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Abstract

Given a neural network, training data, and a threshold, it was known that it is NP-hard to find weights
for the neural network such that the total error is below the threshold. We determine the algorithmic
complexity of this fundamental problem precisely, by showing that it is ∃R-complete. This means that
the problem is equivalent, up to polynomial time reductions, to deciding whether a system of polynomial
equations and inequalities with integer coefficients and real unknowns has a solution. If, as widely
expected, ∃R is strictly larger than NP, our work implies that the problem of training neural networks is
not even in NP.

1 Introduction

Training neural networks is a fundamental problem in machine learning. An (artificial) neural network is
a brain-inspired computing system. For an example consider Figure 1. Neural networks are modelled by
directed acyclic graphs where the vertices are called neurons. The source nodes are called the input neurons
and the sinks are called output neurons, and all other neurons are said to be hidden. A network computes in
the following way: Each input neuron s receives an input signal (a real number) which is sent through all
out-going edges to the neurons that s points to. A non-input neuron v receives signals through the incoming
edges, and v then processes the signals and transmits a single output signal to all neurons that v points to.
The values computed by the output neurons are the result of the computation of the network. A neuron v
evaluates the input signals by a so-called activation function ϕv. Each edge has a weight that scales the
signal transmitted through the edge. Similarly, each neuron v often has a bias bv that is added to the input
signals. Denoting the unweighted input values to a neuron v by x ∈ Rk and the corresponding edge weights
by w ∈ Rk, then the output of v is given by ϕv(〈w,x〉+ bv).

During a training process, the network is fed with input values for which the true output values are known.
The task is then to adjust the weights and the biases so that the network produces outputs that are close to
the ground truth specified by the training data. We formalize this problem in the following definition.

Definition 1 (Training Neural Networks). The problem of training a neural network (NN-Training) has
the following inputs explained above:

• A neural network architecture N = (V,E), where some S ⊂ V are input neurons and have in-degree 0
and some T ⊂ V are output neurons and have out-degree 0,
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Figure 1: The architecture of a neural network with one layer of hidden neurons. As an example of a training
problem, we are given the data points D = {(1, 2, 3; 1, 2, 3), (3, 2, 1; 2, 4, 6)}, the identity as the activation
function ϕ for every neuron, the threshold δ = 10, and the mean of squared errors as cost function. Are there
weights and biases such that the total cost is below δ?

• an activation function ϕv : R −→ R for each neuron v ∈ V \ S,
• a cost function c : R2|T | −→ R≥0,
• a threshold δ ≥ 0, and
• a set of data points D ⊂ R|S|+|T |.
Here, each data point d ∈ D has the form d = (x1, . . . , x|S|; y1, . . . , y|T |), where x(d) = (x1, . . . , x|S|)

specifies the values to the input neurons and y(d) = (y1, . . . , y|T |) are the associated ground truth output
values. If the actual values computed by the network are y′(d) = (y′1, . . . , y

′
|T |), then the cost is c(y(d),y′(d)).

The total cost is then
C(D) =

∑
d∈D

c(y(d),y′(d)).

We seek to answer the following question. Do there exist weights and biases of N such that C(D) ≤ δ?

We say that a cost function c is honest if it satisfies that c(y(d),y′(d)) = 0 if and only if y(d) = y′(d).
An example of an honest cost function is the popular mean of squared errors:

c(y(d),y′(d)) =
1

|T |

|T |∑
i=1

(yi − y′i)2.

1.1 The Result

As our main result, we determine the algorithmic complexity of the fundamental problem NN-Training.

Theorem 2. NN-Training is ∃R-complete, even if

• the neural network has only one layer of hidden neurons and three output neurons,
• all neurons use the identity function ϕ(x) = x as activation function,
• any honest cost function c is used,
• each data point is in {0, 1}|S|+|T |,
• the threshold δ is 0, and
• there are only three output neurons.

We show that NN-Training is contained in ∃R in Section 2 and prove its hardness in Section 3. Section 4
discusses how our proof could be modified to work with the ReLu activation function. Section 5 contains
a discussion and open problems. In the remainder of the introduction, we familiarize the reader with the
complexity class ∃R, discuss the practical implications of our result, and give an overview of related complexity
results on neural network training.
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1.2 The Existential Theory of the Reals

In the problem ETR, we are given a logical expression (using ∧ and ∨) involving polynomial equalities and
inequalities with integer coefficients, and the task is to decide if there are real variables that satisfy the
expression. One example is

∃x, y ∈ R :(x2 + y2 − 6x− 4y + 13)·
(y4 − 4y3 + x2 + 6y2 + 2x− 4y + 2) = 0∧
(x ≥ 4 ∨ y > 1).

This is a yes instance because (x, y) = (3, 2) is a solution. Due to deep connections to many related fields,
ETR is a fundamental and well-studied problem in Mathematics and Computer Science. Despite its long
history, we still lack algorithms that can solve ETR efficiently in theory and practice. The Existential
Theory of the Reals, denoted by ∃R, is the complexity class of all decision problems that are equivalent
under polynomial time many-one reductions to ETR. Its importance is reflected by the fact that many
natural problems are ∃R-complete. Famous examples from discrete geometry are the recognition of geometric
structures, such as unit disk graphs [22], segment intersection graphs [21], stretchability [24, 28], and order
type realizability [21]. Other ∃R-complete problems are related to graph drawing [20], Nash-Equilibria [13, 5],
geometric packing [3], the art gallery problem [2], non-negative matrix factorization [27], and geometric
linkage constructions [1]. We refer the reader to the lecture notes by [21] and surveys by [26] and [10] for
more information on the complexity class ∃R.

1.3 Practical Implications of ∃R-hardness

The ∃R-completeness of a problem gives us a better understanding of the inherent difficulty of finding exact
algorithms for it. Problems that are ∃R-complete often require irrational numbers of arbitrarily high algebraic
degree or doubly exponential precision to describe valid solutions. These phenomena make it hard to find
efficient algorithms. We know that NP ⊆ ∃R ⊆ PSPACE [9], and both inclusions are believed to be strict,
although this remains an outstanding open question in the field of complexity theory. In a classical view of
complexity, we distinguish between problems that we can solve in polynomial time and intractable problems
that may not be solvable in polynomial time. Usually, knowing that a problem is NP-hard is argument
enough to convince us that we cannot solve the problem efficiently. Yet there is a big difference between
NP-complete problems and ∃R-complete problems, assuming that NP 6= ∃R. To give a simple example,
NP-complete problems can be solved in a brute-force fashion by exhaustively going through all possible
solutions. Although this method is not very sophisticated, it is good enough to solve small sized instances.
The same is not possible for ∃R-complete problems due to their continuous nature.

The difficulty of solving ∃R-complete problems is nicely illustrated by the problem of placing eleven unit
squares into a minimum sized square container without overlap. Whether a given square can contain eleven
unit squares can be expressed as an ETR-formula of modest size, so if such formulas could be solved efficiently,
we would know the answer (at least to within any desired accuracy). Despite the apparent simplicity of the
problem, it is only known that the sidelength is between 2 + 4/

√
5 ≈ 3.788 and 3.878 [14].

By now, strong algorithmic methods and tools are known with which we can find optimal solutions to
large scale instances of NP-complete problems. We highlight here FPT algorithms, ILP solvers, and SAT
solvers, to name just a few popular approaches. We are completely lacking similarly efficient approaches to
solve ∃R-complete problems. Here, it is most common to use some type of gradient descent method, which,
in the context of neural networks, includes the backpropagation algorithm. Unfortunately, gradient descent
methods have very weak performance guarantees in general. Specifically, it is difficult to distinguish between
local and global optima.

It is interesting to find or disprove the existence of methods that outperform gradient descent methods for
the problem NN-Training. For instance, methods with the convergence speed of ILP solvers would be a
great asset, saving money, energy, and time, and returning solutions of a higher quality. However, our results
indicate that this is not achievable in general.
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1.4 Previous Hardness Results for NN-Training

It has been known for more than three decades that it is NP-hard to train various types of neural networks
for binary classification [6, 23, 18], which means that the output neurons use activation functions that map
to {0, 1}. The first hardness result for networks using continuous activation functions appears to be by [17],
who showed NP-hardness of training networks with two hidden neurons using sigmoidal activation functions
and one output neuron using the identity function. [16] and [29] showed hardness of training networks with
no hidden neurons and a single output neuron with sigmoidal activation function. The latter paper contains
an informative survey of the numerous hardness results that were known at that time.

Recently, the attention has been turned to networks using the so-called ReLU function [x]+ = max{0, x}
as activation function due to its extreme popularity in practice. [15] and [11] showed that it is even NP-hard
to train a network with no hidden neurons and a single output neuron using the ReLU activation function.
For hardness on other simple architectures using the ReLU activation function, see [8, 7, 4].

In order to prevent overfitting, we may stop training early, although the costs could still be reduced
further. In the context of training neural networks, overfitting can be regarded as a secondary problem, as
the problem only emerges after we have been able to train the network on the data at all. Thus, none of the
complexity theory papers on this subject address overfitting.

Besides training neural networks, there exist other NP-hard problems related to neural networks, e.g.,
continual learning [19].

Some of these training problems are not only NP-hard, but also contained in NP, implying that they
are NP-complete. For instance, consider a fully-connected network with one hidden layer of neurons and
one output neuron, all using the ReLU activation function. Here, it is not hard to see that the problem of
deciding if total cost δ = 0 can be achieved is in NP. We will show that the network does not need to be
much more complicated before the training problem becomes ∃R-complete, even when δ = 0.

2 Membership

In order to prove that NN-Training is ∃R-complete, we show that the problem is contained in the class
∃R and that it is ∃R-hard (just as when proving NP-completeness of a problem). The first part is obtained
by proving that NN-Training can be reduced to ETR, while the latter is to present a reduction in the
opposite direction. To see that NN-Training ∈ ∃R, we use a recent result by Erickson et al. [12]. Given an
algorithmic problem, a real verification algorithm A has the following properties. For every yes-instance I,
there exists a witness w consisting of integers and real numbers. Furthermore, A(I, w) can be executed on the
real RAM in polynomial time and the algorithm returns yes. On the other hand, for every no-instance I and
any witness w the output A(I, w) is no. [12] showed that an algorithmic problem is in ∃R if and only if there
exists a real verification algorithm. Note that this is very similar to how NP-membership is usually shown.
The crucial difference is that a real verification algorithm accepts real numbers as input for the witness and
works on the real RAM instead of the integer RAM.

It remains to describe a real verification algorithm for NN-Training. As a witness, we simply describe
all the weights of the network. The verification then computes the total costs of all the data points and
checks if it is below the given threshold δ. Clearly, this algorithm can be executed in polynomial time on the
real RAM.

Note that if the activation function is not piecewise algebraic, e.g., the sigmoid function ϕ(x) = 1/1+e−x,
it is not clear that we have ∃R-membership as the function is not supported by the real RAM model of
computation [12].

3 Reduction

In the following, we describe a reduction from the ∃R-hard problem ETR-INV to NN-Training. As a
first step, we establish ∃R-hardness of ETR-INV using previous work. As the next step, we define the
intermediate problem Restricted Training. In the main part of the reduction, we describe how to encode
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variables, subtraction operations as well as inversion and addition constraints in Restricted Training.
Finally, we present two modifications that enable the step from Restricted Training to NN-Training.

3.1 Reduction to ETR-INV-EQ

In order to define the new algebraic problem ETR-INV-EQ, we recall the definition of ETR-INV. An
ETR-INV formula Φ = Φ(x1, . . . , xn) is a conjunction (

∧m
i=1 Ci) of m ≥ 0 constraints where each con-

straint Ci with variables x, y, z ∈ {x1, . . . , xn} has one of the forms

x+ y = z, x · y = 1.

The first constraint is called an addition constraint and the second is an inversion constraint. An instance I
of the ETR-INV problem consists of an ETR-INV formula Φ. The goal is to decide whether there are real
numbers that satisfy all the constraints.

Abrahamsen et al. [3] established the following theorem. Note that their definition of ETR-INV formulas
asks for a number of additional properties (e.g., restricting the variables to certain ranges) that we do not
need for our purposes, so these can be omitted without affecting the correctness of the following result.

Theorem A ([3], Theorem 3). ETR-INV is ∃R-complete.

For our purposes, we slightly extend their result and define the algorithmic problem ETR-INV-EQ in
which each constraint has the form

x±1 + y±1 − z±1 = 0.

We call a constraint of the above form a combined constraint, as it is possible to express both inversion and
addition constraints using combined constraints. To see that ETR-INV-EQ is also ∃R-complete, we show
how to transform an instance of ETR-INV into an instance of ETR-INV-EQ. First, note that we can
assume that every variable is contained in at least one addition constraint; otherwise, we can add a trivially
satisfiable addition constraint, i.e., x+ y = y for a new variable y. Furthermore, consider the case that a
variable x of Φ appears in (at least) two inversion constraints, i.e., there exist two constraints of the form
x · y1 = 1 and x · y2 = 1. This implies y1 = y2 and we can replace all occurrences of y2 by y1. Thus, we may
assume that each variable appears in at most one inversion constraint. Now, if there is an inversion constraint
x · y = 1, we replace all occurrences of y (in addition constraints) by x−1. In this way, the inversion constraint
becomes redundant and we can remove it. We are then left with a collection of combined constraints. This
proves ∃R-completeness of ETR-INV-EQ.

In the following, we reduce ETR-INV-EQ to NN-Training.

3.2 Definition of Restricted Training

We start by defining the algorithmic problem Restricted Training. Restricted Training differs from
NN-Training in the following three properties:

• Some weights and biases can be predefined in the input.
• The output values of data points may contain a question mark symbol ‘?’.
• When computing the total cost, all output values with question marks are ignored.

Figure 2 displays an example of such an instance.
In the rest of the reduction, we will use the identity as activation function, and threshold δ = 0. The

reduction works for all honest cost functions.

3.3 High-level Architecture Description

The overall network consists of two layers, as depicted in Figure 2. Note that these layers are not fully
connected. Some weights of the first layer will represent variables of the ETR-INV-EQ; other weights will
be predefined by the input and some will have purely auxiliary purposes. Furthermore all biases are set to 0.
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Figure 2: The architecture of an example instance of Restricted Training. Further, the input consists of
the data points d1 = (0, 1, 1; 1, 1, ?) and d2 = (2, 1, 0; ?, ?, 0), the activation function ϕ(x) = x, the threshold
δ = 7, and the Manhattan norm (‖ · ‖1) as the cost function. If we set the weights to (x, y, z) = (1, 0,−1), we
easily compute a total error of 4 + 2 = 6, which is below the threshold of 7. Thus (x, y, z) = (1, 0,−1) is a
valid solution.

In the following, we describe the individual gadgets to represent variables, addition and inversion. Then
we show how we combine these parts. Later, we modify the construction to remove preset weights, biases and
question marks. At last, we will sketch how this reduction can be modified to work with ReLU functions as
activation functions.

3.4 Subtraction Gadget

The subtraction gadget consists of five neurons, four edges, two prescribed weights and one data point. See
Figure 3 for an illustration of the network architecture of the subtraction gadget. The data point d = (1, 1; 0)
enforces that the constraint x = −y, as can be easily calculated.

x

y

1

1

Figure 3: The architecture of the subtraction gadget. The data point d = (1, 1; 0) enforces that the constraint
x = −y.

3.5 Inversion Gadget

The purpose of the inversion gadget is to enforce that two variables are the inverse of one another. It consists
of six vertices, five edges, two prescribed weights and two data points; for an illustration of the architecture
see Figure 4. A simple calculation shows that the data point d1 = (0, 1, 0; 1) enforces the constraint y · z = 1,
while the data point d2 = (1, 0, 1; 0) enforces the constraint x− z = 0. It follows that x · y = 1.
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Figure 4: The architecture of the inversion gadget. The data points d1 = (0, 1, 0; 1) and d2 = (1, 0, 1; 0)
enforce y · z = 1 and x− z = 0, respectively, implying that x · y = 1.

3.6 Variable Gadget

For every variable, we build a gadget such that there exist four weights on the first layer with the values
x,−x, 1/x,−1/x.

w

x

1

1

y

z

1

1

a

a

b

1

s1

s2

s3

s4

s5

v

−1

Figure 5: The variable gadget.

The variable-gadget is a combination of two subtraction gadgets and one inversion gadget. In total it
has five input neurons, four middle neurons and two output neurons, see Figure 5 for an illustration of
the architecture and the initial weights. We denote the input neurons by s1, . . . , s5. We denote the output
neurons by a, b. The output neuron a is drawn twice for clarity of the drawing. We have the data points
d1 = (1, 1, 0, 0, 0; 0, ?), d2 = (0, 0, 1, 1, 0; 0, ?), d3 = (0, 0, 1, 0, 0; ?, 1), and d4 = (0, 1, 0, 0, 1; ?, 1).

The data point d1 enforces w = −x. To see this note that the output neurons with a question mark
symbol are irrelevant. Similarly, input neurons with 0-entries can be ignored. The remaining neurons form
exactly the subtraction gadget. Analogously, we conclude that y = −z, using data point d2. From the data
point d3, we infer that y · v = 1. We infer v = x. using d4, We summarize our observations in the following
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lemma.

Lemma 3 (Variable-Gadget). The variable gadget enforces the following constraints on the weights: w = −x,
y = 1/x, and z = −1/x.

3.7 Combining Variable Gadgets

Here, we describe how to combine n variable gadgets. For the architecture, we identify the two output neurons
of all gadgets; all other neurons remain distinct. Figure 6 gives a schematic drawing of the architecture for
the case of n = 3 variables. Additionally, we construct 4n data points. For each variable, we construct four
data points as described for the variable gadget; the additional input entries are set to 0. In this way, we
represent all n variables of an ETR-INV-EQ formula. Furthermore, for each variable x, we have edges from
the first to the second vertex layer, with the values x, −x, 1/x, and −1/x, see Lemma 3.

a

b

Figure 6: A schematic drawing of combining three variable gadgets. The two output neurons of all gadgets
are identified. The input neurons and the neurons in the middle layer remain distinct.

3.8 Combined Constraint

For the purpose of concreteness, we consider the combined constraint C of an ETR-INV-EQ instance

w1 + w2 + w3 = 0,

where each wi is either the value of some variable, its inverse, its negative or its negative inverse. Then, by
construction, there exists a weight in the combined variable gadget for each wi. Figure 7 depicts the network
induced by the edges and the output vertex a; in particular, note that all the edges with weights wi are
connected to a, as can also be checked in Figure 5.
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In order to represent the constraint C, we introduce a data point d(C). It has input entry 1 exactly at
the input neurons of w1, w2, and w3; otherwise it is 0. Its output is defined by 0 for a and ‘?’ for b. Thus
d(C) enforces the combined constraint C. Note that enforcing the combined constraints does not require to
alter the neural network architecture or to modify any of those weights.

w1

1

a
w2 1

w3
1

Figure 7: There are three weights encoding w1, w2, and w3. They are all connected to the output vertex a.

3.9 Removing Fixed Weights

Next, we modify the construction such that we do not make use of predefined weights. To this end, we show
how to enforce edge weights of ±1. Recall that, by construction, all predefined weights are either +1 or −1
and that the neural network architecture has precisely two layers. Furthermore, by construction, every middle
neuron is incident to at least one edge with a weight that is specified by the input.

Globally, we add one additional output neuron q. For each middle neuron m, we perform the following
steps individually: We add one more input neuron s and insert the two edges sm and mq. We will show later
that the weights z1 and z2 on the two new edges can be assumed to be 1 as depicted in Figure 8. We modify
all previously defined data points such that they have output ‘?’ for output neuron q. They are further
padded with zeros for all the new input neurons.

qs m
z1 = 1 z2 = 1

z = 1

t

Figure 8: For each middle neuron m, we add an input neuron s and the edges sm and mq with weights z1
and z2.

Furthermore, we add one data point d(m) with input entry 1 for s and 0 otherwise, and output entry 1
for q and ‘?’ otherwise. This data point ensures that neither z1 nor z2 are 0.

Next, we describe a simple observation. Consider a single middle neuron m, with k incoming edges and l
outgoing edges. Let us denote some arbitrary input by a = (a1, . . . , ak), the weights on the first layer by
w = (w1, . . . , wk), and the weights of the second layer by w = (w1, . . . , wl). We consider all vectors to be
columns. Then, the output vector for this input is given by 〈a,w〉 · w, where 〈·, ·〉 denotes the scalar product.

Let α 6= 0 be some real number. Note that replacing w by w′ = α · w and w by w′ = 1/α · w does not
change the output.
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Observation 4. Scaling the weights of incoming edges of a middle neuron by α 6= 0 and the weights of
outgoing edges by α−1 does not change the neural network behavior.

This observation can be used to assume that some non-zero weight equals 1 because we can freely choose
some α 6= 0 and multiply all weights as described above without changing the output. In particular, for the
middle neuron m, we may assume that z1 = 1, see Figure 8. Here, we crucially use the fact that z1 is not
zero. This standard technique is often referred to as normalization. Moreover, by the data point d(m), we
can also infer that the weight z2 equals 1, as we know z1 · z2 = 1.

With the help of the edge weights z1 = z2 = 1, we are able to set more weights to ±1. Let z denote the
weight of some other edge e incident to m that we wish to fix to the value +1 (the case of −1 is analogous).
We describe the case that for some output neuron t the edge e = mt is an outgoing edge of m; the case of an
incoming edge is analogous. See Figure 8 for an illustration. We add a new data point d, with output entries
being 1 for t and ‘?’ otherwise and input entries being 1 for s and 0 otherwise. Given that z1 = 1, the data
point d implies that z = 1 as well.

3.10 Free Biases

In this section, we modify the input such that we do not make use of the biases being set to zero. First
note that a function f representing a certain neural network, might be represented by several weights and
biases. To be specific, let b ∈ R the bias of a fixed middle neuron m. Denote by z1, . . . , zk the weights of the
outgoing edges of m and b1, . . . , bk the biases of the corresponding neurons. We can replace these biases as
follows: we replace b by b′ = 0 and bi by b′i = bi + zi · b. We observe that the new neural network represents
exactly the same function f . Note that we used here explicitly the fact that the activation function is the
identity. This may not be the case for other activation functions. From here on, we assume that all biases in
the middle layer are set to zero.

It remains to ensure that the output neurons are zero as well. We add the additional data point d = (0,0)
that is zero on all inputs and outputs. The value of the neural network on the input 0 is precisely the bias of
all its output neurons. As our threshold is zero and the cost function is honest, we can conclude that the
biases on all output neurons must be zero as well. We summarize this observations as follows.

Observation 5. All biases can be assumed to be zero.

3.11 Removing Question Marks

To complete the construction, it remains to show how to remove the question marks from the data points.
We remove the question marks one after the other. For each data point d and every contained symbol ‘?’, we
add an input neuron, a middle neuron, the edge between them and the edges from the input neuron to the
output neuron containing the considered symbol ‘?’ in d, see Figure 9 for a schematic illustration.

Due to the additional input entry for the added input neuron, we need to modify all data points slightly.
In d, we set the additional entry to 1; for all other data points, we set it to 0. Moreover, we replace the
considered symbol ‘?’ in d by the entry 0.

We have to show that this modification does not change the feasibility of the neural network. Clearly, the
output entries of d with the question mark can now be freely adjusted using the two new edges. At the same
time no other data point d′ can make use of the new edges as the value for the new input neurons equals to 0.

This finishes the description of the reduction. Next, we show its correctness.

3.12 Correctness

Let Φ be an ETR-INV-EQ instance on n variables. We construct an instance I of NN-Training as
described above. First note that the construction is polynomial in n in time and space complexity. To be
precise, the size of the network is O(n), the number of data points is O(n), and each data point has a size in
O(n). Thus, the total space complexity is in O(n2). Because no part of the construction needs additional
computation time, the time complexity is also in O(n2).
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Figure 9: For every ‘?’ in a data point d, we add two more vertices and edges to the neural network.

We show that Φ has a real solution x∗ ∈ Rn if and only if there exists a set of weights for I such that all
input data are mapped to the correct output.

Suppose that there exists a solution x∗ ∈ Rn satisfying all constraints of Φ. We show that there are
weights w for I that predict all outputs correctly for each data point. By construction, for every variable x,
there exist edge weights x,−x, 1/x,−1/x. We set these weights to the value of x given by x∗. Moreover, we
prescribe all other weights as indented by the construction procedure; e.g., ±1 for the prescribed weights.
By construction and the arguments above, all data points are predicted correctly by the neural network.
Specifically, all the data points described in Section 3.8 are correctly predicted, as x∗ satisfies Φ.

For the reverse direction, we suppose that we are given weights w for all the edges of the network in I.
By Section 3.10, we can assume that all biases are zero without changing the function that is represents by
the neural network. By Observation 4, we may normalize the weights without changing the behaviour of the
neural network. Consequently, we can assume that all the weights are as prescribed for the Restricted
Training problem. By Lemma 3, there exist edge weights that consistently encode the variables. Thus,
we use the values of these weights to describe a real solution x∗ that satisfies Φ. Due to the data points
introduced in Section 3.8, we can conclude that all combined constraints of Φ are satisfied.

This finishes the proof of Theorem 2.

4 Hardness for ReLU Activation Function

As the ReLU activation function is commonly used in practice, we present some ideas to prove that our
reduction also holds when linear activation functions are replaced by ReLUs.

Conjecture 6. NN-Training is ∃R-complete, even if the activation function for all neurons is the ReLU.

We would like to note that ReLUs are more complex than linear functions. This results in much more
complex behavior of the resulting neural network. Hence, on some level, using the identity function for
our hardness reduction may be considered a stronger statement. This is why we concentrated to prove our
theorem.

The idea of the hardness for ReLUs is based on the following fact. If an instance Φ of ETR-INV has a
solution, then there also exists a solution where each variable is in the interval [1/2, 2], see [2]. Thus, if there
is a solution to Φ, then all weights can be assumed to be in the range [1/2, 2] as well. Together with the fact
that all data points have small support, we may conclude that also the sum of the incoming values of neurons
are lower bounded by some negative constant C. Thus, we can define the function ψ(x) = max{C, x}, which
is a shifted version of the standard ReLU. For this proof to be rigorous, it remains to show the following.
No choice of weights activating the constant part of the ReLU on any neuron can be completed to a valid
solution. We believe that this is possible by adding some extra data points. As the function that we intend
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to represent will be linear, adding more data points that are linear combinations of previously added data
points may be helpful to support the argument.

Additionally, if someone aims to show hardness for the standard ReLU ϕ(x) = max{0, x}, the following
approach may work. We shift the values of all variables, in particular of −x,−1/x, to the positive range as
follows. Instead of representing the values −x,−1/x, we represent it by 3− x and 3− 1/x. This requires a
modification of the neural network and the given data points, see Section 3.8. Henceforth, the combined
constraint x+ y = z is replaced by x+ y + (3− z) = 3. As a consequence of this modification, all weights
of the neural network are in the positive range. Again, it remains to ensure that the non-linear part of the
ReLU is not activated. We believe that this is possible by adding some extra data points.

5 Conclusion

Training neural networks is undoubtedly a fundamental problem in machine learning. We present a clean and
simple argument to show that NN-Training is complete for the complexity class ∃R. Compared to other
prominent ∃R-hardness proofs, such as [25] or [3], our proof is relatively accessible. Our findings illustrate the
fundamental difficulty of training neural networks. At the same time, we explain why neural networks can be
a very powerful tool, since we prove neural networks to be more expressive than any learning method involving
only discrete parameters or linear models: In practice, neural networks proved useful to solve problems that
cannot be solved by combinatorial methods such as ILP solvers, SAT solvers, or linear programming, and our
work gives a reason why (at least under the assumption that NP 6= ∃R).

In our reduction, we carefully choose which edges should be part of our network to obtain an architecture
that is particularly difficult to train. In practice, it is common to use a simpler fully connected network, where
each neuron from one layer has an edge to each neuron of the next. It is thus an interesting open problem for
future research to find out if training a fully connected neural network with one hidden layer of neurons is also
∃R-complete, which we expect to be the case. Note that as mentioned in Section 1.4, this requires at least
two output neurons, as the problem is otherwise in NP (when using ReLU or identity activation functions).

Besides the neural network architecture, also the data points are chosen specifically to create a difficult
instance. However, data from which it is hard to train is arguably a realistic scenario.

Acknowledgments. We thank Frank Staals for many enjoyable and valuable discussions. We thank Thijs
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