
SLAPS: Self-Supervision Improves Structure Learning for Graph Neural
Networks

Bahare Fatemi * 1 Layla El Asri 2 Seyed Mehran Kazemi 2

Abstract
Graph neural networks (GNNs) work well when
the graph structure is provided. However, this
structure may not always be available in real-
world applications. One solution to this prob-
lem is to infer a task-specific latent structure and
then apply a GNN to the inferred graph. Un-
fortunately, the space of possible graph struc-
tures grows super-exponentially with the num-
ber of nodes and so the task-specific supervision
may be insufficient for learning both the struc-
ture and the GNN parameters. In this work, we
propose the Simultaneous Learning of Adjacency
and GNN Parameters with Self-supervision, or
SLAPS, a method that provides more supervi-
sion for inferring a graph structure through self-
supervision. A comprehensive experimental study
demonstrates that SLAPS scales to large graphs
with hundreds of thousands of nodes and outper-
forms several models that have been proposed to
learn a task-specific graph structure on established
benchmarks.

1. Introduction
Graph representation learning has grown rapidly and found
applications in domains where data points define a graph
(Chami et al., 2020; Kazemi et al., 2020). Graph neural
networks (GNNs) (Scarselli et al., 2008) have been a key
component to the success of the research in this area. Fol-
lowing the success of graph convolutional networks (GCNs)
(Kipf & Welling, 2017) on semi-supervised node classi-
fication, several other GNN variants have been proposed
for different prediction tasks on graphs (Hamilton et al.,
2017; Veličković et al., 2018; Gilmer et al., 2017; Battaglia
et al., 2018) and the power of these models has been studied
theoretically (Xu et al., 2019; Sato, 2020).

The performance of GNNs highly depends on the quality of

*This work was done during an internship at Borealis AI.
1University of British Columbia 2Borealis AI. Correspondence
to: Bahare Fatemi <bfatemi@cs.ubc.ca>.

Pre-print. Copyright 2021 by the author(s).

the input graph structure and deteriorates when the graph
structure is noisy (see Zügner et al., 2018; Dai et al., 2018;
Fox & Rajamanickam, 2019). The need for a clean graph
structure impedes the applicability of GNNs to domains
where one has access to a set of nodes and their features
but not to an underlying graph structure, or only has access
to a noisy structure. Examples of such domains include
brain signal classification (Jang et al., 2019), computer-
aided diagnosis (Cosmo et al., 2020), analysis of computer
programs (Johnson et al., 2020), and particle reconstruction
(Qasim et al., 2019).

In this paper, we develop a model that learns the GNN pa-
rameters and an adjacency matrix simultaneously. Our goal
is to learn a structure that maximizes the GNN performance
on the downstream task. This is different from the works
that aim at discovering the node relations or dependencies,
e.g., in probabilistic graphical models. Since the number
of possible graph structures grows super-exponentially with
the number of nodes (Stanley, 1973) and obtaining node
labels is typically costly, the number of available labels may
not be enough for learning both the GNN parameters and
an adjacency matrix–especially for semi-supervised node
classification. Our main contribution is to supplement the
classification task with a well-motivated self-supervised task
that helps learn a high-quality adjacency matrix. The self-
supervised task is generic and can be combined with several
existing approaches. It works by masking some input fea-
tures (or adding noise to them) and training a separate GNN
aiming at updating the adjacency matrix in such a way that
it can recover the masked (or noisy) features.

We experiment with several datasets. For datasets with a
graph structure, we only feed the node features to our model.
The model operates on the node features and an adjacency
that is learned simultaneously from data. We compare our
model with different classes of methods: some which do not
use the graph structure for predicting labels, some which
use a fixed k-Nearest Neighbors (kNN) graph built based
on a chosen similarity metric, and some which initialize
the graph with kNN but then revise it throughout the train-
ing. We show that our model consistently outperforms these
methods. We also show that the self-supervised task is key
to the high performance of our model. As an additional con-
tribution, we provide an implementation for simultaneous

ar
X

iv
:2

10
2.

05
03

4v
1

 [
cs

.L
G

]
 9

 F
eb

 2
02

1

SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks

structure and parameter learning that scales to graphs with
hundreds of thousands of nodes.

2. Related Work
Existing methods that relate to this work can be grouped
into the following categories.

Similarity Graph: One approach for inferring a graph
structure is to select a similarity metric and set the edge
weight between two nodes to be their similarity (Roweis
& Saul, 2000; Tenenbaum et al., 2000; Belkin et al., 2006).
To obtain a sparse structure, one may create a kNN simi-
larity graph, only connect pairs of nodes whose similarity
surpasses some predefined threshold, or do sampling. As an
example, Gidaris & Komodakis (2019) create a (fixed) kNN
graph using the cosine similarity of the node features. Wang
et al. (2019b) extend this idea by creating a fresh graph in
each layer of the GNN based on the node embedding similar-
ities in that layer as opposed to fixing a graph solely based
on the initial features. Instead of choosing a single similarity
metric, Halcrow et al. (2020) fuse several (potentially weak)
measures of similarity. The quality of the predictions of
these methods depends heavily on the choice of the similar-
ity metric(s). Moreover, designing an appropriate similarity
metric may not always be straightforward.

Fully-connected Graph: Another approach is to start with
a fully-connected graph and assign edges weights using
the available meta-data or employ GNN variants such as
graph attention networks (Veličković et al., 2018; Zhang
et al., 2018) which provide weights for each edge via an
attention mechanism. This approach has been used in com-
puter vision (e.g., Suhail & Sigal, 2019), natural language
processing (e.g., Zhu et al., 2019), and few-shot learning
(e.g., Garcia & Bruna, 2017). The complexity of this ap-
proach grows rapidly making it applicable only to small-
sized graphs. Zhang et al. (2020) propose to define local
neighborhoods for each node and only assume that these
local neighborhoods are fully connected. Their approach,
however, relies on an initial graph structure to define the
local neighborhoods.

Learnable Graph: Instead of a similarity graph based on
the initial features, one may use a graph generator with learn-
able parameters. Li et al. (2018b) create a fully-connected
graph based on a bilinear similarity function with learnable
parameters. Franceschi et al. (2019) sample graph struc-
tures from a learnable fully-connected structure and employ
a bi-level optimization setup for simultaneously learning the
GNN parameters and the structure. Yang et al. (2019) update
the input adjacency matrix based on the inductive bias that
nodes belonging to the same class should be connected to
each other and nodes belonging to different classes should
be disconnected. Chen et al. (2020) propose an iterative

approach that iterates over projecting the nodes to a latent
space and constructing an adjacency matrix from the latent
representations multiple times. A common approach in this
category is to learn a projection of the nodes to a latent space
where node similarities correspond to edge weights. Wu
et al. (2018) project the nodes to a latent space by learning
weights for each of the input features. Cosmo et al. (2020)
and Qasim et al. (2019) use a multi-layer perceptron for
projection. Yu et al. (2020) use a GNN for projection which
uses the initial node features as well as an initial graph struc-
ture, aiming at providing a revised graph structure to the
task-specific GNN. In our experiments, we compare with
several approaches from this category.

Leveraging Domain Knowledge: In some applications,
one may leverage domain knowledge to guide the model to-
ward learning specific structures. For example, Johnson et al.
(2020) leverage abstract syntax trees and regular languages
in learning graph structures of Python programs that aid rea-
soning for downstream tasks. Jin et al. (2020b) train GNNs
that are robust to adversarial attacks by learning a cleaned
version of the input structure. They use the domain knowl-
edge that clean adjacency matrices are often sparse and
low-rank and exhibit feature smoothness along connected
nodes. In our paper, we experiment with general-purpose
datasets without access to domain knowledge.

Proposed Method: Our model falls within the learnable
graph category. We supplement the training with a self-
supervised objective to increase the amount of supervision
in learning a structure. Our self-supervised task is inspired
by, and similar to, the pre-training strategies for GNNs
(Hu et al., 2020b;c; Jin et al., 2020a; You et al., 2020; Zhu
et al., 2020) (specifically, we adopt the multi-task learning
framework of You et al. (2020)), but it differs from this
line of work as we use self-supervision for learning a graph
structure whereas the above methods use it to learn better
(and, in some cases, transferable) GNN parameters.

3. Background and Notation
We use lowercase letters to denote scalars, bold lowercase
letters to denote vectors and bold uppercase letters to denote
matrices. I represents an identity matrix. For a vector
v, we represent its ith element as vi. For a matrix M ,
we represent the ith row as Mi and the element at the ith

row and jth column as Mij . For an attributed graph, we
use n, m and f to represent the number of nodes, edges,
and features respectively, and denote the graph as G =
{V,A,X} where V = {v1, . . . , vn} is a set of nodes,A ∈
Rn×n is an adjacency matrix withAij indicating the weight
of the edge from vi to vj (Aij = 0 implies no edge), and
X ∈ Rn×f is a matrix whose rows correspond to node
features or attributes.

SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks

Graph convolutional networks (GCNs) are a powerful vari-
ant of GNNs. For a graph G = {V,A,X} with a degree
matrixD, layer l of the GCN architecture can be defined as
H(l) = σ(ÂH(l−1)W (l)) where Â represents a normal-
ized adjacency matrix, H(l−1) ∈ Rn×dl−1 represents the
node representations in layer l-1 withH(0) =X ,W (l) ∈
Rdl−1×dl is a weight matrix, σ is an activation function such
as ReLU (Nair & Hinton, 2010), andH(l) ∈ Rn×dl is the
updated node embeddings. For undirected graphs where
the adjacency is symmetric, Â = D−

1
2 (A+ I)D−

1
2 cor-

responds to a row-and-column normalized adjacency with
self-loops, and for directed graphs where the adjacency is
not necessarily symmetric, Â =D−1(A+ I) corresponds
to a row normalized adjacency matrix with self-loops. Here,
D is a (diagonal) degree matrix for (A + I) defined as
Dii = 1 +

∑
jAij .

4. Proposed Method: SLAPS
SLAPS consists of four components: 1) generator, 2) ad-
jacency processor, 3) classifier, and 4) self-supervision.
Figure 1 illustrates these components. We describe each
component in more detail and motivate the need for self-
supervision.

4.1. Generator

The generator is a function G : Rn×f → Rn×n with pa-
rameters θG which takes the node features X ∈ Rn×f as
input and produces a (perhaps sparse, non-normalized, and
non-symmetric) matrix Ã ∈ Rn×n as output. We consider
the following two generators and leave experimenting with
more sophisticated graph generators (e.g., (You et al., 2018;
Liu et al., 2019)) and models with tractable adjacency com-
putations (e.g., (Choromanski et al., 2020)) as future work.

Full Parameterization (FP): For this generator, θG ∈
Rn×n and the generator function is defined as Ã =
GFP (X; θG) = θG. That is, the generator ignores the input
node features and directly optimizes the adjacency matrix.
This generator is similar to the one proposed by Franceschi
et al. (2019) except that they treat each element of Ã as
the parameter of a Bernoulli distribution and sample graph
structures from these Bernoulli distributions. The advan-
tages of this generator include its simplicity and flexibility
for learning any adjacency matrix. Its disadvantages include
adding n2 parameters to the model, which limits scalability
and makes the model susceptible to overfitting.

MLP-kNN: Here, θG corresponds to the weights of a
multi-layer perceptron (MLP) and Ã = GMLP(X; θG) =
kNN(MLP(X)), where MLP : Rn×f → Rn×f ′ is an MLP
that produces a matrix with updated node representations
X ′; kNN : Rn×f ′ → Rn×n produces a sparse matrix. Let
M ∈ Rn×n with Mij = 1 if vj is among the top k sim-

ilar nodes to vi and 0 otherwise, and let S ∈ Rn×n with
Sij = Sim(X ′i,X

′
j) for some differentiable similarity func-

tion Sim (we used cosine). Then Ã = kNN(X ′) =M �S
where � represents the Hadamard (element-wise) product.
With this formulation, in the forward phase of the network,
one can first compute the matrixM using an off-the-shelf
k-nearest neighbors algorithm and then compute the sim-
ilarities in S only for pairs of nodes where Mij = 1. In
our experiments, we compute exact k-nearest neighbors;
one can approximate it using locality-sensitive hashing ap-
proaches for larger graphs (see, e.g., (Halcrow et al., 2020;
Kitaev et al., 2020)). In the backward phase of our model,
we compute the gradients only with respect to those ele-
ments in S whose corresponding value inM is 1 (i.e. those
elements Sij such thatMij = 1); the gradient with respect
to the other elements is 0. SinceS is computed based onX ′,
the gradients flow to the elements inX ′ (and consequently
to the weights of the MLP) through S.

Smart Initialization: In our experiments, we found the
initialization of the generator parameters (i.e. θG) to be
important. LetAkNN represent an adjacency matrix created
by applying a kNN function on the initial node features.
One smart initialization for θG is to initialize them in a
way that the generator generates AkNN before training
starts (i.e. Ã = AkNN before training starts). Such an
initialization can be trivially done for the FP generator by
initializing θG toAkNN . For MLP-kNN, we consider two
variants. In one, hereafter referred to simply as MLP, we
keep the input dimension the same throughout the layers.
In the other, hereafter referred to as MLP-D, we consider
MLPs with diagonal weight matrices (i.e., except the main
diagonal, all other parameters in the weight matrices are
zero). For both variants, we initialize the weight matrices
in θG with the identity matrix to ensure that the output of
the MLP is initially the same as its input and the kNN graph
created on these outputs is equivalent to AkNN . MLP-D
can be thought of as assigning different weights to different
features and then computing node similarities. Note that,
alternatively, one may use other MLP variants but pre-train
the weights to outputAkNN before the main training starts.

4.2. Adjacency Processor

The output Ã of the generator may have both positive and
negative values, may be non-symmetric and non-normalized.
To ensure all values are positive and make the adjacency
symmetric and normalized, we let:

A =D−
1
2

(P(Ã) + P(Ã)T

2

)
D−

1
2 (1)

Here P is a function with a non-negative range applied
element-wise on its input. In our experiments, when using
an MLP generator, we let P be the ReLU function applied
elements-wise on Ã. When using the fully-parameterized

SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks

Node features

G
e

n
erato

r

1.0 -0.2 0.4

0 1.0 ... 0.5

...

0 0.5 1.0

G
N

N
C

Non-symmetric, non-normalized
adjacency

Symmetric, normalized
adjacency

Denoised features

A
d

jacen
cy

P
ro

cesso
r

0.3 0 0.1

0 0.2 ... 0.2

...

0.1 0.2 0.3

G
N

N
D

A
E

Noisy Features

A
d

d
 N

o
ise

Figure 1. Overview of SLAPS. At the top, a generator receives the node features and produces a non-symmetric, non-normalized adjacency
having (possibly) both positive and negative values (Section 4.1). The adjacency processor makes the values positive, symmetrizes and
normalizes the adjacency (Section 4.2). The resulting adjacency and the node features go into GNNC which predicts the node classes
(Section 4.3). At the bottom, some noise is added to the node features. The resulting noisy features and the generated adjacency go into
GNNDAE which then denoises the features (Section 4.5).

(FP) generator, applying ReLU results in a gradient flow
problem as any edge whose corresponding value in Ã be-
comes less than or equal to zero stops receiving gradient
updates. For this reason, for FP we apply the ELU (Clevert
et al., 2015) function to the elements of Ã and then add
a value of 1. The sub-expression P(Ã)+P(Ã)T

2 makes the
resulting matrix P(Ã) symmetric. To understand the rea-
son for taking the mean of P(Ã) and P(Ã)T , assume Ã
is generated by GMLP. If vj is among the k most similar
nodes to vi and vice versa, then the strength of the connec-
tion between vi and vj will remain the same. However, if,
say, vj is among the k most similar nodes to vi but vi is
not among the top k for vj , then taking the average of the
similarities reduces the strength of the connection between
vi and vj . Finally, once we have a symmetric adjacency
with non-negative values, we compute the degree matrixD
for P(Ã)+P(Ã)T

2 and normalize P(Ã)+P(Ã)T

2 by multiplying
it left and right withD−

1
2 .

4.3. Classifier

The classifier is a function GNNC : Rn×f × Rn×n →
Rn×|C| with parameters θGNNC

. It takes the node fea-
tures X and the generated adjacency A as input and pro-
vides for each node the logits for each class. C corre-
sponds to the classes and |C| corresponds to the num-
ber of classes. We use a two-layer GCN for which
θGNNC

= {W (1),W (2)} and define our classifier as
GNNC(A,X; θGNNC

) = AReLU(AXW (1))W (2) but
other GNN variants can be used as well (recall that A is
normalized). The training loss LC for the classification task
is computed by taking the softmax of the logits to produce a
probability distribution for each node and then computing
the cross-entropy loss.

4.4. Why not just the first three components?

One may create a model using only the three components
described so far corresponding to the top part of Figure 1.
As we will explain here, however, this model may suffer
severely from supervision starvation. The same problem
also applies to many existing approaches for the problem
studied in this work, as they can be formulated as a combi-
nation of variants of these three components.

Consider a scenario in training the model described above
where two unlabeled nodes vi and vj are not directly con-
nected to any labeled nodes according to the generated struc-
ture. Then, since a two-layer GCN makes predictions for the
nodes based on their two-hop neighbors, the classification
loss (i.e. LC) is not affected by the edge between vi and vj
and this edge receives no supervision1. Figure 2 provides
an example of such a scenario. Let us call the edges that do
not affect the loss function LC (and consequently do not re-
ceive supervision) as no-supervision edges. These edges are
clearly problematic because although they may not affect the
training loss, the predictions at the test time depend on these
edges and if their values are learned without enough super-
vision, the model may make poor predictions at the test time.
A natural question with regard to the extent of the problem
caused by such edges is the proportion of no-supervision
edges. The following theorem formally establishes the ex-
tent of the problem for Erdős-Rényi graphs (Erdős & Rényi,
1959). An Erdős-Rényi graph with n nodes and m edges is
a graph chosen uniformly at random from the collection of
all graphs which have n nodes and m edges.

1While this problem may be alleviated to some extent by in-
creasing the number of layers of the GCN, deeper GCNs typically
provide inferior results due to issues such as oversmoothing (see,
e.g., Li et al., 2018a; Oono & Suzuki, 2020).

SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks

Unlabelled

Ed
ge

 w
it

h
 n

o

su
p

er
vi

si
o

n

Unlabelled Labelled

LabelledUnlabelled

Unlabelled

Figure 2. Using a two-layer GCN, the predictions made for the
labeled nodes are not affected by the dashed edge.

Theorem 1 Let G(n,m) be an Erdős-Rényi graph with n
nodes and m edges. Assume we have labels for q nodes
selected uniformly at random. The probability of an edge
being a no-supervision edge with a two-layer GCN is equal
to (1− q

n)(1−
q

n−1)
∏2q

i=1(1−
m−1
(n2)−i

).

We defer the proof to Appendix A. To put the numbers from
the theorem in perspective, let us consider three established
benchmarks for semi-supervised node classification namely
Cora, Citeseer, and Pubmed (the statistics for these datasets
can be found in Appendix B). For an Erdős-Rényi graph
with similar statistics as the Cora dataset (n = 2708, m =
5429, q = 140), the probability of an edge being a no-
supervision edge is 59.4% according to the above theorem.
For Citeseer, and Pubmed, this number is 75.7% and 96.7%
respectively.

While Theorem 1 is stated for Erdős-Rényi graphs where
the labeled nodes have been selected uniformly at random,
in real-world applications the problem may be even more
severe as, e.g., the labels may not be distributed evenly in
different parts of the graph.

4.5. Self-Supervision

To increase the amount of supervision for learning the struc-
ture and remedy the problem pointed out in Section 4.4,
we propose a self-supervised approach based on denois-
ing autoencoders (Vincent et al., 2008). Let GNNDAE :
Rn×f×Rn×n → Rn×f be a GNN with parameters θGNNDAE

that takes node features and a normalized adjacency pro-
duced by a generator as input and provides updated node fea-
tures with the same dimension as output. We train GNNDAE

such that it receives a noisy version X̃ of the featuresX as
input and produces the denoised featuresX as output. Let
idx represent the indices corresponding to the elements of
X to which we have added noise, and Xidx represent the
values at these indices. During training, we minimize:

LDAE = L(Xidx,GNNDAE(X̃,A; θGNNDAE
)idx) (2)

where A is the generated adjacency matrix and L is a loss
function. For datasets where the features consist of binary
vectors, idx consists of r percent of the indices ofX whose

values are 1 and rη percent of the indices whose values are
0, both selected uniformly at random in each epoch. Both
r and η (corresponding to the negative ratio) are hyperpa-
rameters. In this case, we add noise by setting the 1s in the
selected mask to 0s and L is the binary cross-entropy loss.
For datasets where the input features are continuous num-
bers, idx consists of r percent of the indices ofX selected
uniformly at random in each epoch. We add noise by either
replacing the values at idx with 0 or by adding independent
Gaussian noises to each of the features. In this case, L is the
mean-squared error loss.

This self-supervision uses the intuition that the node features
are correlated with the node labels and helps by incorporat-
ing the inductive bias that a graph structure that is appropri-
ate for predicting the node features is also appropriate for
predicting the node labels. Although some edges may not
receive supervision from the main task (i.e. from GCNC –
see Section 4.4), the supervision provided by this task (i.e.
from GCNDAE) helps learn an appropriate weight for them.

4.6. SLAPS

Our final model is trained to minimize L = LC + λLDAE

where LC is the classification loss, LDAE is the denoising
autoencoder loss (see Equation 2), and λ is a hyperparameter
controlling the relative importance of the two losses.

To verify the merit of the GNNDAE for learning an adjacency
matrix in isolation, we also consider a variant of SLAPS
named SLAPS2s that is trained in two stages. We first
train the GNNDAE model by minimizing LDAE described
in in Equation 2. Recall that LDAE depends on the parame-
ters θG of the generator and the parameters θGNNDAE

of the
denoising autoencoder. After every t epochs of training,
we fix the adjacency matrix, train a classifier with the fixed
adjacency matrix, and measure classification accuracy on
the validation set. We select the epoch that produces the
adjacency providing the best validation accuracy for the
classifier. Note that in SLAPS2s, the adjacency matrix is
trained only based on GNNDAE.

5. Experiments
Baselines: We compare our proposal to several baselines
with different properties. The first baseline is a multi-layer
perceptron (MLP) which does not take the graph structure
into account. We also compare against MLP-GAM* (Stretcu
et al., 2019) which learns a fully-connected graph structure
and uses this structure to supplement the loss function of the
MLP toward predicting similar labels for neighboring nodes.
Our third baseline is label propagation (LP) (Zhu & Ghahra-
mani, 2002), a well-known model for semi-supervised learn-
ing. Similar to Franceschi et al. (2019), we also consider a
baseline named kNN-GCN where we create a kNN graph

SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks

Table 1. Results of SLAPS and the baselines on established node classification benchmarks. † indicates results have been taken from
Franceschi et al. (2019). ‡ indicates results have been taken from Stretcu et al. (2019). Bold and underlined values indicate best and
second-best mean performances respectively. OOM indicates out of memory.

Model Generator Cora Citeseer Cora390 Citeseer370 Pubmed ogbn-arxiv
MLP 56.1± 1.6† 56.7± 1.7† 65.8± 0.4 67.1± 0.5 71.4± 0.0 54.7± 0.1

MLP-GAM* 70.7‡ 70.3‡ − − 71.9‡ −
LP 37.6± 0.0 23.2± 0.0 36.2± 0.0 29.1± 0.0 41.3± 0.0 OOM

kNN-GCN 66.5± 0.4† 68.3± 1.3† 72.5± 0.5 71.8± 0.8 70.4± 0.4 49.1± 0.3
LDS − − 71.5± 0.8† 71.5± 1.1† OOM OOM
GRCN 67.4± 0.3 67.3± 0.8 71.3± 0.9 70.9± 0.7 67.3± 0.3 OOM
DGCNN 56.5± 1.2 55.1± 1.4 67.3± 0.7 66.6± 0.8 70.1± 1.3 OOM
IDGL 70.9± 0.6 68.2± 0.6 73.4± 0.5 72.7± 0.4 72.3± 0.4 OOM
SLAPS FP 72.4± 0.4 70.7± 0.4 76.6± 0.4 73.1± 0.6 OOM OOM
SLAPS MLP 72.8± 0.8 70.5± 1.1 75.3± 1.0 73.0± 0.9 74.4± 0.6 56.6± 0.1
SLAPS MLP-D 73.4± 0.3 72.6± 0.6 75.1± 0.5 73.9± 0.4 73.1± 0.7 52.9± 0.1

based on the node features and feed this graph to a GCN.
The graph structure remains fixed in this approach. We
also compare with baselines that learn the graph structure
from data including LDS (Franceschi et al., 2019), GRCN
(Yu et al., 2020), DGCNN (Wang et al., 2019b), and IDGL
(Chen et al., 2020). We feed a kNN graph to the models
requiring an initial graph structure.

Datasets: We use three established benchmarks in the GNN
literature namely Cora, Citeseer, and Pubmed (Sen et al.,
2008) as well as a newly released dataset named ogbn-
arxiv (Hu et al., 2020a) that is orders of magnitude larger
than the other three datasets and is more challenging due
to the more realistic split of the data into train, validation,
and test sets. For all the datasets, we only feed the node
features to the models and not the graph structure. Fol-
lowing Franceschi et al. (2019), we also experiment with
several classification (non-graph) datasets available in scikit-
learn (Pedregosa et al., 2011) including Wine, Cancer, Dig-
its, and 20News. Dataset statistics can be found in Ap-
pendix B. For Cora and Citeseer, the LDS model uses the
train data for learning the parameters of their classification
GCN, half of the validation for learning the parameters of
the adjacency matrix (in their bi-level optimization setup,
these are considered as hyperparameters), and the other half
of the validation set for early stopping and tuning the other
hyperparameters. Besides experimenting with the original
setups of these two datasets, we also consider a setup that
is closer to that of LDS: we use the train set and half of the
validation set for training and the other half of validation
for early stopping and hyperparameter tuning. We name
the modified versions Cora390 and Citeseer370 respectively
where the number proceeding the dataset name corresponds
to the number of labels used for training. We also follow a
similar procedure for the scikit-learn datasets.

Implementation: We defer the implementation details and
the best hyperparameter settings for our model on all the
datasets to Appendix C. Code and data is available at

https://github.com/BorealisAI/SLAPS-GNN.

5.1. Comparative results

The results of SLAPS and the baselines on the node classifi-
cation benchmarks are in Table 1. Considering the baselines
first, we see that learning a fully-connected graph in MLP-
GAM* makes it outperform MLP. kNN-GCN significantly
outperforms MLP on Cora and Citeseer but underperforms
on Pubmed and ogbn-arxiv. This shows the importance of
the similarity metric and the graph structure that is fed into
GCN; a low-quality structure can harm model performance.
LDS outperforms MLP but the fully parameterized adja-
cency matrix of LDS results in memory issues for Pubmed
and ogbn-arxiv. As for GRCN, it was shown in the original
paper that GRCN can revise a good initial adjacency matrix
and provide a substantial boost in performance. However,
as evidenced by the results, if the initial graph structure is
somewhat poor, GRCN’s performance becomes on-par with
kNN-GCN. IDGL is the best performing baseline.

SLAPS consistently outperforms the baselines on all
datasets, in some cases by large margins. Among the gener-
ators, the winner is dataset-dependent with MLP-D mostly
outperforming MLP on datasets with many features and
MLP outperforming on datasets with small numbers of fea-
tures. Using the software that was publicly released by the
authors, the baselines that learn a graph structure fail on
ogbn-arxiv; our implementation, on the other hand, scales
to such large graphs.

Table 2 reports the results for the scikit-learn datasets and
compares with LDS and IDGL. On three out of four datasets,
SLAPS outperforms the other two baselines. Among the
datasets on which we can train SLAPS with the FP generator,
20news has the largest number of nodes (9,607 nodes). On
this dataset, we observed that an FP generator suffers from
overfitting and produces weaker results compared to other
generators due to its large number of parameters.

https://github.com/BorealisAI/SLAPS-GNN

SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks

Table 2. Results on classification datasets. † indicates results have been taken from Franceschi et al. (2019). Bold and underlined values
indicate best and second-best mean performances respectively.

Model Generator Wine Cancer Digits 20news
LDS 97.3± 0.4† 94.4± 1.9† 92.5± 0.7† 46.4± 1.6†

IDGL 97.0± 0.7 94.2± 2.3 92.5± 1.3 48.5± 0.6
SLAPS FP 96.6± 0.4 94.6± 0.3 94.4± 0.7 44.4± 0.8
SLAPS MLP 96.3± 1.0 96.0± 0.8 92.4± 0.6 50.4± 0.7
SLAPS MLP-D 96.5± 0.8 96.6± 0.2 93.2± 0.6 49.8± 0.9

5.2. The Effectiveness of Self-supervision

SLAPS2s: To provide more insight into the value pro-
vided by the self-supervision task on the learned adjacency,
we conduct experiments with SLAPS2s. Recall from Sec-
tion 4.6 that in SLAPS2s, the adjacency is learned only
based on the self-supervision task and the node labels are
only used for early stopping, hyperparameter tuning, and
training GCNC. Figure 3(a) shows the performance of
SLAPS and SLAPS2s on Cora and compares them with
kNN-GCN. Although SLAPS2s does not use the node labels
in learning an adjacency matrix, it outperforms kNN-GCN
(8.4% improvement when using an FP generator). With
an FP generator, SLAPS2s even achieves competitive per-
formance with SLAPS; this is mainly because FP does not
leverage the supervision provided by GCNC toward learn-
ing generalizable patterns that can be used for nodes other
than those in the training set. These results corroborate the
effectiveness of the self-supervision task for learning an ad-
jacency matrix. Besides, the results show that learning the
adjacency using both self-supervision and the task-specific
node labels results in higher predictive accuracy.

The value of λ: Figure 3(b) shows the performance of
SLAPS2 on Cora and Citeseer with different values of λ.
When λ = 0, corresponding to removing self-supervision,
the model performance is somewhat poor. As soon as λ
becomes positive, both models see a large boost in perfor-
mance showing that self-supervision is crucial to the high
performance of SLAPS. Increasing λ further provides larger
boosts until it becomes so large that the self-supervision loss
dominates the classification loss and the performance dete-
riorates. Note that with λ = 0, SLAPS with the MLP gen-
erator becomes a variant of the model proposed by Cosmo
et al. (2020), but with a different similarity function.

The effect of the training set size: According to Theo-
rem 1, a smaller q (corresponding to the training set size)
results in more no-supervision edges in each epoch. To
explore the effect of self-supervision as a function of q, we
compared SLAPS with and without supervision on Cora
and Citeseer while reducing the number of labeled nodes
per class from 20 to 5. We used the FP generator for this

2The generator used in this experiment is MLP; other genera-
tors produced similar results.

experiment. With 5 labeled nodes per class, adding self-
supervision provides 16.7% and 22.0% improvements on
Cora and Citeseer respectively, which is substantially higher
than the corresponding numbers when using 20 labeled
nodes per class (10.0% and 7.0% respectively). This pro-
vides empirical evidence for Theorem 1.

5.3. Analyses of kNN and Symmetrization

Importance of k in kNN: Figure 3(c) shows the perfor-
mance of SLAPS on Cora for three graph generators as a
function of k in kNN. For all three cases, the value of k plays
a major role in model performance. The FP generator is the
least sensitive because in FP, k only affects the initialization
of the adjacency matrix but then the model can change the
number of neighbors of each node. For MLP and MLP-D,
however, the number of neighbors of each node remains
close to k (but not necessarily equal as the adjacency proces-
sor can add or remove some edges) and the two generators
become more sensitive to k. For larger values of k, the extra
flexibility of the MLP generator enables removing some of
the unwanted edges through the function P or reducing the
weights of the unwanted edges resulting in MLP being less
sensitive to large values of k compared to MLP-D.

Symmetrization: To symmetrize the adjacency, in Equa-
tion 1 we took the average of P(Ã) and P(Ã)T . Here we
also consider two other choices: 1) max(P(Ã), P(Ã)T),
and 2) not symmetrizing the adjacency (i.e. using P(Ã)).
Figure 3(d) compares these three choices on Cora and Cite-
seer with an MLP generator (other generators produced sim-
ilar results). On both datasets, symmetrizing the adjacency
provides a performance boost. Compared to mean sym-
metrization, max symmetrization performs slightly worse.
This may be because max symmetrization does not distin-
guish between the case where both vi and vj are among the
k most similar nodes of each other and the case where only
one of them is among the k most similar nodes of the other.

5.4. Experiments with Noisy Graphs

So far, we have shown that self-supervision helps learn a
better graph structure for GNNs. Here, we verify whether
self-supervision is also helpful when a noisy structure is pro-
vided as input. Toward this goal, we experiment with Cora

SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks

FP MLP MLP-D64

66

68

70

72

74

76
Ac

cu
ra

cy

72.4 72.8 73.4
72.1

69.3

70.9

kNN-GCN
SLAPS
SLAPS-2s

(a)

0.0 0.1 1.0 10.0 100.0
66

67

68

69

70

71

72

73

Ac
cu

ra
cy

Cora
Citeseer

(b)

100 101 102

k

57.5

60.0

62.5

65.0

67.5

70.0

72.5

Ac
cu

ra
cy

FP
MLP
MLP-D

(c)

Cora Citeseer64

66

68

70

72

74

Ac
cu

ra
cy

72.8

70.5

72.5

69.0

70.2

67.6

Mean
Max
None

(d)

Cora
= 25%

Cora
= 50%

Citeseer
= 25%

Citeseer
= 50%

45

50

55

60

65

70

75

Ac
cu

ra
cy

SLAPS
SLAPS (=0)
GCN

(e)

[0.
0,

0.0
]

(0.
0,

0.0
1)

[0.
01

, 0
.03

)

[0.
03

, 0
.05

)

[0.
05

, 0
.08

)

[0.
08

, 0
.1)

[0.
1,i

nf)

Edge weight interval

0.5

1.0

1.5

2.0

2.5

Od
ds

Cora
Citeseer

(f)

Figure 3. The performance of SLAPS (a) compared to SLAPS2s on Cora with different generators, (b) with MLP graph generator on
Cora and Citeseer as a function of λ, (c) with different graph generators on Cora as a function of k in kNN, and (d) on Cora and Citeseer
with different adjacency symmetrizations, (e) compared to SLAPS with λ = 0 and GCN when noisy graphs are provided as input (ρ
indicates the percentage of perturbations). (f) The odds of two nodes in the test set sharing the same label as a function of the edge weights
learned by SLAPS.

and Citeseer and provide noisy versions of the input graph as
input. We perturb the graph structure by replacing ρ percent
of the edges in the original structure (selected uniformly at
random) with random edges. Figure 3(e) shows the perfor-
mance of SLAPS with and wihtout self-supervision (λ = 0
corresponds to no supervision). We also report the results
of vanilla GCN on these perturbed graphs for comparison.
It can be viewed that self-supervision consistently provides
a boost in performance especially for higher values of ρ.

5.5. Analyses of the Learned Adjacency

Noisy graphs: Following the experiment in Section 5.4, we
compared the learned and original structures by measuring
the number of random edges added during perturbation but
removed by the model and the number of edges removed
during the perturbation but recovered by the model. For
Cora, SLAPS removed 76.2% and 70.4% of the noisy edges
and recovered 58.3% and 44.5% of the removed edges for
ρ = 25% and ρ = 50% respectively while SLAPS with
λ = 0 only removed 62.8% and 54.9% of the noisy edges
and recovered 51.4% and 35.8% of the removed edges.
This provides evidence on self-supervision being helpful for
structure learning.

Cluster assumption: Many graph-based semi-supervised
classification models are based on the cluster assumption

according to which nearby nodes are more likely to share
the same label (Chapelle & Zien, 2005). To verify the qual-
ity of the learned adjacency, for every pair of nodes in the
test set, we compute the odds of the two nodes sharing the
same label as a function of the normalized weight of the
edge connecting them. Figure 3(f) represents the odds for
different weight intervals (recall thatA is row and column
normalized). For both Cora and Citeseer, nodes connected
with higher edge weights are more likely to share the same
label compared to nodes with lower or zero edge weights.
Specifically, when Aij ≥ 0.1, vi and vj are almost 2.5
and 2.0 times more likely to share the same label on Cora
and Citeseer respectively. Note that SLAPS may connect
nodes based on a different criterion than the one used in the
original datasets and so the learned adjacencies in this ex-
periment do not necessarily resemble the original structures.

6. Conclusion
We proposed SLAPS which is a model for learning the pa-
rameters of a graph neural network and the graph structure
of the nodes simultaneously based on self-supervision. We
explored the design space of SLAPS by comparing differ-
ent graph generation and symmetrization approaches. We
showed the effectiveness of our model using a comprehen-
sive set of experiments and analyses.

SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks

References
Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-

Gonzalez, A., Zambaldi, V., Malinowski, M., Tacchetti,
A., Raposo, D., Santoro, A., Faulkner, R., et al. Rela-
tional inductive biases, deep learning, and graph networks.
arXiv preprint arXiv:1806.01261, 2018.

Belkin, M., Niyogi, P., and Sindhwani, V. Manifold reg-
ularization: A geometric framework for learning from
labeled and unlabeled examples. JMLRR, 7(Nov):2399–
2434, 2006.

Chami, I., Abu-El-Haija, S., Perozzi, B., Ré, C., and Mur-
phy, K. Machine learning on graphs: A model and com-
prehensive taxonomy. arXiv preprint arXiv:2005.03675,
2020.

Chapelle, O. and Zien, A. Semi-supervised classification
by low density separation. In AISTATS, volume 2005, pp.
57–64. Citeseer, 2005.

Chen, Y., Wu, L., and Zaki, M. J. Deep iterative and adap-
tive learning for graph neural networks. In The First
International Workshop on Deep Learning on Graphs:
Methodologies and Applications (with AAAI), February
2020. URL https://dlg2019.bitbucket.io/
aaai20.

Choromanski, K., Likhosherstov, V., Dohan, D., Song, X.,
Gane, A., Sarlos, T., Hawkins, P., Davis, J., Mohiuddin,
A., Kaiser, L., et al. Rethinking attention with performers.
arXiv preprint arXiv:2009.14794, 2020.

Clevert, D.-A., Unterthiner, T., and Hochreiter, S. Fast
and accurate deep network learning by exponential linear
units (elus). arXiv preprint arXiv:1511.07289, 2015.

Cosmo, L., Kazi, A., Ahmadi, S.-A., Navab, N., and Bron-
stein, M. Latent patient network learning for automatic
diagnosis. arXiv preprint arXiv:2003.13620, 2020.

Dai, H., Li, H., Tian, T., Huang, X., Wang, L., Zhu, J., and
Song, L. Adversarial attack on graph structured data.
arXiv preprint arXiv:1806.02371, 2018.

Erdős, P. and Rényi, A. On random graphs. Publicationes
Mathematicae Debrecen, 6:290–297, 1959.

Fox, J. and Rajamanickam, S. How robust are graph
neural networks to structural noise? arXiv preprint
arXiv:1912.10206, 2019.

Franceschi, L., Niepert, M., Pontil, M., and He, X. Learning
discrete structures for graph neural networks. In ICML,
2019.

Garcia, V. and Bruna, J. Few-shot learning with graph neural
networks. arXiv preprint arXiv:1711.04043, 2017.

Gidaris, S. and Komodakis, N. Generating classification
weights with gnn denoising autoencoders for few-shot
learning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 21–30,
2019.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In ICML, pp. 1263–1272, 2017.

Halcrow, J., Mosoi, A., Ruth, S., and Perozzi, B. Grale:
Designing networks for graph learning. In Proceedings
of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 2523–2532,
2020.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In NeurIPS, 2017.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B.,
Catasta, M., and Leskovec, J. Open graph benchmark:
Datasets for machine learning on graphs. arXiv preprint
arXiv:2005.00687, 2020a.

Hu, W., Liu, B., Gomes, J., Zitnik, M., Liang, P., Pande, V.,
and Leskovec, J. Strategies for pre-training graph neural
networks. In ICLR, 2020b.

Hu, Z., Dong, Y., Wang, K., Chang, K.-W., and Sun, Y. Gpt-
gnn: Generative pre-training of graph neural networks.
In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp.
1857–1867, 2020c.

Jang, S., Moon, S.-E., and Lee, J.-S. Brain signal classifi-
cation via learning connectivity structure. arXiv preprint
arXiv:1905.11678, 2019.

Jin, W., Derr, T., Liu, H., Wang, Y., Wang, S., Liu,
Z., and Tang, J. Self-supervised learning on graphs:
Deep insights and new direction. arXiv preprint
arXiv:2006.10141, 2020a.

Jin, W., Ma, Y., Liu, X., Tang, X., Wang, S., and Tang, J.
Graph structure learning for robust graph neural networks.
arXiv preprint arXiv:2005.10203, 2020b.

Johnson, D. D., Larochelle, H., and Tarlow, D. Learning
graph structure with a finite-state automaton layer. arXiv
preprint arXiv:2007.04929, 2020.

Kazemi, S. M., Goel, R., Jain, K., Kobyzev, I., Sethi, A.,
Forsyth, P., and Poupart, P. Representation learning for
dynamic graphs: A survey. JMLR, 2020.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

https://dlg2019.bitbucket.io/aaai20
https://dlg2019.bitbucket.io/aaai20

SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In ICLR, 2017.

Kitaev, N., Kaiser, Ł., and Levskaya, A. Reformer: The
efficient transformer. arXiv preprint arXiv:2001.04451,
2020.

Li, Q., Han, Z., and Wu, X.-M. Deeper insights into graph
convolutional networks for semi-supervised learning. In
AAAI, 2018a.

Li, R., Wang, S., Zhu, F., and Huang, J. Adaptive
graph convolutional neural networks. arXiv preprint
arXiv:1801.03226, 2018b.

Liu, J., Kumar, A., Ba, J., Kiros, J., and Swersky, K. Graph
normalizing flows. In NeurIPS, pp. 13556–13566, 2019.

Nair, V. and Hinton, G. E. Rectified linear units improve
restricted boltzmann machines. In Icml, 2010.

Oono, K. and Suzuki, T. Graph neural networks exponen-
tially lose expressive power for node classification. In
ICLR, 2020.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. In NIPS-W,
2017.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., et al. Scikit-learn: Machine
learning in python. JMLR, 12:2825–2830, 2011.

Qasim, S. R., Kieseler, J., Iiyama, Y., and Pierini, M. Learn-
ing representations of irregular particle-detector geometry
with distance-weighted graph networks. The European
Physical Journal C, 79(7):1–11, 2019.

Roweis, S. T. and Saul, L. K. Nonlinear dimensionality re-
duction by locally linear embedding. science, 290(5500):
2323–2326, 2000.

Sato, R. A survey on the expressive power of graph neural
networks. arXiv preprint arXiv:2003.04078, 2020.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
Transactions on Neural Networks, 20(1):61–80, 2008.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B.,
and Eliassi-Rad, T. Collective classification in network
data. AI magazine, 29(3):93–93, 2008.

Stanley, R. P. Acyclic orientations of graphs. Discrete
Mathematics, 5(2):171–178, 1973.

Stretcu, O., Viswanathan, K., Movshovitz-Attias, D., Pla-
tanios, E., Ravi, S., and Tomkins, A. Graph agreement
models for semi-supervised learning. In NeurIPS, pp.
8713–8723, 2019.

Suhail, M. and Sigal, L. Mixture-kernel graph attention
network for situation recognition. In Proceedings of the
IEEE International Conference on Computer Vision, pp.
10363–10372, 2019.

Tenenbaum, J. B., De Silva, V., and Langford, J. C. A
global geometric framework for nonlinear dimensionality
reduction. science, 290(5500):2319–2323, 2000.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio,
P., and Bengio, Y. Graph attention networks. In ICLR,
2018.

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A.
Extracting and composing robust features with denoising
autoencoders. In ICML, pp. 1096–1103, 2008.

Wang, M., Yu, L., Zheng, D., Gan, Q., Gai, Y., Ye, Z., Li,
M., Zhou, J., Huang, Q., Ma, C., et al. Deep graph library:
Towards efficient and scalable deep learning on graphs.
arXiv preprint arXiv:1909.01315, 2019a.

Wang, Y., Sun, Y., Liu, Z., Sarma, S. E., Bronstein, M. M.,
and Solomon, J. M. Dynamic graph cnn for learning on
point clouds. Acm Transactions On Graphics (tog), 38
(5):1–12, 2019b.

Wu, X., Zhao, L., and Akoglu, L. A quest for structure:
Jointly learning the graph structure and semi-supervised
classification. In CIKM, pp. 87–96, 2018.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? In ICLR, 2019.

Yang, L., Kang, Z., Cao, X., Jin, D., Yang, B., and Guo,
Y. Topology optimization based graph convolutional net-
work. In IJCAI, pp. 4054–4061, 2019.

You, J., Ying, R., Ren, X., Hamilton, W. L., and Leskovec, J.
Graphrnn: Generating realistic graphs with deep auto-
regressive models. arXiv preprint arXiv:1802.08773,
2018.

You, Y., Chen, T., Wang, Z., and Shen, Y. When does self-
supervision help graph convolutional networks? arXiv
preprint arXiv:2006.09136, 2020.

Yu, D., Zhang, R., Jiang, Z., Wu, Y., and Yang, Y. Graph-
revised convolutional network. In ECML PKDD, 2020.

Zhang, J., Shi, X., Xie, J., Ma, H., King, I., and Yeung, D.-Y.
Gaan: Gated attention networks for learning on large and
spatiotemporal graphs. arXiv preprint arXiv:1803.07294,
2018.

SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks

Zhang, J., Zhang, H., Xia, C., and Sun, L. Graph-bert: Only
attention is needed for learning graph representations.
arXiv preprint arXiv:2001.05140, 2020.

Zhu, H., Lin, Y., Liu, Z., Fu, J., Chua, T.-s., and Sun, M.
Graph neural networks with generated parameters for
relation extraction. arXiv preprint arXiv:1902.00756,
2019.

Zhu, Q., Du, B., and Yan, P. Self-supervised train-
ing of graph convolutional networks. arXiv preprint
arXiv:2006.02380, 2020.

Zhu, X. and Ghahramani, Z. Learning from labeled and
unlabeled data with label propagation. 2002.

Zhu, X., Ghahramani, Z., and Lafferty, J. D. Semi-
supervised learning using gaussian fields and harmonic
functions. In Proceedings of the 20th International con-
ference on Machine learning (ICML-03), pp. 912–919,
2003.

Zügner, D., Akbarnejad, A., and Günnemann, S. Adversarial
attacks on neural networks for graph data. In Proceedings
of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 2847–2856,
2018.

A. Proof of Theorem 1
Theorem 1 Let G(n,m) be an Erdős-Rényi graph with n
nodes and m edges. Assume we have labels for q nodes
selected uniformly at random. The probability of an edge
being a no-supervision edge with a two-layer GCN is equal
to (1− q

n)(1−
q

n−1)
∏2q

i=1(1−
m−1
(n2)−i

).

Proof. To compute the probability of an edge being a no-
supervision edge, we first compute the probability of the
two nodes of the edge being unlabeled themselves and then
the probability of the two nodes not being connected to any
labeled nodes. Let v and u represent two nodes connected
by an edge.

With n nodes and q labels, the probability of a node being
labeled is q

n . Therefore, Pr(v is unlabeled) = (1 − q
n)

and Pr(u is unlabeled | v is unlabeled) = (1 − q
n−1).

Therefore, Pr(v is unlabeled, u is unlabeled) = (1 −
q
n)(1−

q
n−1).

Since there is an edge between v and v, there are m − 1
edges remaining. Also, there are

(
n
2

)
− 1 pairs of nodes that

can potentially have an edge between them. Therefore, the
probability of v being disconnected from the first labeled
node is 1− m−1

(n2)−1
. If v is disconnected from the first labeled

node, there are still m − 1 edges remaining and there are
now

(
n
2

)
−2 pairs of nodes that can potentially have an edge

between them. So the probability of v being disconnected
from the second node given that it is disconnected from the
first labeled node is 1− m−1

(n2)−2
. With similar reasoning, we

can see that the probability of v being disconnected from
the i-th labeled node given that it is disconnected from the
first i− 1 labeled nodes is 1− m−1

(n2)−i
.

We can follow similar reasoning for u. The probability of
u being disconnected from the first labeled node given that
v is disconnected from all q labeled nodes is 1− m−1

(n2)−q−1
.

That is because there are still m− 1 edges remaining and(
n
2

)
− q− 1 pairs of nodes that can potentially be connected

with an edge. We can also see that the probability of u
being disconnected from the i-th labeled node given that it
is disconnected from the first i− 1 labeled nodes and that v
is disconnected from all q labeled nodes is 1− m−1

(n2)−q−i
.

As the probability of the two nodes being unlabeled and
not being connected to any labeled nodes in the graph are
independent, their joint probability is the multiplication
of their probabilities computed above and it is equal to
(1− q

n)(1−
q

n−1)
∏2q

i=1(1−
m−1
(n2)−i

). �

B. Dataset statistics
The statistics of the datasets used in the experiments can be
found in Table 4.

C. Implementation Details
We implemented our model in PyTorch (Paszke et al., 2017),
used deep graph library (DGL) (Wang et al., 2019a) for the
sparse operations, and used Adam (Kingma & Ba, 2014)
as the optimizer. We performed early stopping and hyper-
parameter tuning based on the accuracy on the validation
set for all datasets except Wine and Cancer. For these two
datasets, validation accuracy reached 100 percent with many
hyperparameter settings, making it difficult to select the best
set of hyperparameters so instead, we used the validation
cross-entropy loss.

We fixed the maximum number of epochs to 2000. We use
two-layer GCNs for both GNNC and GNNDAE as well as
for baselines and two-layer MLPs throughout the paper (for
experiments on ogbn-arxiv, although the original paper uses
models with three layers and with batch normalization after
each layer, to be consistent with our other experiments we
used two layers and removed the normalization). We used
two learning rates, one for GCNC as lrC and one for the
other parameters of the models as lrDAE . We tuned the two
learning rates from the set {0.01, 0.001}. We added dropout
layers with dropout probabilities of 0.5 after the first layer of
the GNNs. We also added dropout to the adjacency matrix

SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks

Table 3. Best set of hyperparameters for different datasets chosen on validation set.
Dataset Generator lrC lrDAE dropoutc dropoutDAE k λ r η

Cora FP 0.001 0.01 0.5 0.25 30 10 10 5
Cora MLP 0.01 0.001 0.25 0.5 20 10 10 5
Cora MLP-D 0.01 0.001 0.25 0.5 15 10 10 5

Citeseer FP 0.01 0.01 0.5 0.5 30 1 10 1
Citeseer MLP 0.01 0.001 0.25 0.5 30 10 10 5
Citeseer MLP-D 0.001 0.01 0.5 0.5 20 10 10 5
Cora390 FP 0.01 0.01 0.25 0.5 20 100 10 5
Cora390 MLP 0.01 0.001 0.25 0.5 20 10 10 5
Cora390 MLP-D 0.001 0.001 0.25 0.5 20 10 10 5

Citeseer370 FP 0.01 0.01 0.5 0.5 30 1 10 1
Citeseer370 MLP 0.01 0.001 0.25 0.5 30 10 10 5
Citeseer370 MLP-D 0.01 0.01 0.25 0.5 20 10 10 5

Pubmed MLP 0.01 0.01 0.5 0.5 15 10 10 5
Pubmed MLP-D 0.01 0.01 0.25 0.25 15 100 5 5

ogbn-arxiv MLP 0.01 0.001 0.25 0.5 15 10 1 5
ogbn-arxiv MLP-D 0.01 0.001 0.5 0.25 15 10 1 5

Wine FP 0.01 0.001 0.5 0.5 20 0.1 5 5
Wine MLP 0.01 0.001 0.5 0.25 20 0.1 5 5
Wine MLP-D 0.01 0.01 0.25 0.5 10 1 5 5

Cancer FP 0.01 0.001 0.5 0.25 20 0.1 5 5
Cancer MLP 0.01 0.001 0.5 0.5 20 1.0 5 5
Cancer MLP-D 0.01 0.01 0.5 0.5 20 0.1 5 5
Digits FP 0.01 0.001 0.25 0.5 20 0.1 5 5
Digits MLP 0.01 0.001 0.25 0.5 20 10 5 5
Digits MLP-D 0.01 0.01 0.25 0.25 20 0.1 5 5

20news FP 0.01 0.01 0.5 0.5 20 500 5 5
20news MLP 0.001 0.001 0.25 0.5 20 500 5 5
20news MLP-D 0.01 0.01 0.25 0.25 20 100 5 5

Table 4. Dataset statistics.
Dataset Nodes Edges Classes Features Label rate

Cora 2,708 5,429 7 1,433 0.052
Citeseer 3,327 4,732 6 3,703 0.036
Pubmed 19,717 44,338 3 500 0.003

ogbn-arxiv 169,343 1,166,243 40 128 0.537
Wine 178 0 3 13 0.112

Cancer 569 0 2 30 0.035
Digits 1,797 0 10 64 0.056

20news 9,607 0 10 236 0.021

SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks

for both GNNC and GNNDAE as dropoutC dropoutDAE

respectively and tuned the values from the set {0.25, 0.5}.
We set the hidden dimension of GNNC to 32 for all datasets
except for ogbn-arxiv for which we set it to 256. We used
cosine similarity for building the kNN graphs and tuned
the value of k from the set {10, 15, 20, 30}. We tuned λ (λ
controls the relative importance of the two losses) from the
set {0.1, 1, 10, 100, 500}. We tuned r and η from the sets
{1, 5, 10} and {1, 5} respectively. The best set of hyperpa-
rameters for each dataset chosen on the validation set is in
table 3. The code of our experiments will be available upon
acceptance of the paper.

For GRCN (Yu et al., 2020), DGCNN (Wang et al., 2019b),
and IDGL (Chen et al., 2020), we used the code released by
the authors and tuned the hyperparameters as suggested
in the original papers. The results of LDS (Franceschi
et al., 2019) are directly taken from the original paper. For
LP (Zhu et al., 2003), we used scikit-learn python pack-
age (Pedregosa et al., 2011).

All the results for our model and the baselines are averaged
over 10 runs. We report the mean and standard deviation.

