL that treats Markov chains as linear transformers of
probability distributions. These decision problems are of quite different nature than the
problems studied here, and so are the reductions from the Skolem problem. In this context
also the results of [18] and [34] are remarkable as they show the decidability (subject to
Schanuel’s conjecture) of reachability problems in continuous linear dynamical systems and
continuous-time MDPs, respectively, as instances of the continuous Skolem problem.

A class of problems related to SSPPs concerns the optimization of probabilities for
weight-bounded reachability properties and also exhibits increasing algorithmic difficulty (for
an overview see [41]): For non-negative weights, schedulers optimizing the probability for
reaching a target while the accumulated weight stays below a given bound are computable
in pseudo-polynomial time and the corresponding probability-threshold problem is in P
for qualitative probability thresholds (“>0” or “=1”) and PSPACE-hard in the general
case [44, 26]. For integer weights even in finite-state Markov chains, the probabilities for
a weight-bounded reachability property can be irrational. Still, decidability for analogous
problems for integer-weighted MDPs have been established for certain cases. Examples
are pseudo-polynomial algorithms for qualitative threshold problems in integer-weighted
MDPs [14, 12, 35, 3] or an exponential-time algorithm and a PSPACE lower bound for the
almost-sure termination problem in one-counter MDPs [11].

Switching to more expressive models typically leads to the undecidability of infinite-
horizon verification problems. This applies, e.g., to recursive MDPs [21], MDPs with two
or more weight functions [7, 42] or partially observable MDPs [33, 6]. However, we are not
aware of natural decision problems for standard (finite-state) MDPs with a single weight
function and single objective that are known to be undecidable.
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2 Preliminaries

We give basic definitions and present our notation (for more details see, e.g., [40]). We then
formally define the quantitative objectives studied in this paper.

Notations for Markov decision processes. A Markov decision process (MDP) is a tuple
M = (S,Act, P, sinit,wgt,AP, L) where S is a finite set of states, Act a finite set of actions,
sinit ∈ S the initial state, P : S ×Act × S → [0, 1] ∩Q is the transition probability function,
wgt : S×Act → Z the weight function, AP a finite set of atomic propositions, and L : S → 2AP a
labeling function. If not needed, we might drop the weight function or the labeling. We require
that

∑
t∈S P (s, α, t) ∈ {0, 1} for all (s, α) ∈ S×Act. We say that action α is enabled in state

s iff
∑
t∈S P (s, α, t) = 1. We assume that for all states s there is an enabled action and that

all states are reachable from sinit . We call a state absorbing if there is only one enabled action,
returning to the state with probability 1 and weight 0. The paths ofM are finite or infinite
sequences s0 α0 s1 α1 . . . where states and actions alternate such that P (si, αi, si+1) > 0 for all
i ≥ 0. For π = s0 α0 s1 α1 . . . αk−1 sk, wgt(π) = wgt(s0, α0) + . . .+ wgt(sk−1, αk−1) denotes
the accumulated weight of π, P (π) = P (s0, α0, s1) · . . . ·P (sk−1, αk−1, sk) its probability, and
last(π) = sk its last state. Further, we also write π to denote the word L(s0), L(s1), . . . . The
size ofM is the sum of the number of states plus the total sum of the logarithmic lengths of
the non-zero probability values P (s, α, s′) as fractions of co-prime integers and the weight
values wgt(s, α). An end component ofM is a strongly connected sub-MDP.

Scheduler. A scheduler forM is a function S that assigns to each finite path π a probability
distribution over Act(last(π)). If there is a finite set X of memory modes and a memory
update function U : S × Act × S × X → X such that the choice of S only depends on
the current state after a finite path and the memory mode obtained from updating the
memory mode according to U in each step, we say that S is a finite-memory scheduler. If
the choice depends only on the current state, we say that S is memoryless. A scheduler S is
called deterministic if S(π) is a Dirac distribution for each path π. Given a scheduler S,
ζ = s0 α0 s1 α1 . . . is a S-path iff ζ is a path and S(s0 α0 . . . αk−1 sk)(αk) > 0 for all k ≥ 0.

Probability measure. We write PrSM,s or briefly PrSs to denote the probability measure
induced by S and s. For details, see [40]. We will use LTL-like formulas to denote measurable
sets of paths. Given a measurable set ψ of infinite paths, we define Prmin

M,s(ψ) = infS PrSM,s(ψ)
and Prmax

M,s(ψ) = supS PrSM,s(ψ) where S ranges over all schedulers forM. For a random
variable X defined on infinte paths in M, we denote the expected value of X under the
probability measure induced by a scheduler S and state s by ES

M,s(X). Furthermore, for
a measurable set of paths ψ with positive probability, ES

M,s(X|ψ) denotes the conditional
expectation of X under ψ. If s = sinit, we sometimes drop the subscript s.

Partial and conditional SSPP. Let M be an MDP with an absorbing state goal. On
infinite paths ζ, we define the random variable ⊕goal(ζ) to be wgt(ζ) if ζ � ♦goal, and to be
0 otherwise. The partial expectation PES

M,s of a scheduler S is defined as ES
M,s(⊕goal). The

maximal partial expectation is PEmax
M,s = supS PES

M,s. The conditional expectation CES
M,s is

defined as the conditional expected value ES
M,s(⊕goal|♦goal) for all schedulers reaching goal

with positive probability, and the maximal conditional expectations is CEmax
M,s = supS CES

M,s

where S ranges over all schedulers S with PrSM,s(♦goal) > 0. The partial SSPP asks for
the maximal partial expectations and the conditional SSPP for the maximal conditional
expectation. These problems were first considered in [16] and [8]. For more details see [8, 38].
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Conditional value-at-risk. Given an MDP M with a scheduler S, a random variable X
defined on runs of the MDP with values in R and a value p ∈ [0, 1], we define the value-at-risk
as VaRS

p (X) = sup{r ∈ R|PrSM(X ≤ r) ≤ p}. So, the value-at-risk is the point at which the
cumulative distribution function of X reaches or exceeds p. Denote VaRS

p (X) by v. The
conditional value-at-risk is now the expectation of X under the condition that the outcome
belongs to the p worst outcomes. Following the treatment of random variables that are not
continuous in general in [31], we define the conditional value-at-risk as follows:

CVaRS
p (X) = 1/p(PrSM(X < v) · ES

M(X|X < v) + (p− PrSM(X < v)) · v).

Outcomes of X which are less than v are treated differently to outcomes equal to v as it is
possible that the outcome v has positive probability and we only want to account exactly
for the p worst outcomes. Hence, we take only p− PrSM(X < v) of the outcomes which are
exactly v into account as well.

Threshold problems for the conditional value-at-risk in weighted MDPs have been studied
in [31] for two random variables: the mean-payoff and weighted reachability where a set of
final states is equipped with terminal weights obtained when reaching these states while all
other transitions have weight 0. In this paper, we will address the conditional value-at-risk for
the accumulated weight before reaching goal in MDPs with an absorbing state goal: Define

goal(ζ) to be wgt(ζ) if ζ � ♦goal and leave it undefined otherwise. The optimization of
the expectation of goal is known as the classical SSPP. Note that the expectation of this
random variable is only defined under schedulers reaching goal with probability 1.

Long-run probability. LetM be an MDP with states labeled by atomic propositions from
AP. Let ϕ be a path property, i.e., a measurable set of paths. The long-run probability for ϕ
of a path ζ under a scheduler S is lrpS

ϕ (ζ) = lim infn→∞ 1
n+1 ·

∑n
i=0 PrS↑ζ[0...i]

M,ζ[i] (ϕ). Here,
ζ[0 . . . i] denotes the prefix from position 0 to i of ζ, ζ[i] denotes the state after i steps, and
S↑ζ[0 . . . i] denotes the residual scheduler defined by S↑ζ[0 . . . i](π) = S(ζ[0 . . . i] ◦ π) for all
finite paths π starting in ζ[i]. The long-run probability of ϕ under scheduler S is LPS

M(ϕ) =
ES
M(lrpS

ϕ ). The maximal long-run probability for ϕ is LPmax
M (ϕ) = supS ES

M(lrpS
ϕ ). This

notion was introduced in [4]. In this paper, we are interested in two kinds of path properties:
Constrained reachability, aU b, where a and b are atomic propositions and the more general
regular co-safety properties given by a finite non-deterministic automaton (NFA) A accepting
“good” prefixes of a run. For a co-safety property given by an NFA A, we also write LPmax

M (A).

3 Skolem-hardness

The Skolem problem and the closely related Positivity problem are outstanding problems
in the fields of number theory and theoretical computer science (see, e.g., [27, 37]). Their
decidability has been open for many decades. We call a problem to which the Skolem problem
is reducible Skolem-hard. This is a hardness result in the sense that a decision procedure
would imply a major breakthrough by settling the decidability of the Skolem problem and it
shows that a problem possesses an inherent mathematical difficulty.

Skolem problem. Given a natural number k ≥ 2, and rationals αi and βj with 1 ≤ i ≤ k
and 0 ≤ j ≤ k − 1, let (un)n≥0 be defined by the initial values u0 = β0, . . . , uk−1 = βk−1
and the linear recurrence relation un+k = α1un+k−1 + · · ·+ αkun for all n ≥ 0. The Skolem
problem is to decide whether there is an n ∈ N with un = 0.
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A closely related problem is the Positivity problem. It asks whether un ≥ 0 for all n. It is
folklore that the Skolem problem is polynomial-time reducible to the positivity problem (see,
e.g., [22]). We will use the Positivity problem for our reductions leading to the main result:

IMain result (Theorems 3, 5, 6, 9, 11). The Positivity problem and hence the Skolem problem
are polynomial-time reducible to the threshold problems for the partial and conditional SSPP,
the conditional value-at-risk in the classical SSPP, and long-run probabilities of regular
co-safety properties, as well as to the qualitative model checking problem of frequency-LTL.

For this purpose, we will construct an MDP gadget depicted in Figure 1a that encodes a
linear recurrence relation in terms of the optimal values of different quantitative objectives.
For the different problems, we then provide gadgets encoding the initial values of a linear
recurrence sequence. We can plug these gadgets together to obtain an MDP and a scheduler
S such that S maximizes the respective objective iff the linear recurrence sequence has no
negative member. By computing the optimal values under S in the MDPs – which turn
out to be rational – we provide reductions from the positivity problem to the respective
threshold problems with strict inequality (see also Remark 4).

3.1 Partial and Conditional SSPP
Given a linear recurrence sequence, we construct an MDP in which the sequence is encoded
in terms of optimal partial expectations. So let k be a natural number and let (un)n≥0 be
the linear recurrence sequence given by rationals αi for 1 ≤ i ≤ k and βj for 0 ≤ j ≤ k−1 as
above. As un+k = α1un+k−1 + · · ·+ αkun for all n, we see that for any positive λ ∈ Q the
sequence (vn)n≥0 defined by vn = λn+1un satisfies vn+k = λ1α1vn+k−1 + · · ·+λkαkvn for all
n. Furthermore, vn is non-negative if and only if un is. W.l.o.g., we hence can assume that∑
i |αi| <

1
4 and that 0 ≤ βj < 1

4k2k+2 for all j (for details, see the extended version [39]).
Now, we construct an MDP-gadget with an example depicted in Figure 1a. This gadget

contains states goal, s, and t, as well as s1, . . . , sk and t1, . . . , tk. In state t, an action γ

is enabled which has weight 0 and leads to state ti with probability αi if αi > 0 and to
state si with probability |αi| if αi < 0 for all i. The remaining probability leads to goal.
From each state ti, there is an action leading to t with weight −i. The action δ enabled in
s as well as the actions leading from states si to s are constructed in the same way. This
gadget will be integrated into a larger MDP where there are no other outgoing edges from
states s1, . . . , sk, t1, . . . , tk. Now, for each state q and each integer w, let e(q, w) be the
optimal partial expectation when starting in state q with accumulated weight w. Further, let
d(w) = e(t, w)− e(s, w). The simple proof of the following lemma can be found in [39] and
uses that optimal partial expectations satisfy that e(q, w) =

∑
r P (q, α, r)e(r, w+wgt(q, α))

if an optimal scheduler chooses action α in state q when the accumulated weight is w.

I Lemma 1. Let w ∈ Z. If an optimal scheduler chooses action γ in t and δ in s if the
accumulated weight is w, then d(w) = α1d(w − 1) + · · ·+ αkd(w − k).

Now we construct a gadget that encodes the initial values β0, . . . , βk−1. The gadget is
depicted in Figure 1b and contains states t, s, goal, and fail. For each 0 ≤ j ≤ k − 1, it
additionally contains states xj and yj . In state xj , there is one action enabled that leads to
goal with probability 1

2k2(k−j) + βj and to fail otherwise. From state yj , goal is reached with
probability 1

2k2(k−j) and fail otherwise. In state t, there is an action γj leading to xj with
weight +k − j for each 0 ≤ j ≤ k − 1. Likewise, in state s there is an action δj leading to yj
with weight k−j for each 0 ≤ j ≤ k − 1. We now glue together the two gadgets at states s,
t, and goal. The cumbersome choices of probability values lead to the following lemma via
straight-forward computations presented in [39].

ICALP 2020



138:8 On Skolem-Hardness and Saturation Points in Markov Decision Processes

t

t1

t2

goal

s

s1

s2

1−|α1|−|α2|

|α1|
|α2|

γ

wgt : −1

wgt : −2

1−|α1|−|α2|

|α1|
|α2|

δ

wgt : −1

wgt : −2

(a) In the depicted example, the recurrence depth
is 2, α1 > 0, and α2 < 0.

t

xj goal yj

s

fail

1− ( 1
2k2(k−j) + βj)

1
2k2(k−j) + βj

γj|wgt : +k − j

1− 1
2k2(k−j)

1
2k2(k−j)

δj|wgt : +k − j

(b) The gadget contains the depicted states and
actions for each 0 ≤ j ≤ k − 1.

Figure 1 The gadget (a) encoding the linear recurrence relation in all reductions and (b) encoding
the intial values in the reduction to the partial SSPP.

I Lemma 2. Let 0 ≤ j ≤ k − 1. Starting with weight −(k−1)+j in state t or s, action γj
and δj maximize the partial expectation. For positive starting weight, γ and δ are optimal.

Comparing action γj and δj for starting weight −(k−1)+j, we conclude that the difference
between optimal values d(−(k−1)+j) is equal to βj , for 0 ≤ j ≤ k−1, and hence d(−(k−1)+
n) = un for all n. Finally, we equip the MDP with a simple initial gadget (see [39]): From
the initial state sinit, one action with weight +1 is enabled. This action leads to a state c with
probability 1

2 and loops back to sinit with probability 1
2 . In c, the decision between action τ

leading to state t and action σ leading to state s has to be made. So for any n > 0, state c is
reached with accumulated weight n with positive probability. An optimal scheduler now has
to decide whether the partial expectation when starting with weight n is better in state s or
t: Action τ is optimal in c for accumulated weight w if and only if d(w) ≥ 0. Further, the
scheduler S always choosing τ in c and actions γ, γ0, . . . , γk−1, δ, . . . as described in Lemma
2 is optimal iff the given linear recurrence sequence is non-negative. We can compute the
partial expectation of scheduler S in the constructed MDP. The partial expectation turns
out to be a rational. Hence, using this partial expectation as the threshold ϑ, we obtain the
first main result. The technical proof computing the value of S in the constructed MDP is
given in the extended version [39].

I Theorem 3. The Positivity problem is polynomial-time reducible to the following problem:
Given an MDPM and a rational ϑ, decide whether PEmax

M > ϑ.

I Remark 4. There is no obvious way to adjust the construction such that the Skolem-
hardness of the question whether PEmax

M ≥ ϑ would follow. One attempt would be to provide
an ε such that PEmax

M > ϑ iff PEmax
M ≥ ϑ + ε. This, however, probably requires a bound

on the position at which the given linear recurrence sequence first becomes negative. But
this question lies at the core of the positivity and the Skolem problem. All Skolem-hardness
results in this paper hence concern only threshold problems with strict inequality.

The Skolem-hardness of the threshold problem for the conditional SSPP is obtained by a
simple reduction showing that the threshold problems of the partial SSPP is polynomial-time
reducible to the threshold problem of the conditional SSPP (see [39]).

I Theorem 5. The Positivity problem is reducible in polynomial time to the following
problem: Given an MDPM and a rational ϑ, decide whether CEmax

M > ϑ.
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(b) The gadget contains the depicted states and
actions for each 0 ≤ j ≤ k − 1. The probabilities
are: p1 = (1− α)( 1

2k2(k−j) + βj), p2 = (1− α)(1−
( 1

2k2(k−j) + βj)), q1 = (1 − α) 1
2k2(k−j) , q2 = (1 −

α)(1− 1
2k2(k−j) ). All actions except for γj and δj

have weight 0.

Figure 2 The gadgets encoding initial values for (a) the conditional value-at-risk for the classical
SSPP and (b) weighted long-run frequencies.

3.2 Conditional value-at-risk for the classical SSPP
We reuse the gadget depicted in Figure 1a to prove the following result:

I Theorem 6. The Positivity problem is polynomial-time reducible to the following problem:
Given an MDPM and rationals ϑ and p ∈ (0, 1), decide whether CVaRmax

p ( goal) > ϑ.

We begin by the following consideration: Given an MDPM with initial state sinit, we
construct a new MDP N . We add a new initial state s′init. In s′init, there is only one action with
weight 0 enabled leading to sinit with probability 1

3 and to goal with probability 2
3 . So, at least

two thirds of the paths accumulate weight 0 before reaching the goal. Hence, we can already
say that VaRS

1/2( goal) = 0 in N under any scheduler S. Note that schedulers forM can be
seen as schedulers for N and vice versa. This considerably simplifies the computation of the
conditional value-at-risk inN . Define the random variable goal(ζ) to be goal(ζ) if goal ≤ 0
and to be 0 otherwise. Now, the conditional value-at-risk for the probability value 1/2 under
a scheduler S in N is given by CVaRS

1/2( goal) = 2 ·ES
N ,sinit

( goal) = 2
3 ·E

S
M,sinit

( goal). So,
the result follows from the following lemma:

I Lemma 7. The Positivity problem is polynomial-time reducible to the following problem:
Given an MDPM and a rational ϑ, decide whether Emax

M,sinit
( goal) > ϑ.

We adjust the MDP used for the Skolem-hardness proof for the partial SSPP. So, let
k be a natural number, α1, . . . , αk be rational coefficients of a linear recurrence sequence,
and β0, . . . , βk−1 ≥ 0 the rational initial values. W.l.o.g. we again assume these values to be
small, namely:

∑
1≤i≤k |αi| ≤

1
5(k+1) and for all j, βj ≤ 1

3α where α =
∑

1≤i≤k |αi|.
The first important observation is that the optimal expectation of goal for different

starting states and starting weights behaves very similar to optimal partial expectations:
For each state q and each integer w, let e(q, w) be the optimal expectation of goal when
starting in state q with accumulated weight w. If an optimal scheduler chooses α when in
q with accumulated weight w, then e(q, w) =

∑
r∈S P (q, α, r) · e(r, w+wgt(q, α)). Reusing

the MDP-gadget depicted in 1a, we observe that if we again let d(w) = e(t, w)− e(s, w), the
following holds as before: For any w ∈ Z, if an optimal scheduler chooses action γ in t and δ
in s if the accumulated weight is w, then d(w) = α1d(w − 1) + · · ·+ αkd(w − k).
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Now, we construct a new gadget that encodes the initial values of a linear recurrence
sequence. The new gadget is depicted in Figure 2a. Besides the actions γj and δj for
0 ≤ j ≤ k−1 there are no non-deterministic choices. Again, we glue together the two gadgets
in states s, t, and goal. The main idea is that for non-negative starting weights in state s or
t actions γj and δj lead to a larger expected tail loss than actions γ and δ. For 0 ≤ j ≤ k−1
and an accumulated weight −k+j in state t or s, the actions γj and δj are, however, optimal
for maximizing the expectation of goal sinve the goal is reached with non-negative weights
with high probability under these actions (details in [39]). The difference of optimal values
satisfies e(t,−k + j)− e(s,−k + j) = βj for 0 ≤ j ≤ k−1 again. Finally, we add the same
initial component as in the previous section and see that the scheduler S always choosing τ
in state c is optimal iff the linear recurrence sequence stays non-negative. As the expectation
of goal under S is again a rational (see [39]), this finishes the proof analogously to the
previous section.

3.3 Long-run probability and frequency-LTL
In order to transfer the Skolem-hardness results to long-run probabilities and frequency-LTL,
we introduce the auxiliary notion of weighted long-run frequency. LetM be an MDP with
a weight function wgt : S × Act → Z and two disjoint sets of states Goal,Fail ⊆ S. On an
infinite paths π = s0, α0, s1, . . . , we define the random variable wlf as follows:

wlf (π) = lim inf
n→∞

1
n+ 1

∑n

i=0
wgt(si, αi) · 1π[i... ]�¬Fail U Goal

where 1π[i... ]�¬Fail U Goal is 1 if the suffix π[i . . . ] = si, αi, si+1, . . . satisfies ¬Fail U Goal, and
0 otherwise. Given a scheduler S, we define the weighted long-run frequency WLFS

M =
ES
M(wlf ) and WLFmax

M = supS WLFS
M. This can be seen as a long-run average version of

partial expectations. Weights are only received if afterwards Goal is visited before Fail and
we measure the average weight received per step according to this rule. Note that we only
consider the path property ¬Fail U Goal in this paper and hence do not include this property
in our notation and terminology. An illustrating example can be found in [39].

We modifiy the MDP that was constructed in Section 3.1 for the Skolem-hardness of the
partial SSPP. We replace the gadget encoding the initial values with the gadget depicted
in Figure 2b. This gadget differs from the gadget used for partial expectations only in the
expected time it takes to reach goal or fail under γj or δj . It is constructed in a way such that
the expected time to reach goal or fail from sinit does not depend on the scheduler. Finally,
we add a transition leading back to the initial state from goal and fail. An optimal scheduler
for weighted long-run frequencies in the constructed MDP K now just has to maximize the
partial expectation leading to the Skolem-hardness result (for more details see [39]).

I Theorem 8. The Positivity problem is polynomial-time reducible to the following problem:
Given an MDPM and a rational ϑ, decide whether WLFmax

M > ϑ.

This result now serves as a tool to establish analogous results for long-run probabilities.
The key idea is to encode integer weights via a labelling of states and to use a simple regular
co-safety property to mimic the reception of weights in weighted long-run frequencies.

I Theorem 9. The Positivity problem is polynomial-time reducible to the following problem:
Given an MDPM, an NFA A, and a rational ϑ, decide whether LPmax

M (A) > ϑ.

In the sequel, we consider weighted states instead of weighted state-action pairs. Further,
we assume that the weights are only −1, 0, and +1. This assumption leads to a pseudo-
polynomial blow-up in the general case. The weights in the MDP K constructed for Theorem
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p ∧ ¬g ∧ ¬f g, f ∧ c

z ∧ ¬g ∧ ¬f

g ∧ c, f ∧ c

n ∧ ¬g ∧ ¬f

f ∧ c

¬g ∧ ¬f

¬g ∧ ¬f

¬g ∧ ¬f

g ∧ p, g ∧ z ∧ c, f ∧ c

Figure 3 The NFA A expressing a property of the form d ∨
∨3

i=1(ci ∧ (aU bi)).

8 above are, however, at most k. As the MDP has more than 2k states, transforming K to
weights −1, 0, and +1 only leads to a polynomial blow-up. As this MDP has no non-trivial
end-components, {goal, fail} is visited infinitely often with probability 1 under any scheduler.
Let AP = {n, z, p, c, g, f} be a set of atomic propositions representing negative (−1), zero
(0), and positive (+1) weight, coin flip, goal, and fail, respectively. We construct an MDP L:
The states goal and fail are duplicated while one copy of each is labeled with c and whenever
goal or fail are entered in the MDP K, both of the two copies in L are equally likely. For
a formal definition see [39]. In Figure 3, we depict the NFA A used for the encoding. The
NFA A is constructed such that in L any run starting in a state labeled zero or reaching fail
before goal is accepted with probability 1/2 due to the coin flips. A run starting in a state
labeled positive and reaching goal before fail is accepted while such a path starting in a state
labeled negative is not. This leads to the following lemma that proves Theorem 9.

I Lemma 10. For the MDPs K and L constructed above, we have WLFmax
K = 1

2 + 1
2LP

max
L (A).

Proof sketch. It is quite easy to see that the claim holds for finite-memory schedulers as we
can rely on steady state probabilities in the resulting Markov chain. That the supremum
over all schedulers agrees with the supremum over finite-memory schedulers on both sides
follows from Fatou’s lemma. Details can be found in [39]. J

A consequence of this result is that model checking of frequency-LTL in MDPs is at least
as hard as the Skolem problem. The decidability of the model-checking problem for the full
logic frequency-LTL has been left open, but set as a goal in [23, 24]. Obtaining this goal by
proving the decidability of the model-checking problem hence would settle the decidability of
the Skolem problem. The frequency-globally modality G>ϑinf (ϕ) is defined to hold on a path π
iff lim infn→∞ 1

n+1
∑n
i=0 1π[i... ]�ϕ > ϑ, i.e. iff the long-run average number of positions at

which a suffix satisfying ϕ starts exceeds ϑ.

I Theorem 11. There is a polynomial-time reduction from the Positivity problem to the
following qualitative model checking problem for frequency LTL for a fixed LTL-formula ϕ:
Given an MDPM and a rational ϑ, is Prmax

M (G>ϑinf (ϕ)) = 1?

Proof sketch. The proof uses the reduction to the threshold problem for the long-run
probability of the co-safety property expressed by A. This property is captured by a simple
LTL-formula ϕ (see Figure 3). For finite-memory schedulers S inducing a single bottom
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strongly connected component, we see that G>ϑinf (ϕ) holds with probability 1 iff the expected
long-run probability of ϕ is greater than ϑ. That it is enough to consider such schedulers
follows from the argument using Fatou’s lemma again. For more details see [39]. J

4 Saturation points

Despite the inherent mathematical difficulty shown by the Skolem-hardness results so far,
all of the problems studied here are solvable in exponential time under a natural restriction.
For the problems on weighted MDPs, this restriction only allows non-negative weights
while for the long-run notions the restriction to constrained reachability properties (aU b)
leads to solvability. For the partial and the conditional SSPP [8, 16] and for long-run
probabilities [4], the computability of optimal values under these restrictions has been shown.
The algorithms exploit the existence of saturation points, a bound on the accumulated
weight or the consecutive visits to certain states before optimal schedulers can behave
memorylessly. We will extend this picture by providing a simple saturation point for the
computation of the optimal conditional value-at-risk for the classical SSPP in MDPs with
non-negative weights. Afterwards, we transfer the saturation-point algorithm from [4] to
weighted long-run frequencies in the setting of non-negative weights. As a consequence,
we obtain an exponential-time algorithm for the qualitative model-checking problem of a
frequency-LTL formula for which no solutions were known. To conclude the section, we
provide accompanying PSPACE lower bounds for the partial SSPP and weighted long-run
frequencies with non-negative weights.

4.1 Conditional value-at-risk for the classical SSPP
Let M be an MDP with non-negative weights. In the classical SSPP, it is decidable in
polynomial time whether the optimal expected accumulated weight before reaching the goal
is bounded. If this is the case, the usual preprocessing step removes end components [20, 3]
and transforms the MDP such that exactly the schedulers reaching the goal with probability
1 can be mimicked in the transformed MDP. So in the sequel, we assume that the absorbing
state goal forms the only end component. Given a rational probability value p ∈ (0, 1), we are
interested in the value CVaRmax

p ( goal). Note that in our formulation the worst outcomes
are the paths with the lowest accumulated weight before reaching the goal. Below we will
sketch how to treat the case where high outcomes are considered bad.

I Theorem 12. Given an MDP M = (S, sinit,Act, P,wgt, goal) with non-negative weights
and no end-components except for one absorbing state goal as well as a rational probability
value p ∈ (0, 1), the value CVaRmax

p ( goal) is computable in pseudo-polynomial time.

Proof sketch. As there are no end components, we can provide a saturation point K ∈ N
such that paths accumulate a weight of more than K with probability less than 1− p. Then,
paths reaching an accumulated weight of K do not belong to the worst p outcomes. We
construct an MDP with the state space S × {0, . . . ,K} that encodes the accumulated weight
of a path up to K. Letting states of the form (goal, i) be terminal with weight i and of the
form (s,K) be terminal with weight K, we can then rely on the algorithm computing the
conditional value-at-risk for weighted reachability in [31]. As K can be chosen of pseudo-
polynomial size and this algorithm runs in time polynomial in the size of the constructed
MDP, this leads to a pseudo-polynomial time algorithm. For details see [39]. J

Note that the behavior of a scheduler on paths with accumulated weight above K does
not matter at all for the conditional value-at-risk. If we want to consider the case where long
paths are considered as bad, we can multiply all weights by −1 and use the definitions as
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before. The idea here now is to compute a saturation point −K such that the probability for
a path to accumulate weight less than −K is smaller than p. So, we know that a path with
weight less than −K belongs to the p worst paths. On these paths, the best thing to do in
order to maximize the conditional value-at-risk is to maximize the expected accumulated
weight before reaching the goal. This can be done by a memoryless deterministic scheduler
simultaneously for all states and the values are computable in polynomial time [20]. Then
we construct the MDP N as above but change the terminal weights as follows: states of
the form (goal, i) get weight −i and states of the form (s,K) get weight −K + Emax

M,s( goal)
where M is the MDP in which all weights are already multiplied by −1. Afterwards the
problem can be solved by the techniques for weighted reachability from [31] again.

4.2 Weighted long-run frequencies and frequency-LTL
The existence of a saturation point for long-run probabilities of constrained reachability
properties was shown in [4]. This result can easily be adapted to weighted long-run frequencies
following the same arguments. First, it is shown by an application of Fatou’s lemma that
optimal weighted long-run frequency can be approximated by finite-memory schedulers.
Afterwards, it is shown that the memory needed for the optimization can be restricted
further: A saturation point K ∈ N is provided such that only scheduler keeping track of the
accumulated weight up to K have to be considered. The adaptions necessary to the proof
in [4] are worked out in the extended version [39] and lead to the following result:

I Theorem 13. The maximal value WLFmax
M in an MDPM with non-negative weights is

computable in pseudo-polynomial time.

I Corollary 14. Given an MDPM and a rational ϑ, it can be checked in pseudo-polynomial
time whether Prmax

M (G>ϑinf (aU b)) = 1.

Proof. The semantics of G>ϑinf (¬Fail U Goal) on a path π agree with the semantics of wlf (π) >
ϑ if all weights are set to +1. Now, we can check for each end component E ofM whether
WLFmax

E > ϑ. If that is the case, there is a finite memory scheduler for E inducing only one
BSCC achieving a weighted long-run frequency greater than ϑ. Under this scheduler almost
all paths π satisfy wlf (π) > ϑ. Afterwards, it remains to check whether end components
with such a scheduler can be reached with probability 1 inM. J

In [24], the fragment of frequency-LTL in which no until-operators occur in the scope of
a globally operator has been studied. The formula in the corollary is hence of the simplest
form of frequency-LTL formulas for which no solution to the qualitative model-checking
problem has been known. Remarkably, the formula used in the Skolem-hardness proof
(Theorem 11) is only slightly more complicated as it contains a Boolean combination of
constrained reachability properties and atomic propositions under the frequency-globally
operator.

4.3 PSPACE lower bounds
For the conditional SSPP with non-negative weights [8] and the long-run probability of
constrained reachability properties [4], PSPACE and NP lower bounds, respectively, are
known indicating that the pseudo-polynomial time algorithms for the computation can
probably not be significantly improved. The threshold problem of the conditional SSPP is
already PSPACE-hard in acyclic MDPs with non-negative weights as shown in [8]. In [38],
it has been shown that the threshold problem of the conditional SSPP is polynomial-time

ICALP 2020



138:14 On Skolem-Hardness and Saturation Points in Markov Decision Processes

reducible to the threshold problem for the partial SSPP. This reduction generates an MDP
with negative weights, even when all weights in the original MDP are non-negative. Here,
we provide a new polynomial reduction for acyclic MDPs from the threshold problem for
the conditional SSPP to the threshold problem of the partial SSPP that preserves the
non-negativity of weights (see [39]).

I Proposition 15. The threshold problem of the partial SSPP is PSPACE-hard in acyclic
MDPs with non-negative weights. It is contained in PSPACE for acyclic MDPs with arbitrary
integer weights.

In an acyclic MDP, we can add intermediate states on transitions such that all paths
have the same length `. If we additionally add transitions form goal and fail back to the
initial state, the maximal weighted long-run frequency is just the maximal partial expectation
divided by `. This allows us to conclude:

I Proposition 16. The threshold problem for weighted long-run frequencies, “Does WLFmax
M ./

ϑ hold?”, in MDPs with non-negative weights is PSPACE-hard.

5 Conclusion

We identified a variety of optimization problems – some of which seemed rather unrelated
on first sight – with a Skolem-hard threshold problem on MDPs. The results show that
an algorithm for the exact solution to these optimization problems would imply a major
breakthrough. For the partial and conditional SSPP, however, approximation algorithms
were provided in [38]. Investigating the possibility to approximate optimal values might lead
to algorithms useful in practice for the other objectives studied here. Further, the problems
have a pseudo-polynomial solution under natural restrictions. The key result, the existence
of a saturation point, has been established in the setting of stochastic multiplayer games
for partial expectations [16]. This raises the question to which extend the saturation point
results for the other problems can be transferred to stochastic multiplayer games.

To the best of our knowledge, the conditional value-at-risk for accumulated weights
has not been addressed before. While we showed Skolem-hardness in the general setting,
the computation of the optimal value is possible in exponential time in the setting of non-
negative weights. Studying lower bounds for the complexity of the threshold problem and
the combination of constraints on the expected accumulated weight before reaching the goal,
the value-at-risk, and the conditional value-at-risk in this setting are left as future work.
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