
Automating Resolution is NP-Hard

Albert Atserias

Computer Science Department
Universitat Politècnica de Catalunya

Barcelona, Spain

Moritz Müller

Computer Science Department
Universitat Politècnica de Catalunya

Barcelona, Spain

Abstract—We show that the problem of finding a Reso-
lution refutation that is at most polynomially longer than a
shortest one is NP-hard. In the parlance of proof complex-
ity, Resolution is not automatizable unless P = NP. Indeed,
we show that it is NP-hard to distinguish between formulas
that have Resolution refutations of polynomial length and
those that do not have subexponential length refutations.
This also implies that Resolution is not automatizable in
subexponential time or quasi-polynomial time unless NP
is included in SUBEXP or QP, respectively.

I. INTRODUCTION

The proof search problem for a given proof system

asks, given a tautology, to find an approximately shortest

proof of it. Clearly, the computational complexity of

such problems is of fundamental importance for auto-

mated theorem proving. In particular, among the proof

systems for propositional logic, Resolution deserves

special attention since most modern implementations of

satisfiability solvers are based on it.

We say that the proof search problem for Resolution

is solvable in polynomial time if there is an algorithm

that, given a contradictory CNF formula F as input,

outputs a Resolution refutation of F in time polynomial

in r+s, where r is the size of F , and s is the length of

a shortest Resolution refutation of F . More succinctly,

we say that Resolution is automatizable [11]. It is clear

that the concept of automatizability applies not only to

Resolution but to any refutation or proof system, and

one can ask for automating algorithms that run in quasi-

polynomial time, subexponential time, etc..1

In this paper we show that Resolution is not automati-

zable unless P = NP. The assumption is clearly optimal

since P = NP implies that it is. To prove our result we

give a direct and efficient reduction from 3-SAT, the

satisfiability problem for 3-CNF formulas. The reduc-

tion is so efficient that it also rules out quasi-polynomial

1The time of the automating algorithm is not measured in r but
in r+ s because s can be much larger than r. We use both r and s,
and not just s, because a Resolution refutation need not use all clauses
in F , but the algorithm should be given the opportunity to at least
read all of F .

and subexponential time automating algorithms for Res-

olution under the corresponding hardness assumptions.

More precisely, let QP and SUBEXP denote the classes

of problems that are decidable in quasi-polynomial

time 2(logn)O(1)

, and in subexponential time 2n
o(1)

,

respectively. Then our main result reads:

Theorem 1.
1) Resolution is not automatizable in subexponential

time unless NP ⊆ SUBEXP.
2) Resolution is not automatizable in quasi-

polynomial time unless NP ⊆ QP.
3) Resolution is not automatizable in polynomial

time unless NP ⊆ P.

That Resolution is not automatizable in polynomial

time has been known under a stronger assumption

from parameterized complexity theory, using a more

contrived reduction [1]: we review the literature below.

The first two statements in Theorem 1 give the first

evidence that Resolution is not automatizable in quasi-

polynomial or subexponential time. As in the third state-

ment, their assumptions are also optimal in that NP ⊆
QP and NP ⊆ SUBEXP imply that Resolution can

be automated in quasi-polynomial and subexponential

time, respectively.
The main result as stated in Theorem 1 is a direct

consequence of the fact, which we also prove, that

the problem of non-trivially approximating minimum

proof length for Resolution is NP-hard. If for a CNF

formula G we write r(G) for the size of G, and s(G)
for the length of a shortest Resolution refutation of G,

then we show:

Theorem 2. There are reals c > 0 and d > 0 and
a polynomial-time computable function G that maps
any 3-CNF formula F to a CNF formula G(F) such
that, for r = r(G(F)) and s = s(G(F)):

(a) if F is satisfiable, then s < rc;
(b) if F is unsatisfiable, then s > 2r

1/d

.

Moreover, c and d can be chosen arbitrarily close to 1
and 2, respectively, which means that it is NP-hard to

498

2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/19/$31.00 ©2019 IEEE
DOI 10.1109/FOCS.2019.00038

approximate the minimal Resolution refutation length

to within 2r
1/2−ε

for any ε > 0.

Proof idea: An idea of how a map G as in Theo-

rem 2 could be defined is implicit in [36]. Pudlák [36,

Theorem 2] maps a formula F to REF(F, s), for

some s suitable for his context, where REF(F, s) is

a CNF formula whose clauses describe, in a natural way,

the Resolution refutations of F of length s. He used

this function to show that the canonical pair of Reso-

lution is symmetric. In particular, he showed that, if F
is satisfiable, then REF(F, s) has a short Resolution

refutation. This refutation proceeds naturally by using

a satisfying assignment for F as a guide to find a true

literal in each line of the alleged refutation, line by line

one after another, until it gets stuck at the final empty

clause. Conversely, we would like to show that, if F
is unsatisfiable, then REF(F, s) is hard for Resolution.

Intuitively, this should be the case: refuting REF(F, s)
means proving a lower bound and “our experience rather

suggests that proving lower bounds is difficult” – this

is what Pudlák [36, Section 3] states about a similar

formula for strong proof systems.

However, even after considerable time and effort,

we failed to prove a Resolution length lower bound

for REF(F, s). We bypass the issue by consider-

ing a harder version RREF(F, s) of REF(F, s).
The harder RREF(F, s) is obtained from relativiz-
ing REF(F, s) seen as the propositional encoding of

a first-order formula with a built-in linear order, fol-

lowing the general relativization technique of Dantchev

and Riis [19]. When F is satisfiable, Pudlák’s upper

bound for REF(F, s) goes through to RREF(F, s),
and the linear order is crucial in this. On the other

hand, a random restriction argument in the style of [19]

reduces a length lower bound for RREF(F, s) to a

certain width lower bound for REF(F, s). The bulk

of the current work is in establishing this width lower

bound for REF(F, s), when F is unsatisfiable. It is

proved by showing that, even if s = s(n) has (not

too slow) polynomial growth, the formulas REF(F, s)
and REF(F, 2n+1) are indistinguishable by inferences

of bounded width, where n is the number of vari-

ables in F . Since every unsatisfiable CNF formula

with n variables has a refutation of length 2n+1, the

formula REF(F, 2n+1) is satisfiable, from which it

follows that REF(F, s) does not have bounded-width

refutations.

The technical device that we use in the indistinguisha-

bility argument is a variant of the conditions from [34], a

particular formalization of a Prover-Adversary argument

as, e.g., in [19]. The wording is meant to point out some

analogy with forcing conditions [6]. This is not straight-

forward. The main obstacle overcome by our variant is

the presence of the built-in linear order in REF(F, s).
In fact, Dantchev and Riis [19, Section 5] point out

explicitly that their arguments fail in the presence of a

built-in linear order.

History of the problem: The complexity of the

proof search problem has been extensively investigated.

Krajı́ček and Pudlák [33] showed that Extended Frege

systems2 are not automatizable assuming RSA is secure

against P/poly. Subsequently, Bonet et al. showed this

for Frege [11] and bounded depth Frege systems [12]

assuming the Diffie-Hellman key exchange is secure

against polynomial or, respectively, subexponential size

circuits.

In fact, these results rule out feasible interpolation, an

influential concept introduced to proof complexity by

Krajı́ček [27], [29]. We refer to [32, Chapters 17, 18]

for an account. If a system with feasible interpolation

has short refutations of the contradictions that state

that a pair of NP problems are not disjoint, then the

pair can be separated by small circuits. Hence, feasible

interpolation can be ruled out by finding short proofs of

the disjointness of an NP pair that is hard to separate.

Such hardness assumptions turn up naturally in cryp-

tography [23] which explains the type of assumptions

that were used in the results above.

The failure of feasible interpolation for a natural

system R implies (cf. [4, Theorem 3]) that R is not

even weakly automatizable in the sense that it would be

polynomially simulated (see [18]) by an automatizable

system. Hence, the above results left open whether

weak proof systems, in particular those having feasible

interpolation such as Resolution [29], were (weakly)

automatizable. We refer to [3] for a survey, and focus

from now on on Resolution.

Pudlák showed [36, Corollary 2] that the weak au-

tomatizability of a proof system is equivalent to the

(polynomial time) separability of its, so-called, canon-

ical NP-pair [37]. This is, informally, the feasibility of

distinguishing between satisfiable formulas and those

with short refutations. Hence, to rule it out it suffices

to reduce some inseparable disjoint NP pair to it.

Atserias and Maneva [5] found in this respect useful

pairs associated to two player games. The two NP sets

collect the games won by the respective players, and

separation means deciding the game. Following [5],

[24], Beckmann et al. [9] showed that Resolution is not

2We refer to the textbook [28, Chapter 4] for a definition of this
and the following systems. All notions relevant to state and prove our
results are going to be defined later.

499

weakly automatizable unless parity games are decidable

in polynomial time. Note, however, that this might well

be the case, in fact, parity games are decidable in quasi-

polynomial time [14].

Moreover, some non-trivial automating algorithms are

known. Beame and Pitassi [8] observed that treelike

Resolution is automatizable in quasi-polynomial time.

For general Resolution there is an algorithm that, when

given a 3-CNF formula with n variables that has a

Resolution refutation of length at most s, computes a

refutation in time nO(
√
n log s). This follows from the

size-width trade-off of Ben-Sasson and Wigderson [10].

Indeed, it is trivial to find a refutation of width at most w
in time nO(w) if there is one (and, in general, time nΩ(w)

is necessary [7]). When s is subexponential the runtime

of this algorithm is the non-trivial 2n
1/2+o(1)

.

However, the automatizability of Resolution is un-

likely. First, Alekhnovich et al. [2] showed, assuming

only P �= NP, that automatization is not possible

in linear time. In fact, they proved more. They con-

sidered the optimization problem of finding, given a

contradictory CNF, a Resolution refutation that is as

short as possible. They reduced to it the optimization

problem MMCSA of finding, given a monotone circuit,

a satisfying assignment that has Hamming weight as

small as possible. Known PCP theorems imply that

this problem is not approximable with superconstant

but sublinear ratio 2log
1−o(1) n, so the same holds for

finding short Resolution refutations. This argument can

be adapted to many other refutation systems (see [2]).

But the main convincing evidence that Resolution

is not automatizable, before the result of this paper,

was achieved by Alekhnovich and Razborov [1]. By

a different and ingenious reduction they showed that if

Resolution, or even treelike Resolution, were automa-

tizable, then MMCSA would have, in the terminology

of parameterized complexity theory (see [16, Proposi-

tion 5]), an fpt algorithm with constant approximation

ratio. Now, the same paper [1] also established “the first

nontrivial parameterized inapproximability result” [20,

p.9] by further deriving a randomized fpt algorithm

for the parameterized decision version of MMCSA,

a well-known W[P]-complete problem (see e.g. [21,

Theorem 3.14]). The randomized fpt algorithm has sub-

sequently been derandomized by Eickmeyer et al. [20],

hence Resolution is not automatizable unless W[P] =
FPT. Very recently, Mertz et al. [26] showed that

Resolution is not automatizable in time n(log logn)0.14

unless ETH fails; this follows the same line of argument

as [1] but is based on a more recent parameterized

inapproximability result due to Chen and Lin [17].

Since these results apply not only to Resolution but

even to treelike Resolution, which is automatizable

in quasipolynomial time, Alekhnovich and Razborov

stated that the “main problem left open” [1, Section 5]

is whether general Resolution is automatizable in quasi-

polynomial time. We consider Theorem 1 as an answer

to this question.

The computational problem of computing minimal

proof lengths also has a long history. For first-order

logic, the problem dates back to Gödel’s famous letter

to von Neumann; we refer to [35] for a historical

discussion, to [13] for a proof of Gödel’s claim in

the letter, and to [15] for some more recent results. In

propositional logic, the problem has been shown to be

NP-hard for a particular Frege system by Buss [13],

and for Resolution by Iwama [25]. Alekhnovich et

al. [2] showed that the minimal Resolution refutation

length cannot be approximated to within any fixed

polynomial unless NP �⊆ P/poly: for every d ∈ N

there are functions G and S, computable in non-

uniform polynomial time, such that for every CNF

formula F of sufficiently large size r = r(F) we have

either s(G(F)) < S(r) or s(G(F)) > S(r)d depending

on the satisfiability F . This falls short to rule out

automatizability because S(r) has exponential growth.

Earlier, Iwama [25] found uniformly computable such

functions with polynomially bounded S(r) but his gap

was only S(r) versus S(r) + rd for a constant d, so

also falls short to rule out automatizability.

Outline: In Section II we introduce some nota-

tion and basic terminology from propositional logic.

Section III presents Resolution refutations as finite

structures. Section IV is devoted to REF(F, s) and

proves the width lower bound when F is unsatisfiable

(Lemma 4). Section V discusses the relativized for-

mula RREF(F, s), the refutation length upper bound

when F is satisfiable (Lemma 11), and the refu-

tation length lower bound when F is unsatisfiable

(Lemma 10). Theorems 2 and 1 are derived from

these lemmas in Section VI. In Section VII we discuss

some open issues. Finally, for easiness of reference, in

Appendix VIII we give the detailed lists of clauses for

the formulas REF and RREF.

II. PRELIMINARIES

For n ∈ N we let [n] := {1, . . . , n} and understand

that [0] = ∅. A partial function from a set A to a set B
is a function f with domain Dom(f) included in A and

image Img(f) included in B. We view partial functions

from A to B as sets of ordered pairs (u, v) ∈ A×B. For

any set C, the restriction of f to C is f∩(C×Img(f)).
The restriction of f with image C is f∩(Dom(f)×C).

500

We fix some notation for propositional logic. Let V
be a set of propositional variables that take truth values

in B = {0, 1}, where 0 denotes false and 1 denotes true.

A literal is a variable X or its negation ¬X , also

denoted X̄ . We also write X(1) for X and X(0) for X̄ .

A clause is a set of literals, that we write as a disjunction

of its elements. A clause is non-tautological if it does

not contain both a variable and its negation. The size
of a clause is the number of literals in it. A CNF for-
mula, or CNF, is a set of clauses, that we write as a

conjunction of its elements. A k-CNF, where k � 1, is

a CNF in which all clauses have size at most k. The

size of a CNF F is the sum of the sizes of its clauses.

We use r(F) to denote the size of F .

An assignment, or restriction, is a partial map from

the set of variables V to B. If α is an assignment

and X(b) is a literal, then α satisfies X(b) if X ∈
Dom(α) and b = α(X); it falsifies X(b) if X ∈
Dom(α) and b = 1 − α(X). If C is a clause, then α
satisfies C if it satisfies some literal of C; it falsifies C if

it falsifies every literal of C. The restriction of C by α,

denoted C�α, is 1 if α satisfies C and 0 if α falsifies C;

if α neither satisfies nor falsifies C, then C�α is the

clause obtained from C by removing all the falsified

literals of C, i.e., C�α = C \ {X(1−α(X)) | X ∈
Dom(α)}. If F is a CNF, then F �α is the CNF that

contains C�α for those C ∈ F which are neither

satisfied nor falsified by α, and that contains the empty

clause if some C ∈ F is falsified by α.

A clause D is a weakening of clause C if C ⊆ D. A

clause E is a resolvent of clauses C and D if there is

a variable X such that X ∈ C and X̄ ∈ D, and E =
(C \{X})∪ (D \{X̄}); we then speak of the resolvent

of C and D on X , that we denote by res(C,D,X).
We also say that E is obtained from C and D by a cut
on X .

Let F be a CNF. A Resolution proof from F is

a sequence (D1, . . . , Ds) of non-tautological clauses,

where s � 1 and, for all u ∈ [s], it holds that Du is a

weakening of a clause in F , or there are v, w ∈ [u− 1]
such that Du is a weakening of a resolvent of Dv

and Dw. The length of the proof is s; each Du is a line.

A Resolution refutation of F is a proof from F that ends

with the empty clause, i.e., Ds = ∅. We let s(F) denote

the minimal s such that F has a Resolution refutation

of length s; if F is satisfiable, we let s(F) = ∞. For

a sequence of clauses Π = (D1, . . . , Ds) let Π�α be

obtained from (D1�α, . . . , Ds�α) by removing 1’s and

replacing 0’s by the empty clause. It is clear that if Π
is a Resolution refutation of F of length s, then Π�α is

a Resolution refutation of F �α of length at most s.

III. REFUTATIONS AS STRUCTURES

For this section we fix a CNF F with n vari-

ables X1, . . . , Xn and m clauses C1, . . . , Cm. We view

Resolution refutations (D1, . . . , Ds) of F of length s
as finite structures with a ternary relation D and four

unary functions V, I, L,R:

D ⊆ [s]× [n]× B,

V : [s]→ [n] ∪ {0},
I : [s]→ [m] ∪ {0},
L : [s]→ [s] ∪ {0},
R : [s]→ [s] ∪ {0}.

(1)

The meaning of (u, i, b) ∈ D is that the literal X
(b)
i is

in Du. For each u ∈ [s] exactly one of V (u) or I(u)
is non-zero. The meaning of V (u) = i ∈ [n] is that Du

is a weakening of the resolvent of Dv and Dw on Xi,

where v = L(u) ∈ [u − 1] and w = R(u) ∈ [u − 1],
and X̄i ∈ Dv and Xi ∈ Dw. The meaning of I(u) =
j ∈ [m] is that Du is a weakening of the clause Cj

of F . Formally, a structure (D,V, I, L,R) of type (1)

is a refutation of F of length s if the following hold for

all u, v ∈ [s], i, i′ ∈ [n], j ∈ [m], and b ∈ B:

V (u) = 0 or I(u) = 0, but not both;

I(u) = 0 implies both R(u) �= 0 and L(u) �= 0;

L(u) < u and R(u) < u;

V (u) = i implies (L(u), i, 0) ∈ D;

V (u) = i implies (R(u), i, 1) ∈ D;

V (u) = i �= i′ & (L(u), i′, b) ∈ D imply (u, i′, b) ∈ D;

V (u) = i �= i′ & (R(u), i′, b) ∈ D imply (u, i′, b) ∈ D;

I(u) = j & X
(b)
i ∈ Cj imply (u, i, b) ∈ D;

(u, i, 0) �∈ D or (u, i, 1) �∈ D;

(s, i, b) /∈ D.

Let (R1),...,(R10) name these ten rules. In words, (R1)

determines, for every line Du, whether it is a weak-

ening of an initial clause, i.e., I(u) �= 0, or a

weakening of a resolvent, i.e., V (u) �= 0. In the

first case CI(u) ⊆ Du by (R8). In the second

case, res(DL(u), DR(u), XV (u)) ⊆ Du by (R4-6),

with (R2) and (R3) ensuring that DL(u) and DR(u)

are earlier lines in the sequence. Finally, (R9) ensures

no Du is tautological, and (R10) ensures Ds is empty.

We give an example that will play a crucial role in

the proof of the width lower bound.

Example 3. We use (D∗, V ∗, I∗, L∗, R∗) to denote the

full-tree Resolution refutation of F . It has length

s∗ := 2n+1 − 1

and its clauses are arranged in the form of a full binary

tree of height n with 2n−1 internal nodes and 2n leaves.

501

This tree has one node na at level h ∈ {0} ∪ [n] for

every a = (a1, . . . , ah) ∈ {0, 1}h that is labelled by the

clause

Ca = X
(a1)
1 ∨ · · · ∨X

(ah)
h ,

that is, the unique clause in these variables falsified by

the assignment that maps Xi to 1 − ai. In particular,

the root of the tree is labelled by the empty clause and,

for h ∈ [n] and a ∈ {0, 1}h−1, the clause Ca that labels

node na is the resolvent of the clauses Ca1 and Ca0 that

label the children nodes na1 and na0 on the variable Xh,

i.e., Ca = res(Ca1, Ca0, Xh). Since F is unsatisfiable,

every clause Ca that labels a leaf na is a weakening of

some clause Cj of F .

To view this refutation as a structure of type (1) we

have to identify the nodes na with numbers in [s∗].
We first identify the leafs, i.e., the nodes na with a ∈
{0, 1}n, with the numbers [2n], then we identify the

nodes on level n − 1, i.e., the nodes na with a ∈
{0, 1}n−1, with the numbers in [2n + 2n−1] \ [2n] and

so on, with the root getting s∗ = 2n+1 − 1.

Let a = (a1, . . . , ah) ∈ {0, 1}h for h � n. We

set V ∗(na) := 0 if h = n, and V ∗(na) := h if h < n.

We set I∗(na) := 0 if h < n, and I∗(na) := j if h = n
and j ∈ [m] is, say, smallest such that Ca is a weakening

of Cj . We set L∗(na) := R∗(na) := 0 if h = n.

If h < n we set L∗(na) := na0 and R∗(na) := na1.

Finally, (na, i, b) ∈ D∗ if and only if i ∈ [h] and b = ai.

IV. NON-RELATIVIZED FORMULA REF

Given a CNF F with n variables X1, . . . , Xn and m
non-tautological clauses C1, . . . , Cm, and a natural

number s � 1, we describe a CNF formula REF(F, s)
that is satisfiable if and only if F has a refutation of

length s. Its variables are:

D[u, i, b] with u ∈ [s], i ∈ [n], b ∈ B, for (u, i, b) ∈ D.

V [u, i] with u ∈ [s], i ∈ [n] ∪ {0}, for V (u) = i.
I[u, j] with u ∈ [s], j ∈ [m] ∪ {0}, for I(u) = j.

L[u, v] with u ∈ [s], v ∈ [s] ∪ {0}, for L(u) = v.

R[u, v] with u ∈ [s], v ∈ [s] ∪ {0}, for R(u) = v.

Clearly, any assignment to these variables describes a

ternary relation D and binary relations V , I , L and R.

The clauses of REF(F, s) are listed in Appendix VIII.

This set of clauses is satisfied precisely by those assign-

ments that describe refutations of F of length s. Con-

versely, given a structure as in (1) the associated assign-

ment α satisfies REF(F, s) if and only if (D,V, I, L,R)
is a refutation of F of length s; this assignment α maps

variables D[u, i, b], V [u, i], I[u, j], L[u, v], and R[u, v]
to 1 or 0 depending on whether, respectively, (u, i, b) ∈

D, V (u) = i, I(u) = j, L(u) = v, and R(u) = v or

not.

The index u ∈ [s] is mentioned in the variables

D[u, i, b], V [u, i], I[u, j], L[u, v], R[u, v].

Observe that if v �= u, then v is not mentioned in L[u, v]
or R[u, v]. The index-width of a clause is the num-

ber of indices mentioned by some variable occurring

in the clause. Observe that all clauses of REF(F, s)
have index-width at most two. The index-width of a

Resolution refutation is the maximum index-width of

its clauses.

Lemma 4. For all integers n,w, s � 1 with 2n � s �
6nw and every unsatisfiable CNF F with n variables,
every Resolution refutation of REF(F, s) has index-
width at least w.

Proof: Fix an unsatisfiable CNF F with n vari-

ables and m clauses. For this proof let G denote

the formula REF(F, s) and let G∗ denote the for-

mula REF(F, s∗), where s∗ = 2n+1−1 is the length of

the full-tree Resolution refutation of F from Example 3,

which exists for F because it is unsatisfiable. Let α∗ be

the assignment associated to (D∗, V ∗, I∗, L∗, R∗).
Let k be an integer such that 2k < 3w � 2k+1 and

note that 1 � k < n since n,w � 1 and 2n � 6nw. We

partition [s∗] into n−k+1 intervals B∗0 , B
∗
1 , . . . , B

∗
n−k

where

B∗0 := [s∗] \ [s∗ − 2k+1 + 1],

B∗i := [s∗ − 2k+i + 1] \ [s∗ − 2k+1+i + 1]

for i = 1, . . . , n−k. In the notation of Example 3, B∗0 =
{na | a ∈ {0, 1}�k} is the set of 2k+1 − 1 many nodes

at the top k levels of the full binary tree. For i ∈ [n−
k], the i-th block B∗i = {na | a ∈ {0, 1}k+i} is the

set of nodes at level k + i of the full binary tree. In

particular, B∗n−k is the set of leaves.

Likewise, we partition [s] into n − k + 1 inter-

vals B0, B1, . . . , Bn−k where

B0 := [s] \ [s− 2k+1 + 1],

Bi := [s− 2k+1 · i+ 1] \ [s− 2k+1 · (i+ 1) + 1],

Bn−k := [s− 2k+1 · (n− k) + 1],

for i = 1, . . . , n − k − 1. Observe that |B∗0 | = |B0| =
2k+1 − 1; let t : B0 → B∗0 be the bijection defined

by t(u) := u− s+ s∗ so that for all u, v ∈ B0 it holds

that

u < v if, and only if, t(u) < t(v). (2)

502

Observe that for all i ∈ [n− k − 1]:

|B∗i | = 2k+i � |Bi| � 3w, (3)

|B∗n−k| = 2n � |Bn−k| � 3w, (4)

with (4) following from 2n � s � 6nw and 1 � k < n.
Let H be the collection of partial functions h : [s]∪

{0} → [s∗] ∪ {0} such that:

H1: h is injective,

H2: 0 ∈ Dom(h) and h(0) = 0,

H3: if u ∈ Dom(h) ∩B0, then h(u) = t(u) ∈ B∗0 ,

H4: if u ∈ Dom(h)∩Bi, i ∈ [n− k], then h(u) ∈ B∗i .

In words, condition H4 says that h preserves mem-

bership in matching intervals, and H3 says that the 0-

intervals are kept intact through the fixed bijection t.
Preserving the intervals has the following important

consequence:

Claim 5. For every h ∈ H and u, v ∈ Dom(h) \ {0}
the following hold:

1) h(u) �= 0 and h(v) �= 0,
2) if L∗(h(v)) ∈ Img(h), then h−1(L∗(h(v))) < v,
3) if R∗(h(v)) ∈ Img(h), then h−1(R∗(h(v))) < v.

Proof: Property 1 follows from H1 and H2. To

prove 2 we distinguish several cases: If v ∈ Bn−k,

then h(v) ∈ B∗n−k by H4, hence L∗(h(v)) = 0
and h−1(L∗(h(v))) = 0 by H2, which is smaller

than v �= 0. If v ∈ Bi for some i ∈ [n − k − 1],
then h(v) ∈ B∗i by H4, hence L∗(h(v)) ∈ B∗i+1,

and h−1(L∗(h(v))) ∈ Bi+1 by H4 again, which

is smaller than v ∈ Bi. If v ∈ B0, then first

note that h(v) = t(v) ∈ B∗0 by H3. We distin-

guish the cases whether L∗(h(v)) ∈ B∗0 or not. In

case L∗(h(v)) ∈ B∗0 , we have h−1(L∗(h(v))) =
t−1(L∗(h(v))). Since L∗(h(v)) < h(v), by (2) we

have t−1(L∗(h(v))) < t−1(h(v)) = t−1(t(v)) = v.

In case L∗(h(v)) /∈ B∗0 , we have L∗(h(v)) ∈ B∗1 ,

so h−1(L∗(h(v))) ∈ B1 by H4, which is smaller

than v ∈ B0. The proof of 3 is analogous to that of 2.

For a set I ⊆ [s∗] ∪ {0}, let

∂I :=
{
L∗(u) | u ∈ I \ {0}} ∪ {

R∗(u) | u ∈ I \ {0}}.
A condition is a pair p = (g, h), where g and h are

functions in H , such that

C1: g ⊆ h,

C2: Img(h) = Img(g) ∪ ∂Img(g).

We say a condition p′ = (g′, h′) extends p if h ⊆ h′,
i.e., h′ extends h as a function. Observe, since 0 ∈
Dom(g),

|Dom(h)| � 3|Dom(g)| − 2. (5)

We define a partial truth assignment α(p) that

sets the variables of G as follows. Note that

if D[u, i, b], V [u, i], and I[u, j] are variables of G,

then D[g(u), i, b], V [g(u), i], and I[g(u), j] are vari-

ables of G∗ which are evaluated by α∗. The assign-

ment α(p) is defined precisely on the variables of G
that mention some u ∈ Dom(g). For such u it maps

D[u, i, b] to α∗(D[g(u), i, b]), for all i ∈ [n] and b ∈ B;

V [u, i] to α∗(V [g(u), i]), for all i ∈ [n] ∪ {0};
I[u, j] to α∗(I[g(u), j]), for all j ∈ [m] ∪ {0};
and

L[u, v] and R[u, v] to 1 or 0 indicating whether v =
h−1(L∗(g(u))) or v = h−1(R∗(g(v))), respectively, for

all v ∈ [s] ∪ {0};
Note that L∗(g(u)) and R∗(g(u)) belong to ∂Img(g) ⊆
Img(h) for every u ∈ Dom(g), so h−1 is defined in the

last two cases.

Clearly, if a condition p′ extends p, then α(p) ⊆
α(p′). For I ⊆ [s], the restriction of p to I , denoted p�I ,

is the pair (g∗, h∗) where g∗ is the restriction of g
to I ∪ {0}, and h∗ is the restriction of h with im-

age Img(g∗) ∪ ∂Img(g∗).

Claim 6. If p is a condition and I ⊆ [s], then p�I is a
condition and α(p�I) ⊆ α(p).

Proof: The requirement that g′ and h′ belong to H
is obviously satisfied since H1-H4 are preserved by re-

strictions to subsets that contain 0. C1 and C2 are clear,

so p�I is a condition. The inclusion α(p�I) ⊆ α(p) is

clear since p extends p�I .

Claim 7. If p = (g, h) is a condition with |Dom(g)| �
w and u ∈ [s], then there exists a condition p′ = (g′, h′)
that extends p and such that Dom(g′) = Dom(g)∪{u}.

Proof: We assume u �∈ Dom(g) (otherwise we

take p′ := p) and set g′ := g ∪ {(u, u′)} for u′ ∈ [s∗]
chosen as follows: if u ∈ B0, take u′ := t(u);
otherwise u ∈ Bi for some i ∈ [n − k] and we

choose u′ ∈ B∗i \Img(h). Note there exists u′ as desired

because |B∗i | � 3w by (3) or (4), so by (5)

|B∗i \ Img(h)| � |B∗i | − 3 · |Dom(g)|+ 2 > 0.

It is clear that g′ ∈ H . Write v′0 := L∗(u′) and v′1 :=
R∗(u′). We have to find v0, v1 ∈ [s] ∪ {0} such

that h′ := h∪{(v0, v′0), (v1, v′1)} ∈ H . Assume at least

one of v′0, v
′
1 is not in Img(h). Then it is distinct from 0

(i.e., u′ /∈ B∗n−k), say it is in B∗i . If i = 0, we find v0, v1
as the pre-images of v′0, v

′
1 under t. Otherwise i ∈ [n−k]

and we choose v0, v1 ∈ Bi such that h′ is injective. This

503

can be done because |Bi| � 3w by (3) or (4), so by (5)

|Bi \Dom(h)| � |Bi| − 3 · |Dom(g)|+ 2 � 2.

It is clear that h′ ∈ H .

Claim 8. If p is a condition and C is a clause of G,
then C�α(p) �= 0.

Proof: Let p = (g, h), write α := α(p) and

assume α is defined on all variables of C. Then g is

defined on all indices mentioned by C. We distinguish

by cases according to the type (A1)-(A21) of C.

In case C is of type (A1), i.e., C equals∨
i∈[n]∪{0} V [u, i] for some u ∈ Dom(g), then C�α

equals (
∨

i∈[n]∪{0} V [g(u), i])�α∗ and this is 1 be-

cause
∨

i∈[n]∪{0} V [g(u), i] is a clause of G∗. Case (A2)

is similar.

In case (A3), (u ∈ Dom(g) and) α satisfies L[u, v]
for v := h−1(L∗(g(u))) ∈ [s] ∪ {0}. Note L∗(g(u)) is

in ∂Img(g) ⊆ Img(h), so v is well-defined. Hence we

have C�α = 1. Case (A4) is similar.

In case (A5), C�α equals (V̄ [g(u), i]∨V̄ [g(u), i′])�α∗
and this is 1 because V̄ [g(u), i]∨ V̄ [g(u), i′] is a clause

of G∗. Case (A6) is similar.

In case (A7), v or v′ is distinct from h−1(L∗(g(u)))
and then, respectively, L[u, v] or L[u, v′] is falsified

by α. Hence C�α = 1. Case (A8) is similar.

In case (A9), C�α equals (Ī[g(u), 0]∨V̄ [g(u), 0])�α∗.
But this is 1 since Ī[g(u), 0] ∨ V̄ [g(u), 0] is a clause

of G∗. Case (A10) is similar.

In case (A11), note that α(L[u, 0]) = 1 implies

h−1(L∗(g(u))) = 0, so L∗(g(u)) = 0 by Claim 5 (1).

Then g(u) is a leaf and I∗(g(u)) �= 0. Hence 0 =
α∗(I[g(u), 0]) = α(I[u, 0]), so C�α = 1. Case (A12)

is similar.

In case (A13), note that α(L[u, v]) = 1 im-

plies v = h−1(L∗(g(u))). But h−1(L∗(g(u))) =
h−1(L∗(h(u))) < u by C1 and Claim 5 (2). Case (A14)

is similar.

In case (A15), C�α = 0 implies u, v ∈ Dom(g) and

v = h−1(L∗(g(u))). Hence h(v) = g(v) = L∗(g(u))
(by C1) and α∗(L[g(u), g(v)]) = 1. Further, C�α = 0
implies α∗(V [g(u), i]) = 1 and α∗(D[g(v), i, 0]) = 0.

Hence α∗ falsifies the clause L̄[g(u), g(v)]∨V̄ [g(u), i]∨
D[g(v), i, 0] of G∗, a contradiction. Cases (A16)-(A18)

are similar.

In case (A19), C�α = 0 implies that α∗ falsifies the

clause Ī[g(u), j] ∨D[g(u), i, b] of G∗, a contradiction.

Case (A20) is similar.

In case (A21), α(D̄[s, i, b]) = 0 implies s ∈ Dom(g)
and α∗ falsifies D̄[g(s), i, b]. But this is a clause of G∗

since g(s) = t(s) = s∗ by H3 – contradiction.

This finishes the proof of Claim 8.

We are ready to finish the proof of the lemma. Let P
be the set of conditions p = (g, h) with |Dom(g)| �
w. Assume that there exists a Resolution refuta-

tion of REF(F, s) of index-width smaller than w.

Let p0 = (g0, h0) where g0 = h0 = {(0, 0)} and

note that ∂Img(g0) = ∅, so p0 ∈ P . The assign-

ment α(p0) is empty and falsifies the empty clause,

the last clause of the refutation. Let E be the earliest

clause in the refutation such that E�α(p) = 0 for some

condition p ∈ P . In particular, α(p) is defined on all

variables of E. By Claim 8, E is not a weakening of a

clause from G. Hence, E is obtained by a cut of earlier

clauses C and D on some variable. Let u ∈ [s] be the

index mentioned by this variable. Choose p′ according

to Claim 7. Then α(p′) is defined on all variables

in C, D, and E and extends the partial assignment α(p),
so falsifies E. By soundness it falsifies C or D, say, it

falsifies C. Let p′′ be the restriction of p′ to the indices

mentioned in C. Then α(p′′) falsifies C and p′′ ∈ P
by Claim 6. This contradicts the choice of E.

Remark 9. The width lower bound in the previous

lemma does not have much to do with Resolution; a

more general version can be formulated using the no-

tions of semantic refutations and Poizat width from [5].

The notion of a Poizat tree is straightforwardly adapted

to the many-sorted structures coding refutations. Define

index Poizat width like Poizat width but using the

index height of a Poizat tree: the maximum over its

branches of the number of indices from [s] appearing

in queries of the branch. Then, the conclusion of the

above lemma can be strengthened to: every semantic

refutation of REF(F, s) contains a formula of index

Poizat width at least w/3.

V. RELATIVIZED FORMULA RREF

Given a CNF formula F with n variables and m
clauses, and a natural number s � 1, we define

the CNF formula RREF(F, s) as follows. We again

write X1, . . . , Xn for the variables and C1, . . . , Cm for

the clauses of F . The CNF formula RREF(F, s) has

the same variables as REF(F, s) plus

P [u] with u ∈ [s], for “u is an active index”.

The clauses of RREF(F, s) are very similar to those

of REF(F, s) with a few additional literals in each

clause, and three additional types of clauses. For eas-

iness of future reference, we explicitly listed the new

set of clauses in Appendix VIII. In words, RREF(F, s)
says that the lines indexed by its at most s active indices

describe a Resolution refutation of F , and it does not put

504

any restriction on the structure of the lines on inactive

indices.

First we prove the lower bound:

Lemma 10. There is an integer n0 � 0 such that for all
integers n and w with n � n0 and 20 � w � 2n/(13n)
and every unsatisfiable CNF formula F with n vari-
ables, every Resolution refutation of RREF(F, 13nw)
has length bigger than 22w/5.

Proof: Let F be an unsatisfiable CNF with n
variables and m clauses and 20 � w � 2n/(13n).
Assume Π is a Resolution refutation of RREF(F, t)
of length � � 22w/5 where t := 13nw. We derive a

contradiction assuming at various places that n is large

enough and this determines the constant n0. It will be

clear that it does not depend on F or w.

We define a random restriction ρ to (a subset of)

the variables of RREF(F, t) by the following random

experiment:

1) independently for every u ∈ [t], map P [u] to 1
or 0 each with probability 1/2;

2) let A be the set of u ∈ [t] for which P [u] is

mapped to 1;

3) for every u ∈ A and v ∈ [t]\A, map both L[u, v]
and R[u, v] to 0;

4) independently for every u ∈ [t] \ A and every

variable that mentions u, map the variable to 1
or 0 each with probability 1/2.

A literal that mentions u ∈ [t] evaluates to 1 under ρ
with probability at least 1/4, namely in the event

that P [u] is mapped to 0 in step 1 and the right

value is chosen in step 4. Thus, the probability that a

clause of index-width at least w is not satisfied by ρ
is at most (3/4)w. By the union bound, the probability

that Π�ρ contains a clause of index-width at least w
is at most � · (3/4)w, which is strictly less than 1/4
for � � 22w/5 (here we use that w � 20). Note the

clauses of Π�ρ use variables of REF(F, t), so index-

width is well-defined.

The cardinality of the random subset A is a symmet-

ric binomial random variable with expectation t/2 =
13nw/2. By the Chernoff bound there is a real ε > 0,

independent of F and w, such that |A| < 6nw with

probability at most 2−εnw. For large enough n this is

strictly less than 1/4. Further, P [t] is mapped to 1 with

probability 1/2. Thus, for large enough n, by the union

bound, there exists a restriction ρ in the support of the

above distribution, say, with associated set A ⊆ [t], such

that:

(i) Π�ρ has index-width smaller than w;

(ii) |A| � 6nw;

(iii) ρ maps P [t] to 1, so t ∈ A.

By (iii), ρ satisfies (A24). Also, C�ρ = 1 for C a clause

of type (A22) or (A23) because this holds for every

restriction in the support of the distribution.

Let s = |A| and let REF(F,A) be defined

as REF(F, s) except that we use A instead [s] as index

set, with t in the role of s. More precisely, REF(F,A)
is obtained from REF(F, s) by a copy of variables:

a variable is replaced by the variable (of REF(F, t))
obtained by changing its index u ∈ [s] (and v ∈ [s]) to

the u-th (and the v-th) member of A.

We claim that for every clause C ∈ RREF(F, t)
we either have C�ρ = 1 or C�ρ ∈ REF(F,A). We

already checked this for (A22)-(A24) and are left with

(A1)-(A21). For example, if C is a clause of type (A3),

then C�ρ = 1 if u /∈ A, and otherwise

C�ρ = L[u, 0] ∨
∨

v∈A
L[u, v]

is a clause in REF(F,A). The case that C is of

type (A4) is similar. The remaining cases are obvious.

Thus, Π�ρ is a Resolution refutation of REF(F,A) of

length at most �. By (i) and (ii), if n is large enough,

this contradicts Lemma 4 (note 2n � t � s).

The next lemma gives a polynomial upper bound

on the length of Resolution refutations of RREF(F, s)
when F is satisfiable. In fact, its second statement gives

an upper bound that is possibly sublinear in the size of

RREF(F, s). This second statement is not needed to

prove Theorems 1 and 2.

Lemma 11. There is a polynomial p(s, n,m) such that
for all integers n,m, s � 1 and every satisfiable CNF
formula F with n variables and m clauses, there exists
a Resolution refutation of RREF(F, s) of length at most
p(s, n,m). In fact, p(s, n,m) ∈ O((snm)2).

Proof: Let F be a satisfiable CNF with vari-

ables X1, . . . , Xn and clauses C1, . . . , Cm. Let α :
{X1, . . . , Xn} → B be an assignment that satisfies F .

We derive the clauses

True(u) := P̄ [u]∨D[u, 1, α(X1)]∨· · ·∨D[u, n, α(Xn)]

for u = 1, 2, 3, . . . , s in order. Then n many cuts with

(A21) and one cut with (A24) yield the empty clause.

First, we derive, for all u ∈ [s] and j ∈ [m], as

sm many weakenings of clauses of RREF(F, s), the

auxiliary clauses

A0(j, u) := Ī[u, j] ∨ True(u).

Since α satisfies F we can choose for every j ∈ [m]

some ij ∈ [n] such that X
(α(Xij

))

ij
appears in Cj .

505

Then P̄ [u] ∨ Ī[u, j] ∨ D[u, ij , α(Xij)] is a clause of

RREF(F, s), namely (A19). But A0(j, u) is a weaken-

ing of this.

We derive True(u) for u = 1 through s+m+2 many

cuts. Through a sequence of s many cuts, starting at

(A4) and using (A14) for all v ∈ [s], get P̄ [u]∨R[u, 0].
Cut this with (A12) to get P̄ [u] ∨ Ī[u, 0]. Cut this with

(A2), followed by a sequence of m many cuts with

all A0(j, u) for j ∈ [m] to get True(u).
Now assume u > 1 and True(v) have been derived

for all v < u. First, we derive for every i ∈ [n] the

auxiliary clause

A1(i, u) := V̄ [u, i] ∨ L[u, 0] ∨ True(u), if α(Xi) = 1,

A1(i, u) := V̄ [u, i] ∨R[u, 0] ∨ True(u), if α(Xi) = 0.

We treat the case α(Xi) = 1, the case α(Xi) = 0 is

analogous. Let v ∈ [u − 1]. Cut (A15) with P̄ [v] ∨
D̄[v, i, 0] ∨ D̄[v, i, 1] of type (A20) on D[v, i, 0] to get

P̄ [u] ∨ P̄ [v] ∨ L̄[u, v] ∨ V̄ [u, i] ∨ D̄[v, i, α(Xi)].

Cut this with True(v) on D[v, i, α(Xi)] to get

P̄ [u]∨P̄ [v]∨L̄[u, v]∨V̄ [u, i]∨
∨

i′∈[n]\{i}
D[v, i′, α(Xi′)].

Cut this with (A17) on D[v, i′, α(Xi′)] for every i′ ∈
[n] \ {i}, and then with with (A22) on P [v] to get

P̄ [u]∨ L̄[u, v]∨ V̄ [u, i]∨
∨

i′∈[n]\{i}
D[u, i′, α(Xi′)]. (6)

Now cut (A3) with this formula for all v ∈ [u − 1],
and with (A13) for all u � v � s to get the following

subclause of A1(i, u)

P̄ [u] ∨ L[u, 0] ∨ V̄ [u, i] ∨
∨

i′∈[n]\{i}
D[u, i′, α(Xi′)].

For every v ∈ [u − 1], the clause (6) is derived with

n+ 2 cuts. Thus, A1(i, u) is derived with (n+ 2)(u−
1) + s many cuts. Doing this for all i ∈ [n] amounts to

n(n+ 2)(u− 1) + ns many cuts.

Having derived the auxiliary clauses A1(i, u) we now

derive True(u) in a sequence of n + m + 4 cuts. In a

sequence of n many cuts, cut (A1) with A1(i, u) for all

i ∈ [n], to get

V [u, 0] ∨ L[u, 0] ∨R[u, 0] ∨ True(u).

Cut with (A9) on V [u, 0], then with (A11) on L[u, 0],
and then with (A12) on R[u, 0] to get Ī[u, 0]∨True(u).
Cut (A2) with this and then with A0(j, u) for all j ∈ [m]
in sequence to get True(u) as desired.

In total, the refutation uses (s+ 2+m) + (n+ 1) +∑s
u=2

(
n(n+2)(u−1)+ns+(n+m+4)

)
many cuts: the

first term counts the cuts in the derivation of True(1),
the second term counts the cuts to get the empty clause

from True(s), and each term in the big sum counts the

cuts in the derivation of True(u) for u = 2, . . . , s. The

length of the refutation is bounded by the number of

cuts plus the sm weakenings to get the A0(j, u)’s plus

the number of clauses of RREF(F, s). But, in fact,

the clauses (A7) and (A8) are not used by the given

refutation, and REF(F, s) has at most O((snm)2) many

other clauses.

Remark 12. In the proof of the upper bound Lemma 11,

the built-in linear order in the definition of RREF
plays a crucial role. This refers to the side conditions

u � v in clauses (A13) and (A14) of the definition

of RREF in Appendix VIII. Indeed, it is not hard see

that if the linear order were not built-in but interpreted,

through new propositional variables O[u, v] and its cor-

responding clause axioms, then the resulting version of

RREF(F, s) would be exponentially hard for resolution

independently of the satisfiability or unsatisfiability of

F . This follows from an “infinite model argument”

similar to the proof of the main theorem in [19].

VI. PROOFS OF THE HARDNESS RESULTS

In this section we derive Theorems 1 and 2 stated in

the Introduction.

Proof of Theorem 2: It suffices to define G on

3-CNF formulas F with a sufficiently large number of

variables n. Note m � 8n3 for m the number of clauses

of F . We set

G(F) := RREF(F, 13n2).

Note G(F) has size between n1/q and nq for some con-

stant q > 0. Thus, (a) follows from the first statement

of Lemma 11 for some constant c > 0, and (b) follows

from Lemma 10 for w := n and some constant d > 0
(note that 20 � w � 2n/(13n) for sufficiently large n).

Our main result, Theorem 1, is implied by the more

general statement below. We say that Resolution is

automatizable in time t if there is an algorithm that,

given an unsatisfiable CNF formula F , computes some

Resolution refutation of F in time t(r(F) + s(F)).
Recall that a function t : N → N is time-constructible
if there is an algorithm that given 1n (the string of n
many 1’s) computes 1t(n) in time O(t(n)). We say that t

is subexponential if t(n) � 2n
o(1)

.

Theorem 13. Let t : N → N be time-constructible,
non-decreasing and subexponential. If Resolution is
automatizable in time t, then there are polynomials q(n)
and r(n) and an algorithm that, given a 3-CNF formula

506

F with n variables, decides in time O(t(r(n)) + q(n))
whether F is satisfiable.

Proof: Assume that Resolution is automatizable in

time t and choose c, d and G from Theorem 2. Let q
be as in the proof given above, so G(F) has size at

most nq for every 3-CNF formula F with a sufficiently

large number n of variables.

Consider the following algorithm. Given a 3-CNF

formula F with n variables, compute the formula G(F)
and run the automating algorithm for up to t(nq +nqc)
steps. If the algorithm returns a Resolution refutation

within the allotted time, then output ‘satisfiable’. Else

output ‘unsatisfiable’.

It is clear that the algorithm runs in time O(t(nq +
nqc) + q(n)) for some polynomial q(n); here we use

that t is time-constructible. It suffices to show that it is

correct on 3-CNF formulas F with a sufficiently large

number of variables n. If F is satisfiable, then by (a) of

Theorem 2, G(F) has a Resolution refutation of length

at most nqc, so the automating algorithm computes

a refutation within the alloted time and we answer

‘satisfiable’; here we use that t is non-decreasing. If F
is unsatisfiable, then by (b) of Theorem 2, no Resolution

refutation of G(F) has length at most O(t(nq + nqc)),
so the automating algorithm cannot compute one within

the allotted time and we answer ‘unsatisfiable’; here we

use that t is subexponential.

VII. CONCLUDING REMARKS

This final section contains the observation that, by a

padding argument, the constants c and d in Theorem 2

can be chosen arbitrarily close to 1 and 2, respectively,

and finishes with some questions.

Proof of Theorem 2 for c = 1 + ε and d = 2 + ε:
Given ε > 0 we define G(F, t) for a 3-CNF F and a

natural t > 0 and verify (a) and (b) for G(F) := G(F, t)
assuming that t and n are sufficiently large; again, n
denotes the number of variables of F . The meaning

of “sufficiently large” for t will depend only on ε.
Write w := nt and let G(F, t) := RREF′(F, 13nw) be

obtained from RREF(F, 13nw) by deleting the clauses

of type (A7) and (A8). As has been noted in the proof,

Lemma 11 holds true for RREF′(F, 13nw) instead

RREF(F, 13nw). Since F has at most 8n3 clauses, the

size r(t) of G(F, t) satisfies n2t � r(t) � n2t+c0

for some constant c0 > 0, a number independent of F
and t. By Lemma 11, s(G(F, t)) < n2t+c1 for some

constant c1 > 0; but this is at most r(t)1+ε if t > c1/2ε.
By Lemma 10, s(G(F, t)) > 22n

t/5, but this is more

than 2r(t)
1/(2+ε)

if t > c0/ε.

The reduction above falls short to rule out weak

automatizability of Resolution. For this we would need

that s(G(F)) = ∞ when F is unsatisfiable, i.e., that

G(F) is satisfiable, but this is unlikely to hold for a

polynomial time G as it would put 3-SAT in co-NP. We

refer to [4] for a proof of equivalence of the different

characterizations of weak automatizability used here

and in the Introduction. The main problem left open by

the current work is to find more convincing evidence

that Resolution is not weakly automatizable.

On the more technical side, we would like to know

whether the formulas REF(F, p(n)) are hard for Reso-

lution where F ranges over unsatisfiable CNF formulas

with n variables and p is some fixed polynomial. We

conjecture that this is the case but we only succeeded

in establishing a width lower bound3. Of course, one

can define analogous formulas P -REF(F, s) for any

proof system P . For all we know it could be that

such formulas P -REF(F, p(n)) are hard for strong proof

systems P like Frege or Extended Frege. Of course, it

would be a major breakthrough to prove this, even under

some plausible computational hardness hypothesis. We

refer to [31, Chapter 27] for a discussion.

VIII. APPENDIX: REF AND RREF

In this appendix we include the detailed lists of

clauses of the formulas REF and RREF. Recall, we

use bars to denote the negation of the variables, e.g.,

L̄[u, v] denotes the negation of L[u, v].
In the clauses of REF, clauses (A1)-(A8) say V , I , L

and R are functions with the appropriate domains and

ranges, (A9)-(A10) express (R1), (A11)-(A12) express

(R2), (A13)-(A14) express (R3), (A15)-(A16) express

(R4)-(R5), (A17)-(A18) express (R6)-(R7), (A19) ex-

presses (R8), (A20) expresses (R9), and (A21) expresses

(R10). We write clauses as lists of literals, i.e., write

‘,’ instead ‘∨’. By default, indices u, v, v′ range over

[s], i, i′ over [n], j, j′ over [m], and b over B. It is

understood that i �= i′, j �= j′, v �= v′. In (A5)-(A8)

value 0 is allowed for i, i′, j, j′, v, v′. Clauses (A13) and

(A14) are present only if u � v, and (A19) is present

only if X
(b)
i ∈ Cj .

(A1) V [u, 0], V [u, 1], . . . , V [u, n]
(A2) I[u, 0], I[u, 1], . . . , I[u,m]
(A3) L[u, 0], L[u, 1], . . . , L[u, s]
(A4) R[u, 0], R[u, 1], . . . , R[u, s]
(A5) V̄ [u, i], V̄ [u, i′]
(A6) Ī[u, j], Ī[u, j′]
(A7) L̄[u, v], L̄[u, v′]

3Recently, M. Garlı́k confirmed the conjecture [22].

507

(A8) R̄[u, v], R̄[u, v′]
(A9) Ī[u, 0], V̄ [u, 0]
(A10) I[u, 0], V [u, 0]
(A11) Ī[u, 0], L̄[u, 0]
(A12) Ī[u, 0], R̄[u, 0]
(A13) L̄[u, v]
(A14) R̄[u, v]
(A15) L̄[u, v], V̄ [u, i], D[v, i, 0]
(A16) R̄[u, v], V̄ [u, i], D[v, i, 1]
(A17) L̄[u, v], V̄ [u, i], D̄[v, i′, b], D[u, i′, b]
(A18) R̄[u, v], V̄ [u, i], D̄[v, i′, b], D[u, i′, b]
(A19) Ī[u, j], D[u, i, b]
(A20) D̄[u, i, 0], D̄[u, i, 1]
(A21) D̄[s, i, b]

The clauses of RREF are the same as for REF but

we add to each clause the literals P̄ [u] with u ∈ [s]
mentioned by the clause. More precisely, P̄ [u] is added

to the clauses (A1)-(A14) and (A19) and (A20), both

P̄ [u] and P̄ [v] are added to the clauses (A15)-(A18),

and P̄ [s] is added to clause (A21). Further, we add three

additional types of clauses numbered (A22)-(A24).

(A1) P̄ [u], V [u, 0], V [u, 1], . . . , V [u, n]
(A2) P̄ [u], I[u, 0], I[u, 1], . . . , I[u,m]
(A3) P̄ [u], L[u, 0], L[u, 1], . . . , L[u, s]
(A4) P̄ [u], R[u, 0], R[u, 1], . . . , R[u, s]
(A5) P̄ [u], V̄ [u, i], V̄ [u, i′]
(A6) P̄ [u], Ī[u, j], Ī[u, j′]
(A7) P̄ [u], L̄[u, v], L̄[u, v′]
(A8) P̄ [u], R̄[u, v], R̄[u, v′]
(A9) P̄ [u], Ī[u, 0], V̄ [u, 0]
(A10) P̄ [u], I[u, 0], V [u, 0]
(A11) P̄ [u], Ī[u, 0], L̄[u, 0]
(A12) P̄ [u], Ī[u, 0], R̄[u, 0]
(A13) P̄ [u], L̄[u, v]
(A14) P̄ [u], R̄[u, v]
(A15) P̄ [u], P̄ [v], L̄[u, v], V̄ [u, i], D[v, i, 0]
(A16) P̄ [u], P̄ [v], R̄[u, v], V̄ [u, i], D[v, i, 1]
(A17) P̄ [u], P̄ [v], L̄[u, v], V̄ [u, i], D̄[v, i′, b], D[u, i′, b]
(A18) P̄ [u], P̄ [v], R̄[u, v], V̄ [u, i], D̄[v, i′, b], D[u, i′, b]
(A19) P̄ [u], Ī[u, j], D[u, i, b]
(A20) P̄ [u], D̄[u, i, 0], D̄[u, i, 1]
(A21) P̄ [s], D̄[s, i, b]
(A22) P̄ [u], L̄[u, v], P [v]
(A23) P̄ [u], R̄[u, v], P [v]
(A24) P [s]

ACKNOWLEDGMENTS

Both authors were partially funded by Euro-

pean Research Council (ERC) under the European

Union’s Horizon 2020 research and innovation pro-

gramme, grant agreement ERC-2014-CoG 648276 (AU-

TAR). First author partially funded by MICCIN grant

TIN2016-76573-C2-1P (TASSAT3). We are grateful to

Ilario Bonacina and Michal Garlik for their very useful

comments on an earlier draft of this paper.

REFERENCES

[1] M. Alekhnovich and A. A. Razborov. Resolution is not
automatizable unless W[P] is tractable. SIAM Journal
on Computing 38 (4): 1347-1363, 2008.

[2] M. Alekhnovich, S. R. Buss, S. Moran and T. Pitassi.
Minimum propositional proof length is NP-hard to lin-
early approximate. The Journal of Symbolic Logic 66:
171-191, 2001.

[3] A. Atserias. The proof-search problem between
bounded-width Resolution and bounded-degree semi-
algebraic proofs. 16th International Conference on
Theory and Applications of Satisfiability Testing
(SAT’13), LNCS 7962, Springer, pp. 1-17, 2013.

[4] A. Atserias and M. L. Bonet. On the automatizability
of Resolution and related propositional proof systems.
Information and Computation 189 (2): 182-201, 2004.

[5] A. Atserias and E. Maneva. Mean-payoff games and
propositional proofs. Information and Computation 209
(4): 664-691, 2011.

[6] A. Atserias and M. Müller. Partially definable forcing
and bounded arithmetic. Archive for Mathematical Logic
54 (1): 1-33, 2015.

[7] A. Atserias, M. Lauria, and J. Nordström. Narrow proofs
may be maximally long. ACM Transactions on Compu-
tational Logic 17 (3), 19:1-19:30, 2016.

[8] P. Beame and T. Pitassi. 1996. Simplified and improved
resolution lower bounds. In 37th Annual Symposium
on Foundations of Computer Science (FOCS’96), IEEE
Computer Society, pp. 274-282. 1996.

[9] A. Beckmann, P. Pudlák and N. Thapen. Parity games
and propositional proofs. ACM Transactions on Compu-
tational Logic 15 (2), article 17, 2014.

[10] E. Ben-Sasson and A. Wigderson. Short proofs are
narrow – Resolution made simple. Journal of the ACM
48 (2): 149-169, 2001.

[11] M. L. Bonet, T. Pitassi and R. Raz. On interpolation
and automatization for Frege systems. SIAM Journal on
Computing 29 (6): 1939-1967, 2000.

[12] M. L. Bonet, C. Domingo, R. Gavaldà, A. Maciel
and T. Pitassi. Non-automatizability of bounded-depth
Frege proofs. Computational Complexity 13 (1-2): 47-
68, 2004.

[13] S. R. Buss. On Gödel’s theorems on lengths of proofs
II: Lower bounds for recognizing k symbol provability.
In P. Clote and J. Remmel (eds.), Feasible Mathematics
II, Birkhäuser, pp. 57-90, 1995.

508

[14] C. S. Calude, S. Jain, B. Khoussainov, W. Li and
F. Stephan. Deciding parity games in quasipolynomial
time. 49th Annual ACM SIGACT Symposium on Theory
of Computing (STOC’17). ACM, pp. 252-263, 2017.

[15] Y. Chen and J. Flum. On the complexity of Gödel’s proof
predicate. The Journal of Symbolic Logic 75 (1): 239-
254, 2010.

[16] Y. Chen, M. Grohe and M. Grüber. On parameterized
approximability. 2nd International Workshop on Param-
eterized and Exact Computation (IWPEC’06), LNCS
4169, pp.109-120, 2006.

[17] Y. Chen and B. Lin. The constant inapproximability
of the parameterized dominating set problem. SIAM
Journal on Computing 48 (2): 513-533, 2019.

[18] S. A. Cook and R. A. Reckhow. The relative efficiency of
propositional proof systems. Journal of Symbolic Logic
44 (1): 36-50, 1979.

[19] S. Dantchev and S. Riis. On relativisation and complex-
ity gap for Resolution-based proof systems. Computer
Science Logic (CSL’03), LNCS 2803, pp. 142-154,
Springer, 2003.

[20] K. Eickmeyer, M. Grohe and M. Grüber. Approximation
of natural W[P]-complete minimisation problems is hard.
23rd Annual IEEE Conference on Computational Com-
plexity (CCC’08), College Park, MD, pp. 8-18, 2008.

[21] J. Flum and M. Grohe. Parameterized Complexity The-
ory. Springer, 2006.

[22] M. Garlı́k. Resolution lower bounds for refutation state-
ments. 44th International Symposium on Mathematical
Foundations of Computer Science (MFCS’19), LIPIcs
138, pp. 37:1-37:13, 2019.

[23] J. Grollmann and A. L. Selman. Complexity measures
for public-key cryptosystems. SIAM Journal on Com-
puting 17 (2): 309-335, 1988.

[24] L. Huang and T. Pitassi. Automatizability and sim-
ple stochastic games. In International Colloquium on
Automata, Languages and Programming (ICALP’11),
LNCS 6755, pp. 605-617, 2011.

[25] K. Iwama. Complexity of finding short resolution
proofs. Mathematical Foundations of Computer Science
(MFCS’97), LNCS 1295, pp. 309-318, 1997.

[26] I. Mertz, T. Pitassi and Y. Wei. Short proofs are hard
to find. 46th International Colloquium on Automata,
Languages and Programming (ICALP’19), LIPIcs 132,
pp. 84:1-84:16, 2019.

[27] J. Krajı́ček. Lower bounds to the size of constant-depth
propositional proofs. The Journal of Symbolic Logic 59
(1): 73-86, 1994.

[28] J. Krajı́ček. Bounded Arithmetic, Propositional Logic,
and Complexity Theory. Encyclopedia of Mathematics
and Its Applications 60, Cambridge University Press,
1995.

[29] J. Krajı́ček. Interpolation theorems, lower bounds for
proof systems, and independence results for bounded
arithmetic. The Journal of Symbolic Logic 62 (2): 457-
486, 1997.

[30] J. Krajı́ček. On the weak pigeonhole principle, Funda-
menta Mathematicae 170 (1-3): 123-140, 2001.

[31] J. Krajı́ček. Forcing with random variables and proof
complexity. London Mathematical Society Lecture Note
Series 382, Cambridge University Press, 2011.

[32] J. Krajı́ček. Proof Complexity. Encyclopedia of Mathe-
matics and Its Applications 170, Cambridge University
Press, Cambridge - New York - Melbourne, 2019.

[33] J. Krajı́ček and P. Pudlák. Some consequences of cryp-
tographical conjectures for S1

2 and EF . Information and
Computation 140 (1): 82-94, 1998.

[34] M. Müller and S. Szeider. The treewidth of proofs.
Information and Computation 255 (1): 147-164, 2017.

[35] A. Urquhart. Von Neumann, Gödel and complexity the-
ory. Bulletin of Symbolic Logic (16) 4: 516-530, 2010.

[36] P. Pudlák. On reducibility and symmetry of disjoint NP-
pairs. Theoretical Computer Science 295: 323-339, 2003.

[37] A. A. Razborov. On provably disjoint NP-pairs. Basic
Research in Computer Science (BRICS) Report Series 1
(36), 1994.

509

