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Mixed Integer Programming (MIP) solvers rely on an array of sophisticated heuristics developed with

decades of research to solve large-scale MIP instances encountered in practice. Machine learning offers to

automatically construct better heuristics from data by exploiting shared structure among instances in the

data. This paper applies learning to the two key sub-tasks of a MIP solver, generating a high-quality joint

variable assignment, and bounding the gap in objective value between that assignment and an optimal one.

Our approach constructs two corresponding neural network-based components, Neural Diving and Neural

Branching, to use in a base MIP solver such as SCIP. Neural Diving learns a deep neural network to generate

multiple partial assignments for its integer variables, and the resulting smaller MIPs for un-assigned variables

are solved with SCIP to construct high quality joint assignments. Neural Branching learns a deep neural

network to make variable selection decisions in branch-and-bound to bound the objective value gap with a

small tree. This is done by imitating a new variant of Full Strong Branching we propose that scales to large

instances using GPUs. We evaluate our approach on six diverse real-world datasets, including two Google

production datasets and MIPLIB, by training separate neural networks on each. Most instances in all the

datasets combined have 103− 106 variables and constraints after presolve, which is significantly larger than

previous learning approaches. Comparing solvers with respect to primal-dual gap averaged over a held-out

set of instances, the learning-augmented SCIP is 2× to 10× better on all datasets except one on which it

is 105× better, at large time limits. To the best of our knowledge, ours is the first learning approach to

demonstrate such large improvements over SCIP on both large-scale real-world application datasets and

MIPLIB.
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1. Introduction

Mixed integer programs (MIPs) are a class of NP-hard problems where the goal is to minimize a

linear objective subject to linear constraints, with some or all of the variables constrained to be

integer-valued (Wolsey 1998, Karp 1972). They have enjoyed widespread adoption in a broad range
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Figure 1 Our approach constructs two neural network-based components to use in a MIP solver, Neural

Diving and Neural Branching, and combine them to produce a Neural MIP solver customized

to a given MIP dataset.

of applications such as capacity planning, resource allocation, bin packing, etc. (Taha 2014, Jünger

et al. 2009, Sierksma and Zwols 2015). Significant research and engineering effort has gone into

developing practical solvers, such as SCIP (Gamrath et al. 2020), CPLEX (IBM ILOG CPLEX

2019), Gurobi (Gurobi Optimization 2020), and Xpress (FICO Xpress 2020). These solvers use

sophisticated heuristics to control the search process for solving a MIP. A solver’s performance on

a given application depends crucially on the strength of its heuristics.

In this paper we show that machine learning can be used to automatically construct effective

heuristics from a dataset of MIP instances. A compelling use case for this arises often in practice

where an application requires solving a large set of instances of the same high-level semantic prob-

lem with different problem parameters. Examples of such “homogenous” datasets in this paper are

1) optimizing the choice of power plants on an electric grid to meet demand (O’Neill 2017), where

grid topology remains the same while demand, renewable generation, etc. vary across instances,

and 2) solving a packing problem in Google’s production system where the semantics of “items”

and “bins” to be packed remain mostly the same but their sizes fluctuate across instances. Even

a “heterogeneous” dataset that combines many semantically different problems, such as MIPLIB

2017 (Gleixner et al. 2019), can have structure across instances that can be used to learn better

heuristics, as we shall show. Off-the-shelf MIP solvers cannot automatically construct heuristics

to exploit such structure. In challenging applications users may rely on an expert to hand-design

such heuristics, or forego potentially large performance improvements. Machine learning offers the

possibility of large improvements without needing application-specific expertise.

We demonstrate that machine learning can construct heuristics that significantly outperform the

classical ones used in a MIP solver, specifically the state-of-the-art non-commercial solver SCIP

7.0.1 (Gamrath et al. 2020), on a given dataset. Our approach applies learning to the two key sub-

tasks of a MIP solver: a) output an assignment of values to all variables that satisfy the constraints
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(if such an assignment exists), and b) prove a bound for the gap in objective value between that

assignment and an optimal one. They define the main components of our approach, Neural Diving

and Neural Branching (see figure 1).

Neural Diving: This component finds high quality joint variable assignments. It is an instance

of a primal heuristic (Berthold 2006), a class of search heuristics that have been identified as key to

effective MIP solvers (Berthold 2013). We train a deep neural network to produce multiple partial

assignments of the integer variables of the input MIP. The remaining unassigned variables define

smaller ‘sub-MIPs’, which are solved using an off-the-shelf MIP solver (e.g., SCIP) to complete the

assignments. The sub-MIPs can be solved in parallel if the compute budget allows. The model is

trained to give higher probability to feasible assignments that have better objective values, using

training examples collected offline with an off-the-shelf solver. It learns on all available feasible

assignments instead of only the optimal ones, and does not necessarily require optimal assignments,

which can be expensive to collect.

Neural Branching: This component is mainly used to bound the gap between the objective

value of the best assignment and an optimal one. MIP solvers use a form of tree search over

integer variables called branch-and-bound (Land and Doig 1960) (see section 2), which progressively

tightens the bound and helps find feasible assignments. The choice of the variable to branch on at

a given node is a key factor in determining search efficiency (Achterberg et al. 2005, Glankwamdee

and Linderoth 2011, Schubert 2017, Yang et al. 2019). We train a deep neural network policy to

imitate choices made by an expert policy. The imitation target is a well-known heuristic called

Full Strong Branching (FSB), which has been empirically shown to produce small search trees

(Achterberg et al. 2005). While it is often too computationally expensive for practical MIP solving,

it can still be used to generate imitation learning data offline as a slow and expensive one-time

computation. Once trained, the neural network is able to approximate the expert at test time at a

fraction of the computational cost. A CPU-based implementation of FSB can be too expensive on

large-scale MIPs even for offline data generation. We develop a variant of FSB using the alternating

directions method of multipliers (ADMM) (Boyd et al. 2011) that scales to large-scale MIPs by

performing the required computation in a batch manner on GPU.

We evaluate our approach on six datasets. Five of them are from individual real-world applica-

tions, including two from Google’s production systems. The sixth one is MIPLIB (Gleixner et al.

2019), which is a heterogeneous dataset and a standard benchmark. Most of the combined set of

MIPs from all datasets have 103–106 variables and constraints after presolve (see figure 4 in sec-

tion 4), which is significantly larger than earlier works (Gasse et al. 2019, Ding et al. 2020). Once

Neural Diving and Neural Branching models are trained on a given dataset, they are integrated

into SCIP to form a “Neural MIP solver” specifically for that dataset. The baseline is SCIP with its
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Figure 2 Main result of the paper: our approach, Neural Branching + Neural Diving, significantly outper-

forms SCIP with respect to the primal-dual gap (Berthold 2006), averaged on held-out instances,

as a function of running time (referred to as calibrated time, see section 5) for all six datasets

that we have tested. Note the log scale on both axes.

emphasis parameters tuned by grid search on each dataset separately, which we refer to as Tuned

SCIP. Comparing the primal-dual gap (Berthold 2006) averaged over a held-out set of instances,

the Neural MIP solver is about 2× to 10× better than Tuned SCIP on all datasets except the

Neural Network Verification dataset, on which it is 105× better, at large time limits (see figure 2).

To the best of our knowledge, this is the first work to demonstrate such large improvements over

SCIP on both large-scale real-world application datasets and MIPLIB using machine learning.

Tuned SCIP is the baseline we compare to since we use SCIP as the base solver for integrating

learned heuristics. As a base solver SCIP provides a) extensive access to its internal state for inte-

grating learned models, and b) permissive licensing that enables large-scale evaluation by running a

large number of solver instances in parallel. We do not have access to commercial solvers with these

features, which makes a fair comparison to them infeasible. We have done a partial comparison of

Gurobi versus Neural Diving alone, with Gurobi as its sub-MIP solver, on two datasets (see section

6). Comparing the primal gap (Berthold 2006) averaged over a held-out set of instances, Neural

Diving with parallel sub-MIP solving reaches 1% average primal gap in 3× and 3.6× less time than

Gurobi on the two datasets. We have also applied a modified version of Neural Diving to a subset of

‘open’ instances in MIPLIB to find three new best known assignments, beating commercial solvers.

Several earlier works have focused on learning primal heuristics (Khalil et al. 2017b, Ding et al.

2020, Hendel 2018, Hottung and Tierney 2019, Xavier et al. 2020, Song et al. 2020, Addanki
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et al. 2020). Unlike them, Neural Diving poses the problem of predicting variable assignments as

a generative modelling problem, which provides a principled way to learn on all available feasible

assignments and also to generate partial assignments at test time. Several works have also looked

at learning a branching policy (He et al. 2014, Khalil et al. 2016, Alvarez et al. 2017, Balcan et al.

2018, Gasse et al. 2019, Yang et al. 2020, Zarpellon et al. 2020, Gupta et al. 2020). Many of these

focus specifically on learning to imitate FSB as we do (Khalil et al. 2016, Alvarez et al. 2017, Gasse

et al. 2019, Gupta et al. 2020). Unlike them, Neural Branching uses a more scalable approach to

computing the target policy using GPUs, which allows it to generate more imitation data from

larger instances in the same time limit than a CPU-based FSB implementation. We also go beyond

earlier works that study learning individual heuristics in isolation by combining a learned primal

heuristic and a learned branching policy in a solver to achieve significantly better performance on

large-scale real-world application datasets and MIPLIB.

1.1. Contributions

1. We propose Neural Diving (section 6), a new learning-based approach to generating high-

quality joint variable assignments for a MIP. On homogeneous datasets, Neural Diving achieves an

average primal gap of 1% on held out instances 3-10× faster than Tuned SCIP. On one dataset

Tuned SCIP does not reach 1% average primal gap within the time limit, while Neural Diving

does.

2. We propose Neural Branching which learns a branching policy to use in the branch-and-

bound algorithm by imitating a new scalable expert policy based on ADMM (section 7). On two

of the datasets used in our evaluation for which FSB is slow due to instance sizes (e.g., with > 105

variables) or high per-iteration times, the ADMM expert generates 1.4× and 12× more training

data in the same running time. The learned policy significantly outperforms SCIP’s branching

heuristic on four of the six datasets with 2-20× better average dual gap (Berthold 2006) on held

out instances at large time limits, and has comparable performance on the other two.

3. We combine Neural Diving and Neural Branching (section 8) to attain significantly better

running time performance than SCIP across all datasets, as measured by the average primal-dual

gap on held out instances.

In addition, we plan to open source two of the datasets, for the applications of Neural Network

Verification and Electric Grid Optimization, which we hope will help further research on new

learning techniques for MIPs.
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2. Integer programming background

In this section we present some basic integer programming concepts and techniques relevant for

the paper. A mixed integer linear program has the form

minimize c>x

subject to Ax≤ b

l≤ x≤ u

xi ∈Z, i∈ I

(1)

over variables x∈Rn, where A∈Rm×n, b∈Rm, c∈Rn , l ∈ (R∪{−∞})n, and u∈ (R∪{∞})n are

given data, and I ⊆ {1, . . . , n} refers to the index set of integer variables. We allow l and u to take

infinite values to indicate that the associated variable has no lower or upper bound respectively,

for those indices. A (complete) assignment is any point x ∈Rn. A partial assignment is when we

have fixed some, but not, all of the variable values. A feasible assignment is an assignment that

satisfies all the constraints in problem (1), and an optimal assignment, or a solution, is a feasible

assignment that also minimizes the objective (Boyd and Vandenberghe 2004, §1.1).

2.1. Linear programming relaxation

If we remove the integer constraints in problem (1) then it becomes a linear program (LP), which

is convex and can be solved efficiently (Boyd and Vandenberghe 2004). The optimal value of

the relaxed problem is guaranteed to be a lower bound for the original problem, since removing

constraints can only expand the feasible set. If the optimal solution to the LP satisfies the integral

constraints then it is guaranteed to be optimal for the original problem. We shall refer to any lower

bound (in our case found via linear programming) as a dual bound.

2.2. Branch-and-bound

A common procedure to solve MIPs is to recursively build a search tree, with partial integer

assignments at each node, and use the information gathered at each node to eventually converge

on an optimal (or close to optimal) assignment (Land and Doig 1960, Lawler and Wood 1966).

At every step we must choose a leaf node from which to ‘branch’. At this node we can solve the

LP relaxation, where we constrain the ranges of the fixed variables at that node to their assigned

values. This gives us a valid lower bound on the true objective value of any further child nodes

from this node. If this bound is larger than a known feasible assignment, then we can safely prune

this part of the search tree since no optima for the original problem can exist in the subtree from

that node. If we decide to expand this node, then we must choose a variable to branch on from

the set of unfixed variables at that node. Once a variable is selected, we take a branching step,
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which adds two child nodes to the current node. One node has the domain of the selected variable

constrained to be greater or equal to the ceiling of its LP relaxation value at the parent node. The

other node has the selected variable’s domain constrained to be less than or equal to the floor of

its LP relaxation value. The tree is updated, and the procedure begins again. This algorithm is

referred to as branch-and-bound. Linear programming is a main workhorse of this procedure, both

to derive the dual bounds at every node and to decide the branching variable for some of the more

sophisticated branching heuristics. In theory the size of the search tree can be exponential in the

input size of the problem, but in many cases the search trees can be small and it is an area of

established and active research to come up with node selection and variable selection heuristics

that keep the tree as small as possible.

2.3. Primal heuristics

A primal heuristic is a method that attempts to find a feasible, but not necessarily optimal, variable

assignment (Berthold 2006). Any such feasible assignment provides a guaranteed upper bound on

the optimal value of the MIP. Any such bound found at any point during a MIP solve is called a

primal bound. Primal heuristics can be run independently of branch-and-bound, but they can also

be run within a branch-and-bound tree and attempt to find a feasible assignment of the unfixed

variables from a given node in the search tree. Better primal heuristics that produce lower primal

bounds allow the branch-and-bound procedure to prune more of the tree. Simple rounding, where

the fractional variables are rounded to integer values (possibly randomly) is an example of a primal

heuristic. Another case is diving which attempts to find a feasible solution by exploring the search

tree from a given node in a depth-first manner (Berthold 2006, Eckstein and Nediak 2007).

2.4. Primal-dual gap

When running branch-and-bound we keep track of the global primal bound (the minimum objective

value of any feasible assignment) and the global dual bound (the minimum dual bound across all

leaves of the branch-and-bound tree). We can combine these to define a sub-optimality gap

gap = global primal bound− global dual bound.

The gap is always nonnegative by construction, and if it is zero then we have solved the problem, the

feasible point that corresponds to the primal bound is optimal and the dual bound is a certificate

of optimality. In practice we terminate branch-and-bound when the relative gap (i.e., normalized

in some way, see §5) is below some application-dependent quantity, and produce the best found

primal solution as the approximately optimal solution.
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Figure 3 Bipartite graph representation of a MIP used as the input to a neural network. The set of n variables

{x1, . . . , xn} and the set of m constraints {δ1, . . . , δm} form the two sets of nodes of the bipartite graph.

The coefficients are encoded as features of the nodes and edges.

3. MIP Representation and Neural Network Architecture

We describe how a MIP is represented as an input to a neural network, and the architecture we use

to learn models for both Neural Diving and Neural Branching. The key deep learning architecture

we use is a form of graph neural network (Scarselli et al. (2009), see survey by Battaglia et al.

(2018)), specifically a graph convolutional network (GCN) (Kipf and Welling 2016).

3.1. Representing a MIP as an Input to a Neural Network

We use a bipartite graph representation of a MIP, as done in Gasse et al. (2019). Equation (1)

can be used to define a bipartite graph where one set of n nodes in the graph correspond to the

n variables being optimized, and the other set of m nodes correspond to the m constraints; see

figure 3. The edge is present between a variable node and a constraint node if the corresponding

variable appears in that constraint, and so the number of edges correspond to the number of

non-zeros in the constraint matrix. The objective coefficients {c1, . . . , cn}, the constraint bounds

{b1, . . . , bm}, and the non-zero coefficients of the constraint matrix are encoded as scalar “features”

that annotate the corresponding variable nodes, constraint nodes, and edges, respectively. The

variable type (continuous or integer) can also be encoded as a (categorical) feature of the variable

nodes. This defines a lossless representation of the MIP that can be used as an input to a graph

neural network. A similar representation is used for MIPs by Ding et al. (2020), and for Boolean

Satisfiability instances in an earlier work by Selsam et al. (2019). Both nodes and edges can be

annotated by multi-dimensional feature vectors that encode additional information about the MIP

that can be useful for learning (e.g., the solution of the LP relaxation as additional variable node
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features). We use the code provided by Gasse et al. (2019) to compute the same set of features

using SCIP.1

3.2. Neural Network Architecture

We describe here the common aspects of the network architecture used by both Neural Diving

and Neural Branching. Those aspects that differ between the two, e.g., the outputs and the loss

functions, are given in their corresponding sections 6 and 7.

Given the bipartite graph representation of a MIP, we use a GCN to learn models for both Neural

Diving and Neural Branching. Let the input to the GCN be a graph G= (V,E ,A) defined by the

set of nodes V, the set of edges E , and the graph adjacency matrix A. In the case of MIP bipartite

graphs, V is the union of n variable nodes and m constraint nodes, of size N := |V| = n+m. A

is an N ×N binary matrix with Aij = 1 if nodes indexed by i and j are connected by an edge, 0

otherwise, and Aii = 1 for all i. Each node has a D-dimensional feature vector, denoted by ui ∈RD

for the ith node. Let U ∈ RN×D be the matrix containing feature vectors of all nodes as rows,

i.e., the ith row is ui. A single-layer GCN learns to compute an H-dimensional continuous vector

representation for each node of the input graph, referred to as a node embedding. Let zi ∈RH be the

node embedding computed by the GCN for the ith node, and Z ∈RN×H be the matrix containing

all node embeddings as rows. We define the function computing Z as follows:

Z =Afθ(U), (2)

where fθ : RD→ RH is a Multi-Layer Perceptron (MLP) (Goodfellow et al. 2016) with learnable

parameters θ ∈Θ. (Here we have generalized fθ from a linear mapping followed by a fixed nonlin-

earity in the standard GCN by Kipf and Welling (2016) to an MLP.) We overload the notation

to allow fθ to operate on N nodes simultaneously, i.e., fθ(U) denotes applying the MLP to each

row of U to compute the corresponding row of its output matrix of size N ×H. Multiplying by A

combines the MLP outputs of the ith node’s neighbors to compute its node embedding. The above

definition can be generalized to L layers as follows:

Z(0) =U (3)

Z(l+1) =Afθ(l)(Z(l)), l= 0, . . . ,L− 1, (4)

where Z(l) and fθ(l)() denote the node embeddings and the MLP, respectively, for the lth layer. The

Lth layer’s node embeddings can be used as input to another MLP that compute the outputs for

1 For the list of features, see https://papers.nips.cc/paper/2019/file/d14c2267d848abeb81fd590f371d39bd-Supplemental.
zip

https://papers.nips.cc/paper/2019/file/d14c2267d848abeb81fd590f371d39bd-Supplemental.zip
https://papers.nips.cc/paper/2019/file/d14c2267d848abeb81fd590f371d39bd-Supplemental.zip
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the final prediction task, as shown in sections 6 and 7. For each variable xd we further denote the

corresponding node embedding from the last layer as vd.

Two key properties of the bipartite graph representation of the MIP and the GCN architecture

are: 1) the network output is invariant to permutations of variables and constraints, and 2) the

network can be applied to MIPs of different sizes using the same set of parameters. Both of these

are important because there may not be any canonical ordering for variables and constraints,

and different instances within the same application can have different number of variables and

constraints.

3.3. Improvements to the Architecture

We describe changes to the above architecture, as well as from previous work, which gave perfor-

mance improvements.

1. We modify the MIP bipartite graph’s adjacency matrix A to contain coefficients from the

MIP’s constraint matrix A, instead of binary values indicating the presence of edges. Specifically,

for the ith variable and jth constraint, their two corresponding entries in A is set to aji where aji

is the coefficient at row j and column i of A. This results in edges weighted by the entries of A.

2. We extend the node embeddings for layer l+ 1 by concatenating the node embeddings from

layer l. Specifically, we now define the embedding for layer l+ 1 to be Z̃(l+1) = (Z(l+1), Z̃(l)), i.e.,

the concatenation of the matrices row-wise, with Z̃(0) =Z0. This is a form of skip connection (He

et al. 2016) and also similar to the jumping knowledge networks architecture (Xu et al. 2018).

3. We apply layer norm (Lei Ba et al. 2016) at the output of each layer, so that Z(l+1) =

LayerNorm
(
Afθ(l)(Z(l))

)
.

We have explored alternative architectures which use embeddings for both nodes and edges with

separate MLPs to compute them. When using such networks with a high-dimensional edge embed-

ding at every layer, their memory usage can become much higher than that of GCNs, which only

need the adjacency matrix, and may not fit the GPU memory unless the number of layers is reduced

at the cost of accuracy. GCNs are a better fit for our goal of scaling to large-scale MIPs.

4. Datasets

We summarize the details of our datasets in table 1. All datasets except MIPLIB are application-

specific, i.e., they contain instances from only a single application. We include MIPLIB in our

evaluation even though it contains instances from many applications. This is not the setting in

which we expect learning will provide the most benefit. Nevertheless, it is a well-established bench-

mark for evaluating solvers, and the results on it can provide insight on the performance of learning
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Table 1 MIP datasets used for evaluation. See additional details in section 12.6

.

Name Description

CORLAT Public dataset related to wildlife management (Conrad et al. 2007,
Gomes et al. 2008).

NN Verification Verifying whether a neural network is robust to input perturbations can
be posed as a MIP (Cheng et al. 2017, Tjeng et al. 2019). Each input on
which to verify the network gives rise to a different MIP. In this dataset,
a convolutional neural network is verified on each image in the MNIST
dataset, giving rise to a corresponding dataset of MIPs.

Google Production
Packing

A packing optimization problem solved in a Google production system.

Google Production
Planning

A planning optimization problem solved in a Google production system.

Electric Grid Opti-
mization

Electric grid operators optimize the choice of power generators to use
at different time intervals during a day to meet electricity demand by
solving a MIP. This dataset is constructed for one of the largest grid
operators in the US, PJM, using publicly available data about generators
and demand, and the MIP formulation in (Knueven et al. 2018).

MIPLIB Heterogeneous dataset containing ‘hard’ instances of MIPs across many
different application areas that is used as a long-standing standard
benchmark for MIP solvers (Gleixner et al. 2019). We use instances from
both the 2010 and 2017 versions of MIPLIB.
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Figure 4 Number of variables and constraints after presolve using SCIP 7.0.1 for the datasets used in our

evaluation. MIPLIB is shown separately (right) to reduce clutter.

approaches in an unfavorable setting. The MIP sizes for the various datasets after presolving are

shown in figure 4.
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For all datasets except MIPLIB, we define the training, validation, and test sets by randomly

splitting the instances into disjoint subsets with 70%, 15%, and 15% of the instances, respectively.

For MIPLIB, we use instances from the MIPLIB 2017 Benchmark Set as the test set, since that

is the set on which solvers are evaluated. The MIPLIB 2017 Collection Set and the MIPLIB

2010 set are used as the training and validation sets, respectively, after removing any overlapping

instances with the MIPLIB 2017 Benchmark Set. For each dataset, the training set is used to learn

models for that dataset, the validation set is used to tune the learning hyperparameters and SCIP’s

metaparameters, and the test set is used to report evaluation results. Additional details are given

in the Appendix, see section 12.6.

5. Evaluation

We shall evaluate Neural Diving and Neural Branching individually first, and then jointly in the

sequel. In all cases we evaluate on a test set of MIPs disjoint from the training set to measure

generalization to unseen instances. We present results using gap plots and survival plots:

Gap plots: Neural Diving is evaluated with respect to the primal gap γp(t) (Berthold 2013)

as a function of solving time t. If no feasible assignment is known then the gap is defined to be

1, otherwise denote by p(t) the primal bound at time t and denote by p? the best known primal

bound (possibly precomputed), the gap is defined as

γp(t) =

{
1 p(t) · p? < 0

p(t)−p?
max{|p(t)|,|p?|,ε} otherwise.

(5)

We use ε= 10−12 to avoid division by 0. To evaluate Neural Branching we use a dual gap, which is

defined analogously

γd(t) =

{
1 d(t) · p? < 0

p?−d(t)
max{|d(t)|,|p?|,ε} otherwise,

(6)

where d(t) is the global dual bound at time t. When evaluating Neural Diving and Neural Branching

jointly, we use the primal-dual gap

γpd(t) =

{
1 d(t) · p(t)< 0

p(t)−d(t)
max{|d(t)|,|p(t)|,ε} otherwise.

(7)

In each case, we plot the average gap for test MIPs as a function of running time. We pre-compute

p? for a MIP by running SCIP on it with default parameters and a time limit of 24 hours. Any

suboptimality in p? will affect all solvers being evaluated and relative comparisons using the gaps

are therefore still valid. If during the solve we find a better primal bound then we replace p? with

the new value and recompute gaps at all previous times.
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Survival plots: A survival plot shows the fraction of test set MIPs solved (to the target primal-

dual gap) as a function of running time. Applications may specify a target optimality gap higher

than 0 as a termination condition. In such a case improving the gap below the target does not

improve the solve performance. The survival plot reflects the effect of the target gap, while the gap

plots do not.

Calibrated time: The total evaluation workload across all datasets and comparisons requires

more than 160,000 MIP solves and nearly a million CPU and GPU hours. To meet the compute

requirements, we use a shared, heterogeneous compute cluster. Accurate running time measure-

ment on such a cluster is difficult because the tasks may be scheduled on machines with different

hardware, and interference from other unrelated tasks on the same machine increases the variance

of solve times. To improve accuracy, for each solve task, we periodically solve a small calibration

MIP on a different thread from the solve task on the same machine. We use an estimate of the

number of calibration MIP solves during the solve task on the same machine to measure time,

which is significantly less sensitive to hardware heterogeneity and interference. This quantity is then

converted into a time value using the calibration MIP’s solve time on a reference machine. Section

12.7 gives the details. Results for four instances from MIPLIB show a 1.5× to 30× reduction in

the coefficient of variation of time measurements compared to measuring wall clock time.

Tuned SCIP: The main baseline we compare against is SCIP 7.0.1 with its parameters tuned

for each test dataset. SCIP has emphasis “meta-parameters” for presolving, primal heuristics, and

cuts, each of which has four possible settings (default, off, aggressive, fast). For each dataset, we

use exhaustive search over the 43 = 64 combinations to find the setting that produces the best

average primal-dual gap on a subset of 200 validation MIPs in a 3 hour time limit. We call this

baseline Tuned SCIP.

Performance variability with respect to random seed: To account for the performance

variability of MIP solvers (Lodi and Tramontani 2014) with respect to changes to a MIP that

leave the problem unchanged, such as permuting rows and columns of the constraint matrix, we

vary the random seed parameter used by SCIP. Specifically, we set the SCIP parameter ran-

domization/permutevars to True, and assign the parameters randomization/permutationseed and

randomization/randomseedshift both to a give seed value. The seed is set to the values {1,2,3,4,5}

for each instance. The evaluation results reported for Neural Diving, Neural Branching, and their

combination are computed by aggregating over all the instance-seed pairs produced using the test

set instances.
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6. Neural Diving

In this section we describe our approach to learning a diving-style primal heuristic that produces

high quality assignments to MIPs from a given instance distribution. The idea is to train a gener-

ative model over assignments to a MIP’s integer variables from which partial assignments can be

sampled. We use SCIP to obtain high-quality assignments (not necessarily optimal) as the target

labels for the training set of MIPs. Once trained on this data, the model predicts values for integer

variables on unseen instances from the same problem distribution. The uncertainty represented in

the model predictions is used to define partial assignments to the original MIP that fix a large

fraction of the integer variables. These substantially smaller sub-MIPs can then be solved quickly

using SCIP, yielding high quality feasible assignments.

Diving refers to a set of primal heuristics that explore the branch-and-bound tree in a depth-first

manner by sequentially fixing integer variables until a leaf node is reached or the assignment is

deemed infeasible (Berthold 2006, Eckstein and Nediak 2007). There are a few major differences

between regular diving and what we describe here. First, diving can be started from any node, but

in this work we focus on diving only from the root node, though in principle it could be performed

from other nodes. Secondly, diving typically descends all the way to a leaf node, but in this case we

descend only partially and then use a MIP solver to solve the remaining sub-MIP. For this reason

one could reasonably call our method a hybrid of diving and neighborhood search (Mladenović

and Hansen 1997, Hansen et al. 2010), but for brevity we refer to it simply as Neural Diving.

Finally, diving usually proceeds in an iterative manner where decisions are made sequentially and

the linear program is re-solved after each decision. The vanilla version of Neural Diving produces

assignments that define the sub-MIP entirely in parallel, and only re-solves the linear program once.

In section 12.1 we describe an extension where the decisions are made sequentially. Our approach

is similar to Relaxation Enforced Neighborhood Search (RENS) (Berthold 2007) in that we fix

a subset of variables and solve the resulting sub-MIP, but in our case the variables are assigned

values predicted by a learned model rather than based on the linear program solution, and we use

multiple partial assignments instead of only one.

6.1. Solution Prediction as Conditional Generative Modelling

Consider an integer program (i.e., all variables are integers) with parameters M = (A,b, c) (see

equation 1) and a nonempty feasible set over a set of integer variables x. Assuming minimization,

we define an energy function over x using the objective function:

E(x;M) =

{
cTx if x is feasible,

∞ otherwise,
(8)
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which then defines the conditional distribution

p(x|M) =
exp(−E(x;M))

Z(M)
(9)

where Z(M) is the partition function that normalizes the distribution to sum to 1:

Z(M) =
∑
x′

exp(−E(x′;M)). (10)

Feasible assignments with better (i.e., lower) objective values have higher probability. Infeasible

assignments have zero probability. Note that multiplying c by a constant β changes the distribution,

even though the feasible set and the optimal assignment(s) remain the same. (β can be interpreted

as the inverse temperature parameter of the distribution.) The distribution can be made invariant

to such a re-scaling of the objective by normalizing the energy as E(x;M)/|E(x∗;M)| where x∗ is

an optimal assignment. We have not used such normalization in this work.

When a MIP contains both integer variables xI and continuous variables xC , a given assignment

for xI defines a linear program (LP) on xC . The energy function E(x;M) can then be computed by

assigning xC to the optimal LP solution x∗C (if feasible) and then setting E(x;M) to the objective

value of the resulting complete assignment.

6.1.1. Learning The learning task is to approximate p(x|M) using a generative model

pθ(x|M) parameterized by θ. The training dataset is Dtrain = {(Xi,Mi)}Ni=1, where {Mi ∼ p(M)}Ni=1

are N independent and identically distributed (IID) samples from the application-specific MIP

distribution p(M) and Xi = {xi,j}Ni
j=1 is a set of unique Ni assignments for the instance Mi. Xi

is obtained by running SCIP on Mi and collecting feasible assignments it finds during the solve.

While potentially costly, this data collection step needs to be done only once (per application), and

outside the training loop. We learn on all assignments (explained below), not just the best ones,

and do not require that any of the assignments be optimal.

The model parameters θ are learned by minimizing the following weighted loss function with

respect to θ:

L(θ) =−
N∑
i=1

Ni∑
j=1

wij log pθ(x
i,j|Mi), (11)

where the weights wij are used to reduce any bias in sampling the training examples Xi = {xi,j}Ni
j=1

for the instance Mi. Consider the case where Xi contains all possible feasible assignments of the

integer variables for Mi without any duplicates (i.e., xi,j 6= xi,k, ∀j 6= k). Then we can use the

weights

wij =
exp(−cTi xi,j)∑Ni
k=1 exp(−cTi xi,k)

. (12)
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Figure 5 Conditionally independent model (Section 6.1.2) infers node embeddings {v1, . . . , vn} for the variable

nodes of the bipartite graph representation of an input MIP M using a graph convolutional network

and applies a multi-layer perceptron to the node embeddings {vd}d∈I of the set of binary variables I in

M to compute their Bernoulli distributions. (See Section 6.1.3 for the case of general integers.) These

distributions are independent of each other conditioned on the input MIP.

in equation 11 to learn the target distribution p(x|Mi) using Xi. Enumerating all possible assign-

ments to construct Xi is not practical for MIPs of realistic size. Instead we apply an off-the-shelf

solver, SCIP in our case, to Mi. We define Xi to include all feasible assignments found throughout

the solve, with duplicates removed. Using the weights given by equation 12 no longer corresponds

to learning the exact target distribution p(x|Mi) as the partition function is approximate. Although

approximate, learning still succeeds in producing models with strong empirical performance on the

datasets used in our evaluation. Intuitively we expect the approximation to produce good results

because it assigns higher weights to better assignments.

6.1.2. Conditionally-independent Model There are several choices for parameterizing the

generative model (see, e.g., Bishop (2006), Bengio and Bengio (2000), Kingma and Welling (2014)).

Let I be the set of dimensions of x corresponding to the integer variables. Let xd denote the dth

dimension of x. We use a model of the form:

pθ(x|M) =
∏
d∈I

pθ(xd|M), (13)

which predicts a distribution for xd that is independent of the other dimensions conditioned on M .

For simplicity, we first assume that each xd is binary with possible values {0,1} (the general

integer case is considered in section 6.1.3). We use the Bernoulli distribution for each such variable.

The success probability µd for the Bernoulli distribution pθ(xd|M) is computed as

td = MLP(vd;θ), (14)

µd = pθ(xd = 1|M) =
1

1 + exp(−td)
, (15)
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where vd is the embedding computed by a graph convolutional network for the MIP bipartite graph

node corresponding to xd, as described in section 3.2. Note that the same MLP is used for all

variables, see figure 5.

While the conditionally-independent model cannot accurately model a multimodal distribution

over assignments, empirically, it still shows strong performance in our experiments. We also inves-

tigated more sophisticated models, such as autoregressive models (Bengio and Bengio (2000), see

Section 12.1), which provide modest improvements but at a much higher inference cost.

6.1.3. Handling General Integers The model can be generalized to non-binary integer

variables with some modifications. The main challenges are: a) the cardinality of an integer variable

can vary significantly across instances, and b) it can potentially be very large (e.g., 107). This makes

simple approaches such as assuming a fixed maximum cardinality highly inefficient and difficult to

learn with.

We address these challenges by reframing the prediction task for general integer variables as a

sequence of binary prediction tasks, based on the binary representation of the target integer value.

For an integer variable z that can be assigned values from a finite set with cardinality card(z),

any target value can be represented as a sequence of dlog2(card(z))e bits. We train our model to

predict these bits in sequence, from most significant to least significant bit. Since the maximum

cardinality of variables in a test instance becomes known only during inference, and is unknown

during training, we introduce a hyperparameter nb that controls the maximum number of bits

predicted for each variable along this bit sequence. We can then train our model to predict the nb

most significant bits of the value for z, given the upper and lower bounds for z. During inference

then, if dlog2(card(z))e exceeds nb, we can still predict the nb most significant bits of the value for

z, and use these predictions to tighten the bounds of z by a factor of at least 2nb−1. Otherwise,

if dlog2(card(z))e ≤ nb, then we can predict z exactly to a single value. Note that this approach

of bit-wise prediction of values can also be seen as predicting branching decisions on variables:

Predicting one bit means picking the left or right branch of a binary tree, and the possible range

of the integer variable is successively tightened after each prediction.

6.2. Combining Model Predictions with a Classical Solver

Once a model is learned, we can then sample variable assignments x∼ pθ(x|M) for a new problem

M . While we could try to use these samples directly, they need not be feasible or provide the best

objective value. Instead, it is more effective to only fix a (large) subset of the variables to their

sampled values, and delegate the solution search for the remaining open variables to a classical

solver, in our case, SCIP.
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We use the SelectiveNet approach (Geifman and El-Yaniv 2019) to train an additional binary

classifier that decides which variables to predict a value for and which to refrain from predicting,

and optimizes for “coverage” among variables, defined as the ratio of the number of variables

predicted vs not predicted. Specifically, we introduce an additional output yd ∈ {0,1} for each

variable xd in the input M that determines whether xd should be assigned (yd = 1) or not. For the

conditionally-independent model, we can then train our model by minimizing the following loss

function:

lselective(θ,x,M) =
−
∑

d∈I log pθ(xd|M) · yd∑
d∈I yd

+λΨ(C − 1

|I|
∑
d∈I

yd), (16)

Lselective(θ) =
∑
i,j

wij · lselective(θ,xi,j,Mi). (17)

Here, C is a coverage threshold representing the desired relative frequency of assigned variables,

Ψ is a quadratic penalty term, and λ is a hyperparameter controlling the relative importance of

achieving a coverage close to the set threshold. We train multiple models simultaneously with

different coverage thresholds (typically, values from 0.1 to 0.95, and are tuned on the validation

set).

By assigning, or tightening the bounds of a large fraction of the variables we significantly reduce

the problem size, and warm-start SCIP to find high quality solutions in much shorter time. The

idea here is that by sampling a solution from pθ(x|M), we move to a promising region of the

solution space; and by removing again some of the assignments we expand the neighbourhood in

which we then search for the optimal solution.

This approach also offers practical computational advantages: both the sampling of predictions,

and the solution search afterwards are fully parallelizable. We can repeatedly and independently

extract many different samples from our model, and each partial assignment of the sample can be

independently solved. For a single MIP instance, we can generate many such partial assignments,

each of which we can independently solve with SCIP. The feasible solution with the best objective

value across all sub-MIPs is then reported as the final solution to the original input MIP. Our

approach can hence easily leverage the power of distributed computing even when solving for a

single instance, which is not possible with default SCIP (without significant effort (Shinano et al.

2011)). When comparing results, we will show results for both the parallel setting (where we make

full use of the parallelism advantage of our approach) and the sequential setting (where we run our

approach in a sequential manner, controlling for the total amount of computational resources).
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Figure 6 Average primal gap between the primal bound and the best known objective value achieved by various

algorithms as a function of running time on the benchmark datasets.

6.2.1. Generating partial assignments As described above, to produce partial assignments

to an input MIP, we use the output of our generative models to decide both which values each

integer variable should take, as well as which variables to assign: The acceptance head decides which

variables are fixed or tightened, while the prediction head provides the variable values. Algorithm 1

describes this procedure.

We can repeat the above procedure many times, by obtaining multiple samples from a model,

and also by using multiple models trained with different choices for the coverage threshold for the

acceptance decision, to produce a diverse set of sub-MIPs. In experiments with the conditionally

independent model we use one sample per model, and generate different sub-MIPs by using models

trained with different coverage thresholds for y.
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Figure 7 Fraction of instances with primal gap less than or equal to the target gap achieved by various algorithms

as a function of running time on the benchmark datasets.
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Figure 8 Average primal gap between the primal bound and the best known objective value achieved by various

algorithms as a function of running time on the benchmark datasets.
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Figure 9 Fraction of instances with primal gap less than or equal to the target gap achieved by various algorithms

as a function of running time on the benchmark datasets.

6.2.2. Sequential and parallel sub-MIPs solving The sub-MIPs that we generate in the

previous step can be solved fully independently from each other, allowing us to search for solutions

for all sub-MIPs in parallel. In this parallel setting, we generate up to 100 sub-MIPs by applying

combinations of different models and SCIP random seeds, and distribute each sub-MIP onto their

own dedicated machine. Since each sub-MIP in this setting is solved in parallel, we report results

in terms of (calibrated) wall clock time, meaning that we take results from the best performing

sub-MIP at any given time.

While the parallel setting showcases the advantage that our approach has when distributed

compute resources are available, we also set up a comparison that controls for the amount of

computational resources used. That is, in addition to the parallel setting, we also compare our

approach to SCIP when both are run sequentially on a single machine. In this setting, we are still

generating multiple sub-MIPs as before, but process them sequentially in a random order, instead

of in parallel.

6.3. Results

We trained a GNN for every dataset on the training set and tuned hyperparameters (number of

layers, width of layers, learning rate, exponential decay steps and assignment coverage thresholds)

on the validation set. We report results on average primal gap vs our baseline SCIP in Figure

6. Our parallel and sequential runs overall produce better primal bounds in shorter time on all

datasets, compared to SCIP. We believe that the strength of our approach is in quickly finding

good solutions, but it sometimes fails to find an optimal or near-optimal solution. This can can be

seen e.g. on the survival plots in figure 7 where Neural Diving approach wins at shorter time limits,

but loses to SCIP at the end on the Electric Grid Optimization and MIPLIB datasets. Note that

SCIP’s internal definition of gap is different from the one used in this paper, so in all experiments

we set the relative gap setting to 0 in order to avoid stopping prematurely.
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Algorithm 1: Generating variable assignments and tightenings

Input: Learned distributions pθ(x|M), pθ(y|M), MIP instance M

Output: Variable assignment and bound tightenings

assignment := {}

tightenings := {}

for xi ∈Variables(M) do
if xi is binary variable then

Sample px from pθ(xi|M)

Sample y from pθ(yi|M)

if y= 1 then
Add (xi := round(px)) to assignment

if xi is non-binary integer variable then
lb := lower bound of xi

ub := upper bound of xi

b0, ..., bk := binary representation of (ub− lb), b0 being most significant bit

for j ∈ {0, ..., k} do
Sample px from pθ(xi,j|M)

Sample y from pθ(yi,j|M)

if y= 1 then
if round(px) = 1 then

lb := lb+ d(ub− lb)/2e

else
ub := lb+ b(ub− lb)/2c

else
Add (lb≤ xi ≤ ub) to tightenings

break

return assignment, tightenings

We include additional results on two datasets (Google Production Packing and NN Verification,

see figures 8 and 9) where we combine Neural Diving with the Gurobi solver (Gurobi Optimization

2020): we assign variables in the same way, but use Gurobi instead of SCIP to solve the remaining

problem. The reported results are in non-calibrated time as we do not have access to the Gurobi

internals and cannot report the calibrated time during solving.

6.3.1. Finding incumbents to open MIPLIB instances In addition to evaluating Neural

Diving on the datasets from Table 1, we also applied a modification of our approach on solving open

instances from the MIPLIB 2017 Collection Set. These instances are classified as open, because

no optimal solution is known: Either there is no feasible solution known; or there exists a known
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Table 2 Incumbents found for open MIPLIB 2017 instances by Neural Diving. Lower objective value is better.

Instance Neural Diving Previous best

objective value objective value

milo-v12-6-r1-75-1 1153756.398 1153880

neos-1420790 3121.29 3121.42

xmas10-2 -497 -495

feasible solution (incumbent), but it does not match any known dual bound. In this sense, these

instances are the hardest problems that the MIPLIB 2017 Collection Set offers.

Apart from their inherent hardness, these instances also impose an additional challenge to our

learning-based approach: The set of instances is almost entirely heterogeneous, in that there are

only a handful of related instances available per problem, if at all. Our approach of learning a

domain-specific primal heuristic hence needed to be adapted. To tackle this challenge, we built a

training set for each attempted open instance which should represent the problem distribution of

the target instance. More specifically, for a given target instance, we generated up to 500 similar

instances through randomly applying a mix of the following manipulations: (1) Randomly dropping

constraints of the target instance, and (2) fixing a random subset of variables to the previous

incumbent. To generate each such instance, we applied 10 iterations of each step (1) and (2) on

the original target instance.

After creating such a training set for each target instance, we apply our approach as described

in earlier sections: We trained a separate GNN for each target instance, using the generated train-

ing set, with label solutions found on the training set using SCIP. After training, we used the

corresponding GNN to produce up to 10 partial assignments to the target instance (as described

in Section 6.2.1), and used Gurobi to solve the sub-MIPs defined by the partial assignments. For

three open instances, this approach yielded new incumbents that were not known before. Table 2

shows the improved objective values compared the previous best known solution.

7. Neural Branching

A branch-and-bound procedure has two decisions to make every iteration: which leaf node to

expand, and which variable to branch on. In this work we focus on the latter. The quality of the

variable selection decision can have a large impact on the number of steps taken by branch-and-

bound to solve a MIP (Achterberg et al. 2005, Glankwamdee and Linderoth 2011, Schubert 2017,

Yang et al. 2019). We use a deep neural network to learn a variable selection policy by imitating

the actions of a node-efficient, but computationally expensive, expert. By distilling the policy of

the expensive expert into the neural network we seek to maintain approximately the same decision
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quality but substantially reduce the time taken to make the decision. The decision at a given tree

node is entirely local to that node, so a learned policy only needs to have a representation of the

node as input, rather than the entire tree, which makes it more scalable.

7.1. Expert policy

We would like an expert policy that solves MIPs by building small branch-and-bound trees, since

such an expert is making good branching decisions. Among the many branching policies proposed

in the optimization literature (see, e.g., Achterberg et al. (2005)) none provably achieve the smallest

trees, but empirically full strong branching (FSB) (Achterberg et al. 2005) tends to use fewer steps

than competing approaches. It performs one-step lookahead search by simulating one branching

step for all candidate variables and picking the one that provides the largest improvement in the

dual bound, as determined by the solution to the linear program at the new node. (A generalization

to k-step lookahead search can be found in Glankwamdee and Linderoth (2011), Schubert (2017).)

This requires solving 2×ncands linear programs, where ncands is the number of possible branching

candidates at a given step of branch-and-bound. Concretely, denote by x? the solution to the LP

relaxation of (1) at the current node we are branching from with variable constraint vectors l and

u, i.e., l≤ x? ≤ u. Then for each variable candidate i, FSB needs to solve the following two LPs:

minimize c>xup

subject to Axup ≤ b

l(i) ≤ xup ≤ u

minimize c>xdown

subject to Axdown ≤ b

l≤ xdown ≤ u(i)

(18)

over variables xup ∈ Rn and xdown ∈ Rn, where l
(i)
i = dx?i e and u

(i)
i = bx?i c, and other entries of l(i)

and u(i) are unchanged from their values at the current node, l and u. It combines the optimal

values of these LPs into a score for that candidate, and it uses those scores to decide which variable

to branch on.

For practical MIP solving FSB’s per-step computational cost is often so high that it can be

used only for a few branch-and-bound steps before the running time becomes prohibitively high.

SCIP’s default variable selection policy, reliable pseudocost branching (RPB) (Achterberg et al.

2005), uses FSB for a small number of steps at the start of branch-and-bound and switches to a

heuristic with lower per-step cost for the subsequent steps. But an expert policy used as the target

for imitation learning can afford a higher per-step cost. The expert is only used to generate training

data offline as a one-time expense by running it on a training set of MIPs and recording its inputs

and outputs at each step. Even then, on large-scale instances (e.g., with > 105 variables), offline

data generation can be prohibitively slow, which prevents learning approaches from scaling to such

instances. Therefore we speed up the expert policy by exploiting GPUs, as explained next.
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Figure 10 Histogram of the number of imitation learning examples, where each example is a node in a branch-

and-bound search tree, generated by the ADMM expert and the Vanilla Full Strong Branching expert

on the training sets for Google Production Packing and MIPLIB in the same time limit.

7.1.1. ADMM batch LP solving SCIP by default uses the LP solver SOPLEX (Gamrath

et al. 2020) based on the simplex algorithm (Dantzig 1998) for solving the linear programs aris-

ing from FSB. Although in principle the simplex algorithm can be parallelized, it is not easy to

batch the computation together for several LPs that are closely related (and therefore leverage a

GPU), and consequently SOPLEX simply solves the LPs sequentially on CPU. In order to scale

to a large number of candidate variables at a reasonable cost we wrote our own batch LP solver

using the alternating directions method of multipliers (ADMM) (Boyd et al. 2011), based on the

Splitting Conic Solver (SCS) algorithm for cone programs (O’Donoghue et al. 2016, O’Donoghue

2020). This solver can simultaneously handle many LPs in a batch that we process on GPU. This

can (approximately) solve all the LPs in full strong branching substantially faster than running

SOPLEX sequentially. Moreover, since we are using this solver merely to produce training data, we

can tune the algorithm parameters with the primary goal of producing smaller search trees, even

at the cost of some data generation time. It is the output produced by this ADMM-based policy

that we will train a graph neural network to imitate. The graph neural network is able to produce

actions that are close enough to the policy of the ADMM expert to produce small search trees,

but at a fraction of the computational cost. We provide full details in the Appendix, section 12.5.

To demonstrate the improved scalability of the expert data generation, we compare the ADMM

expert to the expert used by Gasse et al. (2019) called Vanilla Full Strong Branching (VFSB) on

Google Production Packing and MIPLIB. VFSB is a modified version of SCIP’s FSB implementa-

tion that is still performed sequentially but disables its ‘side effects’, i.e., changes to the solver state

not directly due to a branching decision itself, but due to information gained during the lookahead

search over branching candidates. Figure 10 shows a histogram of the number of variables in each

branch-and-bound node generated by the two experts within 60 hours, on nodes with the largest

number of variables for both datasets (> 9000 variables for Google Production Packing and > 105
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variables for MIPLIB). The ADMM expert generates 31.7× and 1.6× more data on nodes with

the largest number of variables for Google Production Packing and MIPLIB, respectively. Across

the full range of the number of variables, the ADMM expert generates 12.1× and 1.4× more data

on Google Production Packing and MIPLIB, respectively. The largest node that the VFSB expert

manages to generate data from on MIPLIB has 3.4×105 variables, while the ADMM expert is able

to generate data from nodes with almost 106 variables.

7.2. Imitation Learning

Imitation learning is the name given to the broad family of algorithms that seek to learn the

policy of an expert, given examples of expert behavior. In most cases, and in this paper, this is

formulated as a supervised learning problem. We consider three variants: 1) cloning an expert

policy (Pomerleau 1989, Bain and Sammut 1995) 2) distillation with random moves, and 3) DAgger

(Ross et al. 2011). Distillation is the simplest of the three and it simply attempts to learn to

predict the outputs of the expert at each node. Distillation is not robust to shifts away from the

expert’s state distribution. This is particularly problematic in the case of branching as mistakes

near the root can cause the subsequent nodes visited in the search tree to be very different than

those seen during training, since the expert never visited those nodes. Mixing random moves with

expert moves is a simple heuristic that can alleviate this problem to some degree. When running

the expert we take a random action with probability 10% at each node. We can run the expert

many times on each training MIP generating slightly different data each time, thereby increasing

the total amount of training data available. In all our experiments we did this five times for each

MIP. DAgger is another, more involved, procedure where we train an agent using distillation, run

it in a branch-and-bound procedure to make decisions, but also compute the expert outputs at

each step to use as targets for learning. This produces one step of DAgger data upon which we can

re-train the agent. In theory this procedure can be repeated using the new agent trained on the

previous agent DAgger data, but in this manuscript we only consider a single iteration of DAgger.

In our experiments, we treat the choice of the three imitation learning variants as a hyperpa-

rameter to tune for each dataset. We generate data and train policies using all three variants for

each dataset, and we select the policy that achieves the lowest average dual gap on the validation

set instances in a 3 hour time limit. The selected policy is then evaluated on the test set to report

results.

7.3. Implementation details

The ADMM expert solves a pair of LPs for each branching candidate (the ‘up’ and ‘down’ branches).

Let us denote by OPTup
i and OPTdown

i the (estimated) optimal values of the LP for the up and
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down branches respectively for candidate i, and denote by OPT the objective value of the LP at

the node we are branching from. We combine these numbers into a single score for each variable

defined as

si = (OPTup
i −OPT + ε)(OPTdown

i −OPT + ε) (19)

where ε = 10−4 (this is essentially the product rule from Achterberg (2009)). Given a set C of

candidate variables for branching, we convert their scores into a categorical distribution over the

candidates using

pexperti =
si∑
c∈C sc

.

On the training set of MIPs we ran the ADMM expert, with random moves or initialized using

DAgger as appropriate, and logged the expert scores taken at each node (we did not log the action

if it was selected randomly or selected by the agent in the DAgger setting - only the ADMM expert

action was ever logged). This provides our training dataset for the imitation learning agent.

The neural network policy for variable selection has the same graph convolutional network archi-

tecture described in section 3.2. It conditions on a leaf node of the branch-and-bound tree selected

by SCIP to branch on. As the node itself is a MIP, it can be represented using the bipartite graph

representation described in section 3.1. Its output is a categorical distribution over the set of can-

didates C. Let M be the MIP bipartite graph representation of the leaf node, vc be the embedding

computed by a graph convolutional network for the bipartite graph node for the branching candi-

date variable xc, as described in section 3.2, and φ be the learnable parameters of the policy. The

probability pφ(xc|M) of selecting xc for branching at the node is given by:

tc = MLP(vc;φ), (20)

pφ(xc|M) =
exp(−tc)∑
c′∈C exp(−tc′)

. (21)

When training, the neural network receives a batch of node features with the associated expert

scores and produces a set of probabilities pgraphnet for each node in the batch by passing the

activations of the last layer through a softmax. We used batch size 8 sampled uniformly at random

from the training dataset. We tried a variety of losses and found that negative cross-entropy loss

performed best on average, which is given by

L(φ) =
∑
c∈C

pexpertc log pφ(xc|M).

The loss is minimized using ADAM (Kingma and Ba 2014) with a learning rate of 10−4. Figure 16 in

the appendix shows that imitation learning succeeds to accurately approximate the expert policy,

both on the training and test sets.
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7.4. Results

We evaluate the learned branching policy on the task of optimizing the dual bound. As explained

in section 5, for comparison we use the dual gap γd(t) with respect to a pre-computed best known

primal bound p? as a function of time. The gap is averaged over all MIPs in the test set of a

dataset.

Figure 11 shows the average dual gap curves for Neural Branching and Tuned SCIP. We also

compare to SCIP’s Full Strong branching policy (run with all SCIP parameters set to default,

except the branching policy) as a node-efficient baseline. Neural Branching achieves significantly

smaller average dual gap for the same running time on four out of six datasets. (Note the log

scale of the y-axis.) MIPLIB and Google Production Planning are the only datasets where Neural

Branching is not the best, but it is still comparable to Tuned SCIP. The improvements given by

Neural Branching can be substantial – e.g., its average dual gap is about 7× better on CORLAT,

20× better on Neural Network Verification, and 2× better on Electric Grid Optimization, compared

to Tuned SCIP at large time limits. On Google Production Packing, Neural Branching is better

at intermediate times (e.g., about 1.5× better at 103 seconds), with Tuned SCIP catching up

eventually.

Figure 12 shows survival plots computed by applying a dataset’s target optimality gap to the

dual gap of each test set MIP instance. They confirm the conclusions from figure 11 – Neural

Branching solves a higher fraction of test instances consistently across all time limits on all datasets

except Google Production Planning and MIPLIB.
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Figure 11 Average dual gap with respect to a pre-computed best known primal bound as a function of running

time on the test set of benchmark datasets.
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Figure 12 Survival plots computed by applying a dataset’s target optimality gap to the dual gap of each test set

MIP instance.

8. Joint Evaluation

We now combine Neural Branching and Neural Diving into a single solver. As we shall see, this

results in significant speedups over Tuned SCIP. We use the learned heuristics by integrating them

into SCIP via the interface provided by PySCIPOpt (Maher et al. 2016). We consider all four

possible ways of combining Neural Branching and Neural Diving with SCIP: 1) Tuned SCIP alone,

2) Neural Branching + Neural Diving (Sequential) uses both neural heuristics, 3) Neural Branching

uses only the learned branching policy, and 4) Tuned SCIP + Neural Diving (Sequential) uses

only the sequential version of Neural Diving. When Neural Diving (Sequential) is used as a primal

heuristic, we disable all built-in primal heuristics of SCIP.

To make a comparison based on Neural Diving fairer in terms of compute resources, we only

consider its sequential version here. For a single MIP solve, Neural Diving (Sequential) and Neural
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Branching each use a CPU core and a GPU. So Neural Branching + Neural Diving (Sequential)

uses two cores and two GPUs. SCIP uses only one core and cannot use GPUs. Note that this

means Tuned SCIP uses one less core than any of the neural solvers. The best strategy for using

multiple cores with SCIP remains open. A simple approach to use K cores is to solve K copies

of the instance with K random seeds to exploit seed-dependent performance variability. We defer

such a comparison to future work.

For each expert we solve each MIP in the test dataset five times, with five different seeds for

SCIP. We present the primal-dual gap γpd(t) (see section 5) averaged over each dataset’s test MIPs

as a function of calibrated time. We also present survival plots that show the fraction of test MIPs

solved within the required dataset-specific optimality gap as a function of calibrated time.

8.1. Results

Figure 13 shows the average primal-dual gap curves as a function of running time. In all cases

a neural MIP solver significantly outperforms Tuned SCIP. (Note the log scale of the y-axis.)

The average primal-dual gap is about six orders of magnitude better than Tuned SCIP on Neural

Network Verification at large time limits. It is about 10× better on Google Production Packing,

2.5× better on Google Production Planning and Electric Grid Optimization, and 2× better on

MIPLIB. Neural Branching + Neural Diving (Sequential) performs consistently well, being the best

or near-best across all datasets. Tuned SCIP + Neural Diving (Sequential) is the best or near-best

on all datasets except Neural Network Verification and Electric Grid Optimization. Optimizing the

dual bound is the main challenge on those two datasets, which explains the strong performance of

Neural Branching on them (and confirmed by the dual gap results in section 7.4).

Figure 14 shows the survival plots as a function of running time. They further confirm the

observations from figure 13, with a neural solver solving a higher fraction of test set problems at a

given time limit than Tuned SCIP. On Google Production Packing the number of problems solved

more than doubles compared to Tuned SCIP at the largest time limit we tried. On MIPLIB, about

23% more problems are solved than Tuned SCIP at the largest time limit. Again, Neural Branching

+ Neural Diving (Sequential) is the most consistent neural solver by being the best or near-best

on all datasets.

Together, the results show that learning can be used to significantly improve a strong solver such

as SCIP. The improvements are seen across different problem scales and applications. Surprisingly,

learning improves performance even on MIPLIB, a heterogeneous dataset combining many appli-

cations that a priori would not be considered similar enough to have sufficient shared structure for

learning to exploit. That the improvements are observed across diverse settings confirms the broad

usefulness of learning.
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Figure 13 Primal-dual gap achieved by various combinations of primal heuristics and variable selection policies

as a function of running time on the benchmark datasets. The gap is computed for each MIP in the

test set of each dataset and then aggregated using the average.

A further comparison with respect to the Penalized Average Runtime metric can be found in

Appendix section 12.4. The overall conclusions remain the same.

9. Related Work

Learning and MIP Primal Heuristics: Learning has previously been used to switch among an

ensemble of existing primal heuristics during a branch-and-bound run. Khalil et al. (2017b) learn a

binary classifier offline to predict whether applying a primal heuristic at a branch-and-bound node

will succeed in finding an incumbent. Hendel (2018) formulate a multi-armed bandit approach to

learn a switching policy online. Neural Diving constructs a new primal heuristic specifically for a
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Figure 14 Survival plots with respect to calibrated running time for various combinations of primal heuristics

and variable selection policies as a function of running time on the benchmark datasets.

given application. This can be particularly powerful if none of the existing heuristics are well-suited

for the application.

Several works consider learning neighborhood search policies (Addanki et al. 2020, Hottung

and Tierney 2019, Song et al. 2020). Given a feasible point, a learned policy is used to modify

the assignment for a subset of variables such that the resulting feasible assignment has a lower

objective. In these works the learned policy is used to either select the variables to be modified, or

to assign new values to an already selected subset of variables. They require a feasible assignment

as input, while Neural Diving does not.

Learning to predict variable values in a MIP and combining the predictions with a solver has

been studied before. Ding et al. (2020) trains a model that takes a MIP as input and predicts

values for a subset of its binary variables. This is then used to define an additional constraint
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that any solution be within a pre-specified Hamming distance from the predicted values, which

can significantly reduce the search space and speed up a MIP solver. Training labels are generated

by iteratively improving a feasible assignment and selecting only the subset of binary variables

whose values are stable across iterations as prediction targets. Results are presented on several

synthetic datasets. Xavier et al. (2020) learns to warm start a MIP solver specifically for the electric

grid unit commitment problem. They use a k-Nearest Neighbor binary classifier to predict values

for a subset of binary variables in the MIP. Assuming a fixed grid topology and a fixed set of

power plants allows them to use a MIP representation with constant dimensionality and a pre-

defined distance metric to identify neighbors. Our work differs significantly from both of these: 1)

the generative modelling formulation provides a principled approach to capturing the uncertainty

in variable values and exploiting it to generate several sub-problems to find high-quality feasible

assignments, 2) it handles general MIPs (varying sizes, non-binary integers), and 3) we present

results on diverse real-world applications.

Learning and MIP Branching Heuristics: Several works have used imitation learning to train

a branching policy to imitate (a variant of) Full Strong Branching. Khalil et al. (2016) learns to

imitate Full Strong Branching for a single instance, using data collected as it is being solved. They

apply a learning-to-rank formulation and handcrafted features. Similarly, Alvarez et al. (2017)

learns a regression model to predict the scores computed by Full Strong Branching for candidate

variables, again using handcrafted features. Neither of these works report current state-of-the-

art results for the learned policies. Neural Branching builds on the work by Gasse et al. (2019),

which trains a Graph Convolutional Network to imitate decisions by Full Strong Branching. The

main differences are 1) our use of the ADMM-based expert to scale up Full Strong Branching to

large instances, and 2) extensive evaluation on real-world applications and significant performance

improvements over SCIP.

More recently, Zarpellon et al. (2020) show that using a representation of the branch-and-bound

tree (rather than that of just a single node) can improve the generalization of a learned branching

policy. Gupta et al. (2020) obtain computational improvements similar to Gasse et al. (2019) in

the setting of CPU-restricted machines by using an expensive graph network only at the root node

of the branch-and-bound tree and a cheaper MLP elsewhere.

Other Learning Approaches for MIP Solvers: Learning has been used to automatically tune

parameters for MIP solvers. Algorithm Configuration (Ansótegui et al. 2009, Hutter et al. 2009,

2011, Ansótegui et al. 2015) aims to find parameter values that improve aggregate performance on

a dataset of instances. For example, Hutter et al. (2011) proposes Sequential Model-based Algo-

rithm Configuration (SMAC), which iterates over three main steps: 1) evaluate the performance of

selected solver parameter values on a set of instances, 2) learn a model to predict the performance
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of given parameter values from the evaluations done so far, and 3) use the model learned so far

to select new candidate parameter values to evaluate. Results on CPLEX show that SMAC finds

parameter values that are better than the default and the values found by CPLEX’s tuning tool.

Algorithm Selection (Kotthoff 2016) aims to improve solver parameter values for a specific instance.

For example, Hutter et al. (2014) shows that it is possible to accurately predict the running time of

MIP solvers as a function of the solver parameters and the instance being solved. Such a predictor

can be used to improve the solver parameters for a specific instance. Note that learning techniques

for Algorithm Configuration and Algorithm Selection are complementary to and can be combined

with the learning of application-specific heuristics.

Learning for Combinatorial Optimization: Our work is an instance of the broader topic of

learning to solve combinatorial optimization problems. Some of the earliest works in this area are

Zhang and Dietterich (1995), Moll et al. (1999), Boyan and Moore (1997). More recently, deep

learning has been applied to the Travelling Salesman Problem (Vinyals et al. 2015, Bello et al.

2016), Vehicle Routing (Kool et al. 2019, Nazari et al. 2018), Boolean Satisfiability (Selsam et al.

2019), and general graph-structured combinatorial optimization problems (Khalil et al. 2017a, Li

et al. 2018). A survey of the topic is available by Bengio et al. (2018).

10. Conclusion

This work has demonstrated the long-held promise of machine learning to significantly improve MIP

solver performance on both large-scale real-world application datasets and MIPLIB. We believe

even bigger improvements are possible with further advances in models and algorithms.

Some promising future directions are:

• Learning to cut: Better selection and generation of cuts using learning is another potential

source of performance improvements. Tang et al. (2020) provide evidence for the usefulness of this

direction.

• Warm-starting models: The strong performance of learned models on MIPLIB suggests that

it is possible to learn heuristics that work well across diverse MIPs. This can be used to overcome

the ‘cold-start’ problem in applications where the amount of training data available early on in

an application’s life cycle may be too small to train good models. We can start by using models

trained on heterogeneous datasets and use them as a bridge to more specialized models as more

data is collected for the application.

• Reinforcement learning: Performance achieved using distillation or behavioral cloning is capped

by the best expert available, while reinforcement learning (RL) can potentially exceed it. Effi-

cient exploration, long range credit assignment, and computational scalability of learning are key

challenges in applying RL to large-scale MIPs. Addressing them can lead to bigger performance

improvements.
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12. Appendix

In the appendix we provide supplementary information which can be grouped into four strands:

1. An autoregressive model approach for Neural Diving, which produces promising initial results,

but requires too much further investigation to warrant its inclusion in the main text.

2. Further data shedding light onto the previously described Neural Brancher work from a

slightly different perspective, namely analysis results with respect to the number of nodes in the

branch-and-bound tree, and also PAR-k metrics.

3. Additional details on the ADMM batch LP solver.

4. Extended description of the datasets we used throughout the paper and of the concept of

calibrated time we used to mitigate the problems arising from trying to measure solving times on

large clusters of heterogeneous machines.

12.1. Autoregressive Models for Neural Diving

Fairly simple conditionally-independent generative models may provide enough capacity for certain

problems, especially when optimal solution is simple to predict. However, when the training set

does not contain a dense region of high-quality solutions, such a model might ultimately fail to

adequately express uncertainty and thus either learn to predict an overly narrow sub-region of the

solution space or output spread probability mass over many infeasible solutions.

One well-proven way of overcoming limitations of conditionally-independent models is to model

the desired distribution in auto-regressive way. Such a model would predict variable values sequen-

tially based on some pre-defined ordering. We tried a number of simple extensions of the basic

conditionally-independent model such as LSTM Hochreiter and Schmidhuber (1997) on top of the

pre-computed variable node embedding, but found this kind of auto-regressive dependencies not

expressive enough to provide a clear advantage over the conditionally-independent model.

Another direction we explored was to only provide auto-regressive dependencies through incre-

mentally solving the underlying LP problem as we sample and assign variable values. Thus, we first

compute the variable node embeddings {vd}Dd=1 (see section 3.2 for details). Then defining x̃(x<d)

to be an LP-solution of M with the first d− 1 variables assigned to particular values, we predict

the value of xd in the following way:

pθ(x|M) =
D∏
d=1

p(xd|xd−1, . . . , x1,M) =
D∏
d=1

Bernoulli(xd|µd), (22)

µd = MLP(vd, x̃d(x<d);θ). (23)

In practice, we do not re-compute the LP-solution after assigning each of the variables and only

do so after every K (K = 100 in the experiment below) steps by warm-starting the LP solver with

the last state of the previous solution process.
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Figure 15 Comparison between the standard conditionally-independent GNN and its autoregressive version with

incremental LP solver on Google Production Packing dataset.

Figure 15 contains a comparison between the conditionally-independent and the autoregressive

models on Google Production Packing dataset. One can see, that information encoded in incremene-

tal LP solutions does bring an improvement in terms of the average primal gap and the number of

solutions solved to optimality. However, most of the gains brought by higher-quality assignments

are outweighed by increased sampling time since sampling can no longer be done in parallel for each

of the variables. These preliminary results indicate that there is potential in further architectural

advances and leveraging more advanced features, which we leave for future work.

12.1.1. Ordering of variables In many domains, there is often a reasonably natural way

to order variables in an autoregressive model. In the case of audio and other temporal sequences,

time defines an order. In the case of images, raster scan ordering of pixels is commonly used.

In the case of integer programs, we need a way to order the binary variables. This ordering should

be invariant to row and column permutations of the integer program since such changes do not

affect the integer program. Intuitively we want a ”canonical” ordering that places variables that

are ”similar” across instances at similar positions in the ordering so that autoregressive models can

learn effectively. Unfortunately, there is no universal canonical ordering of variables that works well

for all MIPs. Instead, we list several possible ordering methods as an additional hyperparameter,

and pick the one that works best during hyperparameter sweeps. The orderings that we consider

are:

1. Input order: We can proceed through the variables in the order as they are given in the

MIP definition. Often, the ordering in which the variables are written down in the input already

places ”similar” variables close to each other.

2. Coefficient order: We can sort variables by the coefficient by which they contribute to the

objective. In some use cases, the objective coefficient of a variable encodes a semantic meaning of

importance or priority, and we can hope to use this to e.g. process the most important variables

first.
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(a) CORLAT Training Set
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(b) CORLAT Test Set
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(c) Neural Network Verification Training Set
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(d) Neural Network Verification Test Set
Figure 16 Comparison of the average dual gap achieved by the target (expert) policy and the learned policy

on training and test sets for CORLAT and Neural Network Verification. We also include the uniform

random policy as a baseline.

3. Fractionality order: We can order variables by their fractionality in the LP solutions. The

fractionality of a variable is also often used to determine variable order in diving heuristics in the

literature (see, e.g., section 3.1 of Berthold (2006)). Empirically we found this ordering to perform

the best with autoregressive models.

12.2. Imitation Accuracy of the Learned Branching Policy

How well does the learned branching policy approximate the expert policy that it is trained to

imitate? Figure 16 compares the average dual gap achieved by the expert policy and the learned

policy on both the training and test sets for CORLAT and Neural Network Verification. We

also include a policy that takes actions uniformly randomly as a baseline. The results show that

imitation learning succeeds in accurately approximating the expert policy both on training and test

sets. The learned policy is much closer to the expert than it is to the uniform random policy. The

similarity in performance between training and test sets show that the learned policy generalizes

well to unseen instances.
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Figure 17 Survival plots with respect to number of nodes for various combinations of primal heuristics and

variable selection policies as a function of running time on the benchmark datasets.

12.3. Evaluation Results with Respect to Number of Nodes

Sections 7.4 and 8 present evaluation results for Neural Branching and the combined Neural

Branching + Neural Diving solver with respect to calibrated running time. Here we present the

corresponding results with respect to number of nodes. They are shown in Figure 18. While run-

ning time is often the practically relevant resource metric, evaluating with respect to number of

nodes can provide additional insights by removing the effect of different computational costs and

hardware for the solvers being compared.

12.4. PAR-10 Results

In Table 3 we present PAR-10 results, PAR-10 refers to Penalized Average Running time with a

penalty of 10, which averages over all instances the time taken to achieve the target optimality gap
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Figure 18 Average primal-dual gap achieved on the test set by various solvers as a function of the number of

nodes.

or penalty multiplier times the time limit. In our setting we use calibrated time, and a penalty of

10 and a time limit of 10000.

As can seen in the Table 3 the winner for each dataset is an expert that contains a learned

component, supporting our claim that learning is beneficial, the most frequent winner is Neural

Branching with Neural Diving (Sequential).

Compared to Tuned SCIP, the winner per dataset has a PAR-10 result that is at least 28%

smaller (except for Google Production Planning) than the Tuned SCIP one, with a special mention

for the dataset of NN Verification, where the winner’s PAR-10 is more than 700 times better than

Tuned SCIP’s PAR-10.
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Solver CORLAT
NN Verifi-
cation

Google
Production
Packing

Electric
Grid Opti-
mization

Google
Production
Planning

MIPLIB

Full Strong 16.22 2375.76 80899.39 11223.37 57157.97 59332.45

Tuned SCIP 12.08 7812.81 80462.69 3697.81 52354.82 45685.67

Neural Branching 132.94 21.72 80856.83 2311.02 56459.14 55640.03

Tuned SCIP +
Neural Diving
(Sequential)

5.29 2813.33 58758.45 3279.35 49642.67 32572.18

Neural Branching
+ Neural Diving
(Sequential)

6.01 10.20 56738.14 2450.80 49524.11 43989.33

The PAR-10 of
the Winner
divided by Tuned
SCIP’s

0.4379 0.0013 0.7051 0.6249 0.9459 0.71296

Table 3 PAR-10 results with respect to calibrated time. Lower is better. In bold is the best one for each dataset.

12.5. ADMM Batch LP Solver

In this section we give more details about the ADMM batch LP solver we use to generate the

expert training data that the neural Branching is trained on. Consider the following composite

convex optimization problem

minimize f(x) + g(z)

subject to x= z

over variables x ∈ Rn, z ∈ Rn and where f : Rn→ R∪ {∞}, g : Rn→ R∪ {∞} are closed, proper,

convex functions. The Alternating direction method of multipliers (ADMM) (Boyd et al. 2011,

Lions and Mercier 1979, Eckstein and Bertsekas 1992) applied to this problem is the following

procedure for any ρ> 0:

xk+1 = arg minx

(
f(x) + (ρ/2)‖x− zk−λk‖22

)
zk+1 = arg minz

(
g(z) + (ρ/2)‖xk+1− z−λk‖22

)
λk+1 = λk +xk+1− zk+1.

Under benign conditions this procedure produces a sequence of iterates that converge to optimal

objective values, i.e., f(xk)+g(zk)→ f(x?)+g(z?), and ‖xk−zk‖→ 0, where x? and z? are optimal

primal points (Boyd et al. 2011, §3.2). We can write the LP relaxation of MIP (1) in a form more

amenable to ADMM:

minimize cTx+ IAx=y(x, y) + I[bl,bu](ỹ) + I[l,u](x̃)

subject to x= x̃, y= ỹ,
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over variables x, x̃ ∈Rn, y, ỹ ∈Rm, and where IX denotes the convex indicator function of set X ,

i.e.,

IX (z) =

 0 z ∈X

∞ otherwise.

When ADMM is applied to this problem it yields the following algorithm with iterates x, x̃ ∈Rn,

y, ỹ ∈Rm, λ∈Rm+n:

(xk+1, yk+1) = arg minAx=y

cTx+ ρ/2

∥∥∥∥∥∥
x
y

−
x̃k
ỹk

−
λkx
λky

∥∥∥∥∥∥
2

2


x̃k+1 = Π[l,u](x

k+1−λkx)

ỹk+1 = Π[bl,bu](y
k+1−λky)λk+1

x

λk+1
y

 =

λkx
λky

+

xk+1

yk+1

−
x̃k+1

ỹk+1

 ,
where Π[l,u](z) denotes the Euclidean projection of z onto the interval [l, u] elementwise. It turns

out that only first step is computationally challenging since it involves solving a (potentially large)

set of linear equations. Concretely, for some right-hand side r ∈Rm+n we want to solve

(xk+1, yk+1) = arg min
Ax=y

cTx+ ρ/2

∥∥∥∥∥∥
x
y

−
rkx
rky

∥∥∥∥∥∥
2

2

 .

The solution to the which is given byxk+1

yk+1

=

I AT

A −I

−1rkx− c/ρ
rky

+

 0

rky

 .
Note that the matrix to be inverted is the same for all iterations. Not only that, but the matrix

does not depend on which variable we are branching on; it is the same for all LPs we need to solve

at any given node. This means we can batch and solve all the LPs (or however many will fit into

the GPU memory) together on the GPU simultaneously. This yields significant hardware benefits

for both direct and indirect approaches to solving the linear system. Although GPUs are designed

to provide very fast dense matrix-matrix routines the sparse matrix operations make less efficient

uses of the GPU stream parallelism. However, by batching sparse matrix-vector operations into

matrix-matrix, then it is easier to keep the GPU busy and make better use of the parallelism. We

shall see that this yields very large speedups in practice.
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Figure 19 Left: Solve time vs number of LPs in a batch for the air05 MIP. Right: Histogram of speedup factors

for all MIPs in MIPLIB at root nodes.

12.5.1. GPU speedups Here we present some speedup results for our batching strategy on

a single GPU. We shall consider all possible LPs for all branching candidates at the root nodes of

all the MIPs in the MIPLIB dataset. In all cases we ran the ADMM solver for 100 iterations and

used the LP solution of the root node as a warm-start with which to initialize the ADMM solver.

First, as a concrete example, consider the air05 binary MIP which at the root node (after presolve

and any reductions that happens at the root node) has 6.1k variables, 426 constraints. The matrix

that defines the problem is 98% sparse with 43.4k non-zeros. This high sparsity is not amenable

to acceleration on GPU, however, when batched the solver can make much better use of the GPU

parallelism. In Figure 19 we show the time required to approximately solve the LPs vs batch-size

on GPU, normalized by time for (approximately) solving a single solver using the same solver. We

show that we can compute all 12.2k branch scores in roughly 10 times the cost of a single solve,

which is approximately a 1200× speedup from batching relative to solving all the LPs sequentially.

As a point of comparison, for the same set of LPs ECOS (Domahidi et al. 2013) takes about 4.5

seconds to solve each one (which is approximately the same as SOPLEX, the built-in LP solver

in SCIP, which takes 3 seconds to solve the LP at the root) so to solve all 12k LPs would require

more than 15 hours. This is far too long for use in an industrial MIP solver and significantly larger

than the ADMM batch LP solver, which finds the (approximate) solutions for all the LPs in 5.4

seconds. Next we show that this pattern holds true for the entire MIPLIB dataset. In Figure 19 we

show the histogram of this speedup across the root nodes of the entire MIPLIB dataset. If there

are n LPs to be solved at the root node, then we define the speedup factor to be

speedup =
n× (time to solve 1 LP)

time to solve n LPs in batch
.

We remove the effect of the fixed costs (e.g., transferring the data to the GPU) by subtracting

the time taken to run zero iterations, which is non-zero, from the denominator and numerator

(if we didn’t remove this time it would artificially inflate the speedup factors we would observe).
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Figure 20 Correlation of ADMM objective and true objectives at root of air05 MIP.

This figure shows that the speedup is significant across the board, averaging approximately 800×,

almost three orders of magnitude. Typically larger MIPs yield larger speedups, which also explains

the sudden drop off at around 1000× speedup, since the largest MIPs eventually become too large

for the GPU memory to handle.

12.5.2. Accuracy Warm-starting from the solution at the previous node means not many

iterations are required for reasonable accuracy, which is a typical property of ADMM. This justifies

our use of a relatively small number of ADMM iterations to ‘solve’ the problem. In Figure 20 we

plot two quantities at the root node of the air05 MIP, at which we need to solve approximately

12k LPs. On the left hand side we plot the correlation of the 12k true objective values with the

objective values returned by ADMM after 100 iterations. The true objective values were found by

solving the same LPs using the high-accuracy ECOS interior point solver (Domahidi et al. 2013)

with parser-solver CVXPY (Diamond and Boyd 2016). As we can see it converges towards one as

the number of iterations increases, but even for a handful of iterations the approximate objective

values are well correlated with the true objective values. Since the branch and bound decisions are

made using the objective values only (see (19)) this high correlation indicates that we have a strong

signal for the branch and bound decision with relatively little computational effort, and typically

only low accuracy LP objective values are required for use in FSB (Achterberg et al. 2005). On

the right we show the scatterplot of the true objective values and the objective values returned by

ADMM after 100 iterations, and we can see the high correlation visually.

12.6. Details of Datasets

The target optimality gap used for each dataset in our evaluation as SCIP’s stopping criterion for

a MIP solve is given in table 4. In the case of Neural Network Verification, the actual criterion used

in the application is to stop when the objective value becomes negative, but this is not expressible

as a constant target gap across all instances. In order to treat all datasets consistently, we have

selected a gap of 0.05.
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Table 4 Target optimality gaps for the datasets in our evaluation used as the stopping criterion for SCIP.

Dataset Target Optimality Gap

CORLAT 0

Neural Network Verification 0.05

Google Production Packing 0.01

Google Production Planning 0.03

Electric Grid Optimization 0.0001

MIPLIB 0

Table 5 Median of the number of constraints and variables (per type) for the different datasets before / after

presolving using SCIP 7.0.1.

Dataset Constraints Variables Binary Integer (non-binary) Continuous

CORLAT 470/454 466/458 100/97 0/0 366/361

NN Verification 6531/1407 7142/1629 171/170 0/0 6972/1455

Google Production Packing 36905/24495 10046/8919 3773/3437 0/0 6231/5421

Google Production Planning 11910/478 9884/404 833/119 462/119 8337/136

Electric Grid Optimization 61851/45834 60720/58389 42240/42147 0/0 18768/16623

MIPLIB 7706/4388 11090/9629 4450/3816 0/0 218/96

Figures 21 and 22 show the MIP sizes for the datasets used in our evaluation with and without

presolving using SCIP 7.0.1. Note that, among the application-specific datasets, only Google Pro-

duction Planning contains non-binary integer variables. It is also the most heterogeneous (along

with MIPLIB) in terms of instance sizes. Table 5 summarizes the characteristics of those datasets

before and after presolving with the SCIP 7.0.1 solver. The number of constraints and variables

ranges different orders of magnitude across the datasets. It is worth noting that during presolving

some instances might be deemed infeasible and, hence, dropped from the dataset.

We additionally report some key network statistics for the bipartite graphs that represent the

resulting MIPs of the presolved instances. These include: a) the average degree across all nodes, b)

the density of the bipartite graph, i.e. the number of present edges over the number of all possible

edges between the nodes, c) the maximum degree centrality for the variables nodes, and d) the

diameter of the graph, i.e. the longest among all shortest paths between any pair of nodes. The

normalized histograms for the graph characteristics are presented in Figure 23.

As mentioned in the main paper, the above datasets were randomly split into training, validation

and test sets with sizes 70%, 15% and 15%, respectively. This split is handled differently for

MIPLIB as it constitutes an externally defined ‘Benchmark Set’1. This set contains 240 MIPs on
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Figure 21 Original number of variables and constraints (before presolving) for the datasets used in our

evaluation. Application-specific datasets are shown on the left, and MIPLIB is shown on the

right.

which benchmarking results are reported for commercial and open source solvers and, therefore,

constitutes our test set. The remaining instances in MIPLIB2017 and MIPLIB2010 correspond to

our training and validation sets, respectively. Specifically, we use as the training set those instances

from the MIPLIB2017 ‘Collection Set’2 which do not belong to the ‘Benchmark Set’. Similarly,

we use as validation set the instances from MIPLIB2010 which do not belong to MIPLIB2017.

This process yields 825 training, 155 validation and 240 test non-overlapping MIPs. The CORLAT

dataset is open-source and can be accessed at https://bitbucket.org/mlindauer/aclib2/src/

master/, while the MIPLIB dataset (with the aforementioned tags) can be found at https://

miplib.zib.de/download.html.

12.7. Details of Calibrated Time

As explained in section 5, we use calibrated time to accurately measure running time of evaluation

solve tasks on a shared, heterogeneous compute cluster. For each solve task, we periodically solve

a small calibration MIP on a different thread as the solve task on the same machine. We define

the speed of the machine to be

Speed =
1

Wall clock time to solve calibration MIP
. (24)

For each periodic measurement of calibrated time, we estimate the speed K times and use the

average. K is set to be the number of samples needed to estimate mean speed with 95% confidence,

https://bitbucket.org/mlindauer/aclib2/src/master/
https://bitbucket.org/mlindauer/aclib2/src/master/
https://miplib.zib.de/download.html
https://miplib.zib.de/download.html
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Figure 22 Number of binary variables (left) and non-binary integer variables (right) versus number of

constraints after presolving using SCIP 7.0.1 for the application-specific datasets used in our

evaluation.

with a minimum of 3 samples and a maximum of 30. The elapsed calibrated time ∆tcalibrated since

the last measurement is

∆tcalibrated = Speed×∆twallclock, (25)

where ∆twallclock is the elapsed wallclock time since the last measurement. We use the MIP named

vpm2 from MIPLIB2003 Achterberg et al. (2006) as the calibration MIP.

Note that the above definition of calibrated time does not have a time unit. Instead it is (in effect)

a count of the calibrated MIP solves during the evaluation solve task. To give it a unit of seconds,

one can choose a reference machine with respect to which we want to report evaluation solve times,

accurately measure the calibration MIP’s solve time on it (without other tasks interfering), and

multiply the calibrated time in equation 25 by the reference machine’s estimated calibration MIP

solve time. The resulting quantity has a unit of seconds. It can be interpreted as the time the

evaluation solve task would have taken if it ran on the reference machine. We select Intel Xeon

3.50GHz CPU with 32GB RAM as the reference machine. We estimate the mean solving time of

the calibration MIP vpm2 for SCIP 7.0.1 on a single core to be 1.989 seconds (estimated from 1000

samples, collected after a warm up solve which is discarded). All the calibrated time results in the

paper are expressed with respect to the reference machine in seconds.

To illustrate the benefit of calibrated time, table 6 presents results for four instances from

MIPLIB 2017 (Gleixner et al. 2019) comparing 1) wallclock time measurement on a shared cluster

machine, 2) calibrated time measurement on a shared cluster machine, and 3) wallclock time
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Figure 23 Network statistics for the presolved datasets.

measurement on the reference machine. We solve a MIP to optimality using SCIP 7.0.1 1000 times

for each of these three settings. We then compute the coefficient of variation as the sample standard

deviation divided by the sample mean for the 1000 measurements. Calibrated time reduces the

coefficient of variation by about 30×, 8.3×, 7×, and 1.5×, on air05, n5-3, swath1, and dano3 3,

respectively, compared to wallclock time measurements, and brings it closer to that of the reference

machine.
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Table 6 Coefficient of variation for different time measurements on MIPs from MIPLIB 2017.

MIP Shared cluster Shared cluster Reference machine

wallclock time calibrated time wallclock time

coeff. of var. coeff. of var. coeff. of var.

air05 0.979 0.032 0.006

dano3 3 0.224 0.144 0.006

n5-3 0.318 0.038 0.007

swath1 0.623 0.087 0.010
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