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ABSTRACT

Network robustness is a measure a network’s ability to survive

adversarial attacks. But not all parts of a network are equal. K-

cores, which are dense subgraphs, are known to capture some of

the key properties of many real-life networks. Therefore, previous

work has attempted to model network robustness via the stability

of its 𝑘-core. However, these approaches account for a single core

value and thus fail to encode a global network resilience measure.

In this paper, we address this limitation by proposing a novel notion

of network resilience that is defined over all cores. In particular,

we evaluate the stability of the network under node removals with

respect to each node’s initial core. Our goal is to compute robustness

via a combinatorial problem: find 𝑏 most critical nodes to delete

such that the number of nodes that fall from their initial cores

is maximized. One of our contributions is showing that it is NP-

hard to achieve any polynomial factor approximation of the given

objective. We also present a fine-grained complexity analysis of

this problem under the lens of parameterized complexity theory for

several natural parameters. Moreover, we show two applications of

our notion of robustness: measuring the evolution of species and

characterizing networks arising from different domains.
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1 INTRODUCTION

Networks model many real-world complex systems. An important

aspect of these networks is their robustness or resilience. Robust-

ness quantifies a network’s capability to resist failures that might

affect its functionalities. These network failures often lead to a

considerable of economic losses. As an example, a snowy weather

in 2008 caused a major power grid failure in China [29].

The study of network resilience via stability of the 𝑘-core struc-

ture [24] has been a popular topic in recent literature. Bhawalkar

et al. [1] propose maximizing the initial 𝑘-core size to prevent net-

work unravelling. The resilience of 𝑘-core have also been studied

∗
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(a) Random (b) High Degree

Figure 1: Fraction (𝐹𝑣 ) of the entire node set is affected by deleting

(a) random and (b) high degree nodes. The red line shows the result

by our objective (see TMCV in Def. 4), whereas, the other ones show

the effect inside fixed 𝑘-cores (𝑘 = 5 and 𝑘 = 10) in a co-authorship

network (CondMat in Sec. 3). Our objective has a global and larger

impact on the entire network.

under critical node/edge deletion to increase or maintain users’ en-

gagement in social networks [17, 28, 30] and to prevent failures in

technological networks [12]. Consider an example of a P2P network

where the users who benefit from the network should also share

their resources with other users. This follows a 𝑘-core model and

in this case the network owner has to be aware of the critical nodes

to maintain the resource sharing process uninterrupted.

The aforementioned studies suffer from a local notion of network

stability as they aim to modify the 𝑘-core for a given value of 𝑘 . We

address this limitation by proposing a novel combinatorial problem

over 𝑘-cores: find 𝑏 (budget) critical nodes whose deletion will remove
the maximum number of nodes from their initial core. The number

of nodes staying in their core after removal of those critical nodes

quantifies the stability of the network. Thus, a network is more (less)

robust or resilient if a larger set of nodes are unaffected (affected).

Figure 1 shows an example of the global effect of our formulation.

We show how the nodes get affected (i.e., fall from their initial core)

under node deletion via two strategies when (a) random and (b)

high degree nodes are selected. The 𝑦-axis shows the fraction of

the total nodes that get affected. Our formulated objective (red line)

captures a global robustness notion and the number of affected

nodes are much larger than in the individual cores (denoted by blue

and green for 5-core and 10-core respectively).

1.1 Contributions

We study a novel combinatorial problem, Total Minimization of
Coreness via Vertex deletion (TMCV), which aims to measure net-

work robustness based on the maximum number of nodes that fall

from their initial core after 𝑏 number of nodes are deleted. Besides

showing strong inapproximability result, we present fine-grained

parameterized complexities of the problem for several parameters.

Table 3 (in Section 4) summarizes the main theoretical results.
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Additionally, we propose a few heuristics to solve TMCV and

evaluate their performance on real datasets. These heuristics nicely

capture interesting structural properties of networks from differ-

ent genres (e.g., social, co-authorship). Furthermore, we apply our

proposed network robustness measure to understand the evolution

of species. Zitnik et al. [32] has shown that evolution is related

to a network robustness measure based on network connectivity.

Intuitively, more genetic changes in a species would result in a

more resilient protein-protein interaction network of the same. In

Section 3, we show significant correlation between our proposed re-

silience/robustness measure and the evolution dynamics of species.

Our main contributions are as follows:

▷ We propose a novel network robustness problem (TMCV) based

on the coreness of nodes under deletion of nodes.

▷ We show that it is NP-hard to achieve any polynomial factor

approximation for TMCV (Thm. 4).

▷ We study the parameterized complexity of our problem for sev-

eral natural parameters. We show that TMCV is𝑊 [2]-hard (Thm.

1) parameterized by the budget 𝑏 and para-NP-hard parameter-

ized by the degeneracy (Cor. 2) of the graph and the maximum

degree (Thm. 3) individually.

▷ We propose several heuristics that capture interesting structural

properties of networks from different genres. Furthermore, we

show how we can apply our network robustness measure to

understand the evolution of species.

Organization of the paper. The paper is organized as follows:

Section 1.2 describes the related work. We define our network

robustness problem in Section 2.We showhow to apply our network

robustness measure to capture interesting structural properties of

networks as well as to understand the evolution of species in Section

3. Finally, Section 4 demonstrates all the theoretical results.

1.2 Related Work

Understanding robustness of a network via the stability of its 𝑘-core

has recently received a significant amount of attention. The major

goal in this line of work is to measure the resilience of the 𝑘-core

of a network under its modifications. Zhang et al. [28] first propose

the collapsed 𝑘-core problem that aims to minimize the 𝑘-core by

deleting 𝑏 critical vertices. The edge version of this problem has

been recently addressed with efficient heuristics [17, 31]. Another

related paper [12] measures the stability of 𝑘-core under random

edge/node deletions. These studies only focus on the 𝑘-core robust-

ness, i.e., the effect on the nodes inside the 𝑘-core. On the contrary,

we propose a novel and generalized version of these problems. Our

robustness measure captures the affected nodes in different cores

(i.e., any 𝑘) upon a budget number of node deletions.

Other related but orthogonal literature studies the maximization

of the 𝑘-core in networks via different mechanisms. One such exam-

ple is maximization of the 𝑘-core by making a few nodes outside the

𝑘-core as anchors to prevent unraveling in social networks [1, 3].

The other example involves adding edges with nodes outside of the

𝑘-core [30]. Another related paper [15] discusses parameterized

algorithms for the collapsed k-core problem [28]. In this paper, we
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(d) Delete 𝑤

Figure 2: (a) Initial graph: four nodes are in 3-core, three in 2-core

and two nodes are in 1-core. (b) Considering just 3-core, deleting 𝑎

removes all other three nodes from 3-core. (c) In our problem TMCV

(Def. 4), all the six empty nodes got affected after deleting 𝑣. (d) In

TMCV, all three empty nodes got affected on deleting 𝑤.

discuss parameterized complexity for a different problem along

with inapproximabilty results.

Network robustness: Previous work has also studied the abil-

ity of a network to sustain various types of attacks or failures and

termed it as network robustness. An extensive survey of different

robustness measures for undirected and unweighted networks is

conducted by Ellens et al. [8]. The measures discussed in this sur-

vey are mainly based on network connectivity and shortest path

distances along with some others based on Laplacian eigenvalues.

Another survey [13] provides nine widely used robustness mea-

sures and studies their sensitivity. The network robustness models

vary depending on the application. In a recent work, Lordan et al.

[14] have identified the set of removed nodes that maximizes the

size of the largest connected component of a network in an optimal

manner. Recently, Zitnik et al. [32] show that a connectivity-based

robustness of protein-protein interaction networks is a good pre-

dictor of the extent of evolution of a species. Here, we consider a

different robustness measure.

Our proposed problem is also related to network design problems.

These problems aim to optimize network properties or processes

under network modifications. Examples include diameter [6], node

centrality [5, 19] shortest path [7, 16, 20, 21], and influence spread

[10, 11, 18, 26] improvement. However, our objective is different

from the ones considered by network design studies.

2 PROBLEM DEFINITION

Let 𝐺 (𝑉 , 𝐸) be an undirected and unweighted graph with sets of

vertices𝑉 (|𝑉 | = 𝑛) and edges 𝐸 (|𝐸 | =𝑚). We denote the degree of

vertex 𝑢 in 𝐺 by 𝑑 (𝑢,𝐺). An induced subgraph, 𝐻 = (𝑉𝐻 , 𝐸𝐻 ) of 𝐺
is the following: if 𝑢, 𝑣 ∈ 𝑉𝐻 and (𝑢, 𝑣) ∈ 𝐸 then (𝑢, 𝑣) ∈ 𝐸𝐻 . The

𝑘-core [24] of a network is defined as follows.

Definition 1. 𝑘-Core: The 𝑘-core of a graph 𝐺 , denoted by
𝑆𝑘 (𝐺) = (𝑉𝑘 (𝐺), 𝐸𝑘 (𝐺)), is defined as a maximal induced subgraph
where each vertex has degree at least 𝑘 .

Definition 2. Coreness: The coreness of a node 𝑣 in graph 𝐺 ,
denoted by 𝐶 (𝑣,𝐺), is defined as the maximum 𝑘 where 𝑣 ∈ 𝑆𝑘 (𝐺)
and 𝑣 ∉ 𝑆𝑙 (𝐺) for any 𝑙 > 𝑘 .

Definition 3. Degeneracy: The degeneracy of a graph𝐺 , denoted
by 𝐷 (𝐺), is defined as the largest 𝑘 where 𝑆𝑘 (𝐺) is non-empty.

Example 1. Consider the initial graph in Figure 2a as an example.
The degeneracy of the graph is 3.

We denote the modified graph𝐺 after deleting a set 𝐵 consisting

of 𝑏 vertices (nodes) as 𝐺 \ 𝐵. Deleting a vertex reduces the degree



Dataset Type |𝑉 | |𝐸 | 𝐷

Enron Email 36692 183831 43

GrQc Co-authorship 4158 13422 43

CondMat Co-authorship 21363 91286 25

Facebook Social 4039 88234 115

g+ Social 23628 39194 12

BrightKite Social 58228 214078 52

Table 1: Statistics of Datasets: 𝐷 denotes degeneracy, i.e., the

maximum core.

of its neighbours and possibly their coreness. This reduction in

coreness might propagate to other vertices. Let us define an affected

node as follows: a node 𝑣 is affected if 𝐶 (𝑣,𝐺) > 𝐶 (𝑣,𝐺 \ 𝐵). The
example in Figure 2c shows that deleting a node (e.g. node 𝑣) can

affect the neighbours and propagate to other non-neighbor nodes.

Next we define the coreness minimization problem.

Definition 4. Total Minimization of Coreness via Vertex
deletion (TMCV): Given a graph𝐺 = (𝑉 , 𝐸), candidate vertices Γ⊆𝑉
and budget 𝑏, find the set 𝐵 ⊂ Γ of nodes to be removed such that
|𝐵 | ⩽ 𝑏 and 𝑓 (𝐵)= |{𝑣 ∈𝑉 \𝐵 :𝐶 (𝑣,𝐺)>𝐶 (𝑣,𝐺 \𝐵)}| is maximized.

Note that the objective minimizes the number of unaffected

nodes. Intuitively, a network is more robust if its value of 𝑓 is small.

Example 2. Figure 2a shows an example of the initial graph. The
TMCV objective is explained in Figures 2c and 2d. In Figure 2c, when
𝑣 is deleted, all the remaining three nodes in the 3-core fall into 2-core
and all the three nodes in the 2-core move to 1-core. Thus, five nodes
are affected, i.e., 𝑓 ({𝑣}) = 5. In Figure 2d, by deleting the node 𝑤 ,
only the nodes that were in the 3-core are affected, i.e., 𝑓 ({𝑤}) = 3.
The empty nodes in Figures 2b, 2c and 2d are the affected ones—i.e.,
with reduced coreness.

3 EMPIRICAL RESULTS

In this section, we motivate the TMCV problem using real applica-

tions and simple heuristics. We show that our problem can be used

to characterize different types of networks and to understand the

relationship between protein-protein interaction (PPI) networks

and the evolution of species.

3.1 Robustness and Characterization of

Networks

We evaluate our robustness measure using different networks and

show interesting properties of those via a few heuristics. We mea-

sure the performance of each algorithm by a disruption measure 𝐹

which is defined by the fraction of nodes getting affected (reduction

of initial coreness) due to the deletion of the nodes in the solution

set generated by each algorithm. A network is more robust if it has

a lower value of 𝐹 . We denote the modified graph 𝐺 as G∗𝑣 after
deleting a set 𝐵 consist of 𝑏 vertices (nodes). Formally,

𝐹 (𝐵) = 𝑓 (𝐵)
|𝑉 | =

|{𝑣 ∈ 𝑉 : 𝐶 (𝑣,𝐺) > 𝐶 (𝑣,G∗𝑣)}|
|𝑉 | (1)

Datasets: We use six real datasets from different genres in our

experiments. Table 1 and Figure 4a describe the statistics and the

core distributions of the datasets, respectively. The datasets are

available in [22] and online
1
.

3.1.1 Heuristics. We describe the heuristics below.

Random: This algorithm chooses 𝑏 nodes randomly from the set

of all nodes in the graph. The random strategy has been used in

the past to enhance network robustness [25].

High Degree (HD): It chooses top 𝑏 nodes according to their

degree. Coreness is related to degree and the nodes in higher core

usually contribute to the coreness in the lower core. So, this strategy

uses degree as a proxy of the coreness. Intuitively, the algorithm

should work well with the presence of sensitive nodes, i.e., when

the degree of a node is equal to its individual coreness.

Affected Size 0.1 0.2 0.3 0.4 0.5

Enron 3 7 16 33 61

GrQc 10 26 49 79 121

CondMat 22 66 132 229 385

Facebook 1 1 2 2 3

g+ 1 3 6 9 14

BrightKite 10 53 169 438 1076

Table 2: The effect of AHDR on different networks: The cell

(Enron, 0.1) as 3 represents that only 3 nodes to be deleted

to achieve 𝐹 = 0.1, i.e., to affect 10% of the Enron network.

High Disruption (HDR): The algorithm chooses top 𝑏 nodes

according to their “strength" in making nodes fall from their corre-

sponding 𝑘-core. This strategy is more related with our objective

function compared to the random and degree based heuristics. How-

ever, it requires the computation of the “strength" for each node.

The running time of this algorithm is 𝑂 (𝑛2 + 𝑛𝑚).
Adaptive High Disruption (AHDR): It chooses the best node

in each iteration for the budget number of iterations. However,

in each step one needs to recompute the strength of the nodes

given that already chosen nodes are deleted from the graph. A

naive implementation of this strategy would take 𝑂 (𝑏𝑛(𝑛 +𝑚))
time, where 𝑏 is the budget. However, we are able to optimize this

approach based on a few observations.

Observation 1. Deletion of a node 𝑣 might reduce coreness of
another node 𝑢 only when 𝐶 (𝑣,𝐺) ⩾ 𝐶 (𝑢,𝐺). There will not be any
effect in deleting 𝑣 on 𝑢 if 𝐶 (𝑣,𝐺) < 𝐶 (𝑢,𝐺).

Observation 2. Based on the previous observation, node 𝑣 can
be pruned from the candidate set Γ if 𝐶 (𝑢,𝐺) > 𝐶 (𝑣,𝐺),∀𝑢 ∈ 𝑁 (𝑣)
where 𝑁 (𝑣) denotes the set of neighbors of 𝑣 .
3.1.2 Results of different heuristics on real networks. We vary the

budget and evaluate the performance of each heuristic in all the

datasets (Table 1). Figure 3 shows the results. Budget is the percent-

age of the total number of nodes in the network. A few interesting

results are as follows: (a) AHDR is the most effective heuristic. The

closest baseline, HDR, directly computes the effect of edge removal

on the TMCV objective. AHDR, unlike others, considers the disrup-

tion in the network in an adaptive manner. (b) The efficacy of AHDR

is more prominent in the co-authorship networks (CondMat and

GrQc). The co-authorship networks often consist of small cliques

and thus high degree (HD) or one shot strength computation (HDR)

might not be effective to choose the critical nodes.

1
https://snap.stanford.edu/data



Figure 3: The performance of different heuristics varying the budget, 𝑏 (percentage of total nodes to delete) on real datasets:

(a) Facebook, (b) GrQc, (c) CondMat, (d) BrightKite, (e) Enron, (f) g+.

Simple network properties such as density plays an important

role in robustness. Facebook is a dense graph and the best heuris-

tic, AHDR produces 𝐹 = 1 only with an extremely low budget (10

nodes). We further emphasize how robust the individual networks

are by showing the number of nodes needed to be deleted by AHDR

to affect a large portion of the network in Table 2. The dense struc-

ture makes the cores very sensitive and a node removal has high

impact. Another interesting observation is that the graphs with

the highest (Facebook) and the lowest (g+) densities are easy to

disrupt compared to others. This suggests that the robustness does

not entirely depend on the density of the graph.

3.1.3 Synthetic vs real networks. Figure 4c shows the impact of

the best performing heuristic, AHDR, in co-authorship (CondMat),

social (g+) and synthetic (|𝑉 | = 20, 000) networks. BA-d2 (BA-d4)

and ER-d2 (ER-d4) represent the synthetic network structures from

two well-studied models: (a) Barabasi-Albert and (b) Erdos-Renyi,

respectively, with average node degree 2 (degree 4). Note that all

of these six networks have similar number of nodes. The 𝑘-core

distributions of these networks is shown in Fig. 4b. The goal is

to compare the robustness of different networks while applying

the same algorithm (e.g., AHDR). We observe that the random

network, ER, is the most robust or difficult to break. As the edges

are present uniformly across the network, node deletions do not

have large affect on the network structure. This is true even with

higher density ER graphs (see ER-d2 and ER-d4). Comparing BA

and ER, BA is less robust to node removals as a few nodes have high

degree and might be part of several cores. On the other hand, the

real networks are less robust than both these synthetic networks.

Even if the co-authorship network is denser than the social network

(g+), the structure of g+ is less robust and ADHD can affect more

than 80% of the network by only removing 50 nodes.

3.2 Robustness and Evolution

In the last section, we have applied network robustness as a tool

to characterize different types of networks (email, co-authorship

and social). Here, we use robustness to compare multiple networks

of the same type. Protein-protein interaction (PPI) networks cap-

ture how proteins interact to perform various biological functions

(e.g., DNA replication, energy production). These networks are rel-

evant in biological and biomedical applications, specially in the

study of new treatments for complex diseases, such as cancer and

autoimmune disorders [23]. Recently, it has been shown that the

structure PPI networks is also related to the evolution of species

[32]. In particular, evolution was shown to be positively correlated

with network resilience. In this section, we evaluate how k-core

robustness can help us to better understand this relationship.

Dataset: For this study, we apply a subset of the Tree of Life

dataset
2
, which combines PPI networks and an evolution score—

based on the depth in the phylogenetic tree—for 63 species. The

species selected were those with at least 1,000 publications in the

NCBI PubMed and belonging to the Bacteria and Archaea domains.

Baseline: We compare our resilience measure against the one

applied in [32]. More specifically, their approach measures how

fragmented the network becomes after the removal of a fraction 𝛼

of nodes selected at random. Once a node is removed, all its edges

are also removed from the network. The fragmentation of 𝐺𝛼 is

2
http://snap.stanford.edu/tree-of-life



(a) Real networks (b) Networks used in Sec. 3.1.3 (c) Results by AHDR

Figure 4: (a) The core distributions in the real networks in Table 1. (b) The core distributions of the real and synthetic networks

used in the experiments in Sec. 3.1.3. (c) The performance of the best heuristic (AHDR) varying the number (budget,𝑏) of nodes

in co-authorship, social and synthetic networks of similar sizes.

measured based on a modified version of the Shannon divergence

of the resulting connected components {𝑉1,𝑉2, . . .𝑉𝐾 }:

𝐻 (𝐺𝛼 ) =
1

log𝑛

𝐾∑︁
𝑘=1

𝑝𝑘 log𝑝𝑘

where 𝑝𝑘 = |𝑉𝑘 |/𝑛 and the 1/log𝑛 factor enables comparing graphs

with different sizes.

The overall resilience of a network 𝐺 is computed as the area

under the curve produced varying 𝛼 from 0 to 1:

𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒𝑟𝑎𝑛𝑑 (𝐺) = 1 −
∫

1

0

𝐻 (𝐺𝛼 )𝑑𝛼

K-core Resilience: We propose a resilience metric similar to the

one defined above but replacing the Shannon entropy by the frac-

tion of nodes out of their k-core:

𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒𝑐𝑜𝑟𝑒 (𝐺) = 1 −
∫

1

0

𝐹 (𝐵𝛼 )𝑑𝛼

where 𝐹 (𝐵𝛼 ) is the fraction of nodes affected after 𝛼 |𝑉 | nodes are
removed from 𝐺 .

Similar to [32], we also apply our measures only to the largest

connected component of each network. Moreover, we emphasize

two key differences between our resilience metric (𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒𝑐𝑜𝑟𝑒 )

and 𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒𝑟𝑎𝑛𝑑 . First, ours takes into account the k-core instead

of the connected components in the graph. Second, we do not

remove nodes at random, but as to maximize 𝐹 (𝐵𝛼 ).
Figure 5 shows the correlation between 𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒𝑟𝑎𝑛𝑑 and the

evolution of species. Notice that the measures have a weak cor-

relation, with a Pearson’s coefficient of 0.0325 and a p-value of

0.80. As a consequence, we are unable to reject the hypothesis that

the variables are in fact uncorrelated. Notice that we consider a

subset of the species from [32]—with only the domains Bacteria and
Archaea. Still, one would expect the correlation between evolution

and resilience to also hold within these domains.

In Figure 6, we show the correlation between 𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒𝑐𝑜𝑟𝑒 (our

metric) and evolution. Compared to Figure 5, we notice that our

resilience measure has a stronger correlation with evolution of the

species. In particular, the Pearson’s coefficient for the correlation is

0.2366 with a small p-value of 0.06. This is a strong evidence that

1.0 1.5 2.0 2.5 3.0 3.5

Evolution

0.24

0.26

0.28
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Figure 5: Correlation (coefficient=0.0325,p-value=0.80) be-

tween the evolution of species (x) and resilience (y) mea-

sured using𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒𝑟𝑎𝑛𝑑 , which is based on randomnode re-

movals [32]. The plot and correlation values show that there

is not a strong correlation between the measures.

our notion of k-core resilience is able to capture relevant structural

properties of PPI networks. Species that are further (or deeper) in

the tree of life present a more robust network. More importantly,

this relationship is even stronger when we consider a targeted

attack, instead of random, to the k-core structure of the network.

4 THEORETICAL RESULTS

The evaluation of our robustness measure relied on simple heuris-

tics. However the question of finding an optimal algorithm still

needs to be addressed. In this section, we evaluate the hardness

of the TMCV problem. The theoretical results show that there is

no polynomial time algorithm even to achieve a constant factor

approximation for the TMCV problem. From a parameterized per-

spective, we show that there is no fixed parameter tractable (FPT)

algorithm for a few natural parameters such as the degeneracy,

budget and the maximum degree of a node. The TMCV problem is

either para-NP-hard or𝑊 [2]-hard for these parameters. However,

for the size of the candidate set, there exists a FPT algorithm. We

summarize our main results in Table 3.
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Figure 6: Correlation (coefficient=0.2366,p-value=0.06) be-

tween evolution of species (x) and our resilience (y) mea-

sure based on k-cores. Our approach shows a significantly

stronger correlation between the measures, which is an evi-

dence that evolution induces PPI networks with a more re-

silient k-core structure.

Cond./Param. Results

𝑏 𝑊 [2]-hard (Theorem 1)

𝐷 para-NP-hard (Corollary 2)

Δ para-NP-hard (Theorem 3)

|Γ | FPT (Observation 3)

𝐷 (𝐺) = 1 Poly (Theorem 5)

𝐷 (𝐺) ⩾ 3 NP-hard to approximate (Thm. 4)

Table 3: Summary of our hardness and parameterized com-

plexity results for the TCMVproblem.We denote the budget

by𝑏, the degeneracy (maximumcoreness over all vertices) of

the graph by 𝐷 (𝐺) or 𝐷 , the maximum degree of any vertex

by Δ, and the candidate set by Γ.

4.1 Parameterized Complexity Results

Our first result shows that the TMCV problem is𝑊 [2]-hard pa-

rameterized by 𝑏. The proof involves an fpt-reduction from the

well-known𝑊 [2]-hard Set Cover problem parameterized by the

size of set cover [2]. The Set Cover problem is defined as follows.

Definition 5 (Set Cover). Given an universe U, a collection
S of subsets ofU, and a positive integer 𝑟 , compute if there exists a
subcollectionW ⊆ S such that (i) |W| ⩽ 𝑟 and (ii) ∪𝐴∈W𝐴 = U.

Theorem 1. The TMCV problem is𝑊 [2]-hard parameterized by
𝑏 for 𝑘 ⩾ 3.

Proof. Let (U = {𝑢1, 𝑢2, ..., 𝑢𝑛},S = {𝑆1, 𝑆2, ..., 𝑆𝑚}, 𝑟 ) be an

instance of the Set Cover problem. We define a corresponding

TMCV problem instance via constructing a graph G as follows.

For each 𝑆𝑖 ∈ S we create a clique of four vertices (𝑃𝑖,1, · · · , 𝑃𝑖,4).
For each𝑢 𝑗 ∈ U, we create a cycle of𝑚 vertices𝑄 𝑗,1, 𝑄 𝑗,2, · · · , 𝑄 𝑗,𝑚
with edges (𝑄 𝑗,1, 𝑄 𝑗,2), · · · , (𝑄 𝑗,𝑚−1, 𝑄 𝑗,𝑚), (𝑄 𝑗,𝑚, 𝑄 𝑗,1). We also

create a clique of four vertices (𝑅 𝑗,1, · · · , 𝑅 𝑗,4) for each 𝑢 𝑗 ∈ U.

Furthermore, edge (𝑃𝑖,1, 𝑄 𝑗,𝑖 ) will be added to E[G] if 𝑢 𝑗 ∈ 𝑆𝑖 .

Additionally, if 𝑢 𝑗 ∉ 𝑆𝑖 , edge (𝑄 𝑗,𝑖 , 𝑅 𝑗,1) will be added to E. The
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Figure 7: An example of the construction for parameterized

hardness of TMCV: reduction from Set Cover where 𝑈 =

{𝑢1, 𝑢2, 𝑢3, 𝑢4}, 𝑆 = {𝑆1, 𝑆2, 𝑆3}, 𝑆1 = {𝑢1, 𝑢2}, 𝑆2 = {𝑢1, 𝑢3, 𝑢4}, 𝑆3 =

{𝑢3}.
candidate set, Γ𝑣 = {𝑃𝑖,1 |∀𝑖 = 1, 2, ...,𝑚}. Fig. 7 illustrates our con-
struction for sets 𝑆1 = {𝑢1, 𝑢2}, 𝑆2 = {𝑢1, 𝑢3, 𝑢4} and 𝑆3 = {𝑢3}. We

formally describe our TMCV instance as follows.

𝑉 [G] = {𝑃𝑖,𝑡 : 𝑆𝑖 ∈ S, 𝑡 ∈ [4]} ∪𝑉1,where

𝑉1 = {𝑄 𝑗,𝑖 : 𝑢 𝑗 ∈ U, 𝑆𝑖 ∈ S} ∪ {𝑅 𝑗,𝑡 : 𝑢 𝑗 ∈ U, 𝑡 ∈ [4]}
E[G] = 𝐸1 ∪ 𝐸2 ∪ 𝐸3 ∪ 𝐸4 ∪ 𝐸5,where

𝐸1 = {(𝑃𝑖,𝑠 , 𝑃𝑖,𝑡 ) : 𝑖 ∈ [𝑚]; 𝑠, 𝑡 ∈ [4], 𝑠 ≠ 𝑡}
𝐸2 = {(𝑅 𝑗,𝑠 , 𝑅 𝑗,𝑡 ) : 𝑗 ∈ [𝑛]; 𝑠, 𝑡 ∈ [4], 𝑠 ≠ 𝑡}
𝐸3 = {(𝑄 𝑗,𝑖 , 𝑄 𝑗,𝑖+1) : 𝑖 ∈ [𝑚 − 1], 𝑗 ∈ [𝑛]}
𝐸4 = {(𝑃𝑖,1, 𝑄 𝑗,𝑖 ) |𝑢 𝑗 ∈ 𝑆𝑖 , 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑛]}
𝐸5 = {(𝑄 𝑗,𝑖 , 𝑅 𝑗,1) |𝑢 𝑗 ∉ 𝑆𝑖 , 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑛]}
Γ = {𝑃𝑖,1 |𝑖 ∈ [𝑚]}
𝑏 = 𝑟

For any integer 𝑧, we denote the set {1, 2, ..., 𝑧} by [𝑧]. We now

claim that the set cover instance is a yes instance if and only if

there exists a subset 𝐵 ⊆ Γ with |𝐵 | ⩽ 𝑏 and |{𝑣 ∈ 𝑉 \𝐵 : 𝐶 (𝑣,G) >
𝐶 (𝑣,G \ 𝐵)}| ⩾ 4𝑏 +𝑚𝑛.

In one direction, let us assume that the Set Cover instance is

a yes instance. By renaming, let 𝑆 ′ = {𝑆1, . . . , 𝑆𝑟 } form a set cover

of the instance. We delete the nodes in the set 𝑉 ′ = {𝑃𝑖,1 |𝑖 ∈ [𝑟 ]}
in the graph G. We claim that, by deleting the nodes in the set 𝑉 ′

,

every node in {𝑃𝑖,𝑡 |𝑆𝑖 ∈ 𝑆 ′, 𝑡 ∈ [4]} ∪ {𝑄 𝑗,𝑖 | 𝑗 ∈ [𝑛], 𝑖 ∈ [𝑚]}, i.e.
4𝑏 +𝑚𝑛 nodes will go to the 2-core. We first observe that deletion

of 𝑃𝑖,1 will move the other three nodes (𝑃𝑖,2, 𝑃𝑖,3, 𝑃𝑖,4) to the 2-core.

Also, for any 𝑗 ∈ [𝑛], if any connection (𝑄 𝑗,𝑖 , 𝑃𝑖,1) gets deleted
because of deletion of 𝑃𝑖,1, all the𝑚 nodes in the set {𝑄 𝑗,𝑡 |𝑡 ∈ [𝑚]}
will go to 2-core. Since 𝑆 ′ forms a set cover for U, at least one

connection (𝑄 𝑗,𝑙 , 𝑃𝑙,1) where 𝑗 ∈ [𝑛] and some 𝑃𝑙,1 ∈ 𝑉 ′
will get

removed. Thus a total of𝑚𝑛 nodes will go to the 2-core. Hence, the

TMCV instance is a yes instance.

For the other direction, we assume that there exists a subset

𝑉 ′ = {𝑃𝑖,1 |𝑖 ∈ [𝑏]} (by renaming) of size 𝑏 of the set Γ such that

deletion of 𝑉 ′
would make at least 4𝑏 + 𝑛𝑚 nodes fall from the

3-core. We claim that 𝑆 ′ = {𝑆𝑖 : 𝑖 ∈ [𝑏]} (𝑏 = 𝑟 ) forms a set cover

for U. Suppose it is not, then at most 𝑛 − 1 connections among

(𝑄 𝑗,𝑙 , 𝑃𝑙,1) for 𝑗 ∈ [𝑛] and some 𝑃𝑙,1 ∈ 𝑉 ′
will get deleted. Thus, at

most (𝑛 − 1)𝑚 nodes will go into the 2-core making it a total of

𝑏 + (𝑛−1)𝑚 nodes falling from 3-core. Hence, this is a contradiction

and 𝑆 ′ is a set cover. □



From the proof of Theorem 1, we obtain the following corollary.

This follows from the observation that the Set Cover problem

remains NP-complete even if the size of each subset is 3 and every

element of the universe belongs to exactly 2 subsets [9].

Corollary 2. The TMCV problem is para-NP-hard parameterized
by 𝐷 .

Proof. From the above construction, if we begin with an in-

stance of Set Cover where the size of each subset is 3 and every

element of the universe belongs to exactly 2 subsets, then we ob-

serve that the TMCV problem is also NP-hard when 𝐷 = 3. □

We next consider maximum degree of the graph as parameter.

By reducing from the Exact Cover problem [4], we show next the

TMCV problem is para-NP-hard parameterized by the maximum

degree of the input graph. The Exact Cover problem is the Set

Cover problem where every set contains exactly 3 elements from

the universe. However, we use a special case of the Exact Cover

problem where the elements are exactly in two subsets. This special

case is known to be NP-complete [4].

Theorem 3. The TMCV problem is para-NP-hard parameterized
by the maximum degree (Δ) in the graph.

Proof. To prove our claim, we show a parameterized reduction

from the special case of the Exact Cover problem which is known

to be NP-hard. The problem is a Set Cover problem where each

subset has exactly 3 elements and each element belongs to exactly

two subsets. Let (U = {𝑢1, 𝑢2, ..., 𝑢𝑛},S = {𝑆1, 𝑆2, ..., 𝑆𝑚}, 𝑟 ) be an
instance of the mentioned problem. We define a corresponding

TMCV problem instance via constructing a graph G as follows.

We follow a similar reduction as in Theorem 1. For each 𝑆𝑖 ∈ S
we create a clique of four vertices (𝑃𝑖,1, · · · , 𝑃𝑖,4) for each 𝑆𝑖 ∈ S.
For each 𝑢 𝑗 ∈ U, we create two nodes 𝑄 𝑗,1 and 𝑄 𝑗,2 (we know

each element belongs to exactly two subsets, one node is corre-

sponding to the first subset and the second one is for the second

in an arbitrary order) and an edge (𝑄 𝑗,1, 𝑄 𝑗,2) between them. We

also create a clique of four vertices (𝑅 𝑗,1, · · · , 𝑅 𝑗,4) for each 𝑢 𝑗 ∈ U.

Furthermore, edge (𝑃𝑖,1, 𝑄 𝑗,𝑖 ) will be added to E[G] if 𝑢 𝑗 ∈ 𝑆𝑖 .

Additionally, two edges (𝑄 𝑗,1, 𝑅 𝑗,1) and (𝑄 𝑗,2, 𝑅 𝑗,1) will be added
to E. Clearly the reduction takes polynomial time. The candidate

set, Γ = {𝑃𝑖,1 |∀𝑖 = 1, 2, ...,𝑚}. Note that the maximum degree in the

graph is constant, i.e. Δ = 6.

Initially in G, all vertices are in the 3-core. We claim that a

set 𝑆 ′ ⊂ 𝑆 , with |𝑆 ′ | ⩽ 𝑟 , is a cover iff 𝑓 (𝐵) = 4𝑏 + 2𝑛 where

𝐵= {𝑃𝑖,1 |𝑆𝑖 ∈ 𝑆 ′}.
Let us assume that the Exact Cover instance is a yes instance and,

by renaming, the collection 𝑆 ′ = {𝑆1, . . . , 𝑆𝑟 } forms a valid set cover

of the instance. We delete the nodes in the set 𝑉 ′ = {𝑃𝑖,1 |𝑖 ∈ [𝑟 ]}
in the graph G. We claim that by deleting the nodes in the set 𝑉 ′

,

every node in {𝑃𝑖,𝑡 |𝑆𝑖 ∈ 𝑆 ′, 𝑡 ∈ [4]} ∪ {𝑄 𝑗,𝑖 | 𝑗 ∈ [𝑛], 𝑖 ∈ {1, 2}}, i.e.
4𝑏 + 2𝑛 nodes will go in 2-core. We first observe that deletion of 𝑃𝑖,1
will make the other three nodes 𝑃𝑖,2 in 2-core. Deletion of 𝑏 such

nodes will lead 4𝑏 nodes falling into 2-core. Also, for any 𝑗 ∈ [𝑛],
if any connection (𝑄 𝑗,𝑖 , 𝑃𝑖,1 gets deleted because of deletion of 𝑃𝑖,1,

both nodes in the set {𝑄 𝑗,𝑡 |𝑡 ∈ [2]} will go to 2-core. Since 𝑆 ′ forms

a set cover for U, at least one connection (𝑄 𝑗,𝑙 , 𝑃𝑙,1) for all 𝑗 ∈ [𝑛]

and some 𝑃𝑙,1 ∈ 𝑉 ′
will get removed. Thus a total of 2𝑚 nodes will

go in 2-core. Hence, the TMCV instance is a yes instance.

For the other direction, we assume that there exists a subset

𝑉 ′ = {𝑃𝑖,1 |𝑖 ∈ [𝑏]} (by renaming) of nodes of size 𝑏 of the set

Γ such that in the graph deletion of which would make at least

4𝑏 + 2𝑛 nodes fall from the 3-core. We claim that 𝑆 ′ = {𝑆𝑖 : 𝑖 ∈ [𝑏]}
(𝑏 = 𝑟 ) forms a set cover forU. Suppose it is not, then at most 𝑛 − 1

connections among (𝑄 𝑗,𝑙 , 𝑃𝑙,1) for 𝑗 ∈ [𝑛] and some 𝑃𝑙,1 ∈ 𝑉 ′
will

get deleted. Thus, at most 2(𝑛 − 1) nodes will go into the 2-core

making it a total of 4𝑏 + 2(𝑛 − 1) nodes falling from 3-core. Hence,

this is a contradiction and 𝑆 ′ is a set cover. So, the TMCV problem is

NP-hard when the maximum degree is constant (Δ = 6). Thus, the

TMCV problem is para-NP-hard parameterized by the maximum

degree (Δ) in the graph. □

We conclude this section with the observation that the TMCV

problem is fixed parameter tractable parameterized by |Γ |. The
algorithm simply tries all possible subsets of |Γ | of size at most 𝑏.

Observation 3. There is an algorithm for the TMCV problem run-
ning in time 𝑂 (2 |Γ |𝑝𝑜𝑙𝑦 (𝑛)). In particular, TMCV is fixed parameter
tractable parameterized by |Γ |.

4.2 Inapproximability and Algorithm for

𝐷 (𝐺) = 1

In this section, we discuss the traditional hardness spectrum of the

TMCV problem. We show a strong inapproximability result—it is

NP-hard to achieve any𝑚−𝑙1𝑛−𝑙2 -factor approximation even when

𝐷 (𝐺) ⩾ 3 for any constants 𝑙1 > 1 and 𝑙2 > 1.

Theorem 4. The TCMV problem is NP-hard to approximate within
any 𝑚−𝑙1𝑛−𝑙2 -factor approximation even when 𝐷 (𝐺) ⩾ 3 for any
constants 𝑙1 > 1 and 𝑙2 > 1.

Proof. To prove our claim, first let us consider a reduction

from the Set Cover problem. Let (U = {𝑢1, 𝑢2, ..., 𝑢𝑛},S =

{𝑆1, 𝑆2, ..., 𝑆𝑚}, 𝑟 ) be an instance of the Set Cover problem. We

define a corresponding TMCV problem instance via constructing a

graph G as follows.

We create a clique of four vertices (𝑃𝑖,1, · · · , 𝑃𝑖,4) for each 𝑆𝑖 ∈ S.
For each𝑢 𝑗 ∈ U, we create a cycle of𝑚 vertices𝑄 𝑗,1, 𝑄 𝑗,2, · · · , 𝑄 𝑗,𝑚
with edges (𝑄 𝑗,1, 𝑄 𝑗,2), · · · , (𝑄 𝑗,𝑚−1, 𝑄 𝑗,𝑚), (𝑄 𝑗,𝑚, 𝑄 𝑗,1).

We also create a vertex 𝑅 along with a connected sub-graph

on a set T of 10(𝑚𝑙1𝑛𝑙2 )2 vertices with degree exactly 3 (for ex-

ample, we can take a perfect matching between two cycles on

|T |/2 vertices each). The node 𝑅 is attached with exactly two ver-

tices in T . Furthermore, edge (𝑃𝑖,1, 𝑄 𝑗,𝑖 ) will be added to E[G] if
𝑢 𝑗 ∈ 𝑆𝑖 . Additionally, if 𝑢 𝑗 ∉ 𝑆𝑖 , edge (𝑄 𝑗,𝑖 , 𝑅) will be added to E.
Clearly the reduction takes polynomial time. The candidate set,

Γ𝑣 = {𝑃𝑖,1 |∀𝑖 = 1, 2, ...,𝑚}. Fig. 8 illustrates our construction for sets

𝑆1 = {𝑢1, 𝑢2}, 𝑆2 = {𝑢1, 𝑢2, 𝑢4} and 𝑆3 = {𝑢3}.
Initially in G, all vertices are in the 3-core. We claim that a set

𝑆 ′ ⊂ 𝑆 , with |𝑆 ′ | ⩽ 𝑟 , is a cover iff 𝑓 (𝐵) = 3𝑟 +𝑚𝑛 + 1 + |T | where
𝐵= {𝑃𝑖,1 |𝑆𝑖 ∈ 𝑆 ′}.

Let us assume that the Set Cover instance is a yes instance

and, by renaming, 𝑆 ′ = {𝑆1, . . . , 𝑆𝑟 } forms a valid set cover of the

instance. We delete the nodes in the set 𝑉 ′ = {𝑃𝑖,1 |𝑖 ∈ [𝑟 ]} in the

graph G. We claim that by deleting the nodes in the set 𝑉 ′
, every
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Figure 8: Example of construction to prove inapproxima-

bility of TMCV: reduction from Set Cover where 𝑈 =

{𝑢1, 𝑢2, 𝑢3, 𝑢4}, 𝑆 = {𝑆1, 𝑆2, 𝑆3}, 𝑆1 = {𝑢1, 𝑢2}, 𝑆2 = {𝑢1, 𝑢2, 𝑢4}, 𝑆3 =

{𝑢3}. The number of nodes in the rectangular box is

10(𝑚𝑙1𝑛𝑙2 )2 and the nodes have exactly degree 3.

node in {𝑃𝑖,𝑡 |𝑆𝑖 ∈ 𝑆 ′, 𝑡 ∈ [4]} ∪ {𝑄 𝑗,𝑖 | 𝑗 ∈ [𝑛], 𝑖 ∈ [𝑚]}, i.e. 4𝑏 +𝑚𝑛

nodes will go to the 2-core. We first observe that deletion of 𝑃𝑖,1
will make the other three nodes 𝑃𝑖,2 to 2-core. Also, for any 𝑗 ∈ [𝑛],
if any connection (𝑄 𝑗,𝑖 , 𝑃𝑖,1) gets deleted because of deletion of 𝑃𝑖,1,

all the𝑚 nodes in the set {𝑄 𝑗,𝑡 |𝑡 ∈ [𝑚]} will go to 2-core. Since 𝑆 ′

forms a set cover forU, at least one connection (𝑄 𝑗,𝑙 , 𝑃𝑙,1) for all
𝑗 ∈ [𝑛] and some 𝑃𝑙,1 ∈ 𝑉 ′

will get removed. Note that if all the

nodes 𝑄 𝑗,𝑖 ;∀𝑗 ∈ [𝑛] and ∀𝑖 ∈ [𝑚] go to 2-core, the node 𝑅 will go

to 2-core and thus all the nodes in T will follow the same. Thus a

total of 3𝑟 +𝑚𝑛 + 1 + |T | nodes will go to 2-core.

If there is no set cover of size 𝑟 , then at most 𝑛 − 1 connections

among (𝑄 𝑗,𝑙 , 𝑃𝑙,1) for 𝑗 ∈ [𝑛] and some 𝑃𝑙,1 ∈ 𝑉 ′
will get deleted.

Thus, at most (𝑛−1)𝑚 nodes will go into the 2-core making it a total

of 3𝑟 + (𝑛 − 1)𝑚 nodes falling from the 3-core. Note that the node

𝑅 will be still in the 3-core and thus the nodes in set T will remain

unaffected in the 3-core. Hence, a total of 3𝑟 + (𝑛 − 1)𝑚 nodes will

go to 2-core. So, the multiplicative difference of 𝑓 s corresponding

to the yes instance (3𝑟 +𝑚𝑛+1+ |T |) and no instance (3𝑟 + (𝑛−1)𝑚)

of the Set Cover problem is less than𝑚−𝑙1𝑛−𝑙2 and thus TMCV

cannot be approximated within𝑚𝑙1𝑛𝑙2 factor unless 𝑃 ≠ 𝑁𝑃 . □

We show next that the TCMV problem is polynomial time solv-

able if the degeneracy of the input graph is 1.

Theorem 5. The TCMV problem is polynomial time solvable if
𝐷 (𝑣,𝐺) = 1.

Proof. Let (𝐺 = (𝑉 , 𝐸), Γ ⊆ 𝑉 ,𝑏) be any instance of TMCV

such that 𝐷 (𝐺) = 1. Since 𝐷 (𝐺) = 1, it follows that 𝐺 is a forest.

Let𝐺 = 𝑇1 ∪ · · · ∪𝑇𝑘 for some integer 𝑘 where𝑇𝑖 is a tree for every

𝑖 ∈ [𝑘]. We first describe a dynamic programming based algorithm

for the TCMV problem that works for trees.

Let 𝑇 be the input tree and Γ𝑇 ⊆ 𝑇 the subset of vertices which

can be deleted. We make the tree rooted at any node 𝑟 ∈ 𝑇 . At every

node 𝑥 ∈ 𝑇 and every integer ℓ ∈ [𝑏] ∪ {0}, we store the following.
𝐴[𝑥, ℓ] = maximum number of isolated vertices in Γ𝑇 ∩𝑇𝑥

by deleting at most ℓ vertices from Γ𝑇 ∩𝑇𝑥

subject to the condition that 𝑥 becomes isolated

𝐵 [𝑥, ℓ] = maximum number of isolated vertices in Γ𝑇 ∩𝑇𝑥

by deleting at most ℓ vertices from Γ𝑇 ∩𝑇𝑥 subject to

the condition that 𝑥 is neither isolated nor deleted

𝐶 [𝑥, ℓ] = maximum number of isolated vertices in Γ𝑇 ∩𝑇𝑥

by deleting at most ℓ vertices from Γ𝑇 ∩𝑇𝑥 subject to

the condition that 𝑥 is deleted

𝐷 [𝑥, ℓ] = maximum number of isolated vertices in Γ𝑇 ∩𝑇𝑥

by deleting at most ℓ vertices from Γ𝑇 ∩𝑇𝑥

From the definitions of 𝐴[𝑥, ℓ], 𝐵 [𝑥, ℓ],𝐶 [𝑥, ℓ], and 𝐷 [𝑥, ℓ], the
following recurrences follow. Let the children and grandchildren

of 𝑥 be respectively 𝑦1, . . . , 𝑦𝑖 and 𝑧1, . . . , 𝑧 𝑗 ( 𝑗 could be 0).

𝐴[𝑥, ℓ] = 1(ℓ ⩾ 𝑖) +max{𝐷 [𝑧1, ℓ1] + · · · + 𝐷 [𝑧 𝑗 , ℓ𝑗 ] :
ℓ1 + · · · + ℓ𝑗 ⩽ ℓ − 𝑖}

𝐵 [𝑥, ℓ] = max

𝑖⋃
𝜆=1

{max{𝐴[𝑦1, ℓ1] − 1, 𝐵 [𝑦1, ℓ1],𝐶 [𝑦1, ℓ1]}+

. . .max{𝐴[𝑦𝜆−1, ℓ𝜆−1] − 1, 𝐵 [𝑦𝜆−1, ℓ𝜆−1],𝐶 [𝑦𝜆−1, ℓ𝜆−1]}
+max{𝐴[𝑦𝜆, ℓ𝜆] − 1, 𝐵 [𝑦𝜆, ℓ𝜆]}+
max{𝐴[𝑦𝜆+1, ℓ𝜆+1] − 1, 𝐵 [𝑦𝜆+1, ℓ𝜆+1],𝐶 [𝑦𝜆+1, ℓ𝜆+1]}

+ . . . +max{𝐴[𝑦𝑖 , ℓ𝑖 ] − 1, 𝐵 [𝑦𝑖 , ℓ𝑖 ],𝐶 [𝑦𝑖 , ℓ𝑖 ]} :

ℓ1 + · · · + ℓ𝑖 ⩽ ℓ}
𝐶 [𝑥, ℓ] = max{𝐷 [𝑦1, ℓ1] + · · · + 𝐷 [𝑦𝑖 , ℓ𝑖 ] :

ℓ1 + · · · + ℓ𝑖 ⩽ ℓ − 1}
𝐷 [𝑥, ℓ] = max{𝐴[𝑥, ℓ], 𝐵 [𝑥, ℓ],𝐶 [𝑥, ℓ]}

We make the convention that the maximum over an empty set

is 0. For every leaf node 𝑥 , we initialize 𝐴[𝑥, ℓ], 𝐵 [𝑥, ℓ],𝐶 [𝑥, ℓ], and
𝐷 [𝑥, ℓ] as follows.

𝐴[𝑥, ℓ] = 1, ℓ ⩾ 0

𝐵 [𝑥, ℓ] = −1, ℓ ⩾ 0

𝐶 [𝑥, ℓ] =
{
−1, ℓ = 0

0, ℓ > 0

𝐷 [𝑥, ℓ] = 1, ℓ ⩾ 0

We observe that, given the tables at every descendant vertex of 𝑥 ,

𝐴[𝑥, ℓ] can be computed by a standard dynamic programming based

algorithm for the knapsack problem in time O( 𝑗) [27]. Similarly,

𝐵 [𝑥, ℓ] and 𝐶 [𝑥ℓ] can be computed respectively in O(𝑖2) and O(𝑖)
time. Hence the running time of our algorithm is O(𝑛2𝑏) = O(𝑛3).

□

5 CONCLUSION

In this work we have introduced a novel network robustness mea-

sure based on 𝑘-cores. More specifically, we have addressed the

algorithmic problem that aims to maximize the number of nodes

falling from their initial cores upon a given budget number of node

deletions. We have characterized the hardness of the problem in

both traditional and parameterized frameworks. Our problem is NP-

hard to approximate by any constant, is𝑊 [2]-hard parameterized

by the budget and is para-NP-hard for several other parameters

such as degeneracy and maximum degree of the graph. We have

also proposed a few heuristics and demonstrated their performance

on several datasets. When applied to PPI networks, our approach



has allowed us to correlate network resilience and the evolution

of species. In the future, we will apply our resilience metric to the

entire PPI database from [32]. Moreover, we want to explore if there

exist approximation algorithms for our problem in some relevant

constrained cases beyond the ones considered here.
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