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Abstract

In spite of several claims stating that some models are more interpretable than
others – e.g., “linear models are more interpretable than deep neural networks” – we
still lack a principled notion of interpretability to formally compare among different
classes of models. We make a step towards such a notion by studying whether folk-
lore interpretability claims have a correlate in terms of computational complexity
theory. We focus on local post-hoc explainability queries that, intuitively, attempt
to answer why individual inputs are classified in a certain way by a given model.
In a nutshell, we say that a class C1 of models is more interpretable than another
class C2, if the computational complexity of answering post-hoc queries for models
in C2 is higher than for those in C1. We prove that this notion provides a good theo-
retical counterpart to current beliefs on the interpretability of models; in particular,
we show that under our definition and assuming standard complexity-theoretical
assumptions (such as P 6= NP), both linear and tree-based models are strictly more
interpretable than neural networks. Our complexity analysis, however, does not
provide a clear-cut difference between linear and tree-based models, as we obtain
different results depending on the particular post-hoc explanations considered. Fi-
nally, by applying a finer complexity analysis based on parameterized complexity,
we are able to prove a theoretical result suggesting that shallow neural networks
are more interpretable than deeper ones.

1 Introduction

Assume a dystopian future in which the increasing number of submissions has forced journal editors
to use machine-learning systems for automatically accepting or rejecting papers. Someone sends
his/her work to the journal and the answer is a reject, so the person demands an explanation for the
decision. The following are examples of three alternative ways in which the editor could provide an
explanation for the rejection given by the system:

1. In order to accept the submitted paper it would be enough to include a better motivation
and to delete at least two mathematical formulas.

2. Regardless of the content and the other features of this paper, it was rejected because it has
more than 10 pages and a font size of less than 11pt.

3. We only accept 1 out of 20 papers that do not cite any other paper from our own journal. In
order to increase your chances next time, please add more references.
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These are examples of so called local post-hoc explanations [3, 19, 23, 26, 27]. Here, the term “local”
refers to explaining the verdict of the system for a particular input [19, 27], and the term “post-hoc”
refers to interpreting the system after it has been trained [23, 26]. Each one of the above explanations
can be seen as a query asked about a system and an input for it. We call them explainability queries.
The first query is related with the minimum change required to obtain a desired outcome (“what is the
minimum change we must make to the article for it to be accepted by the system?”). The second one
is known as a sufficient reason [32], and intuitively asks for a subset of the features of the given input
that suffices to obtain the current verdict. The third one, that we call counting completions, relates to
the probability of obtaining a particular output given the values in a subset of the features of the input.

In this paper we use explainability queries to formally compare the interpretability of machine-
learning models. We do this by relating the interpretability of a class of models (e.g., decision trees)
to the computational complexity of answering queries for models in that class. Intuitively the lower
the complexity of such queries is, the more interpretable the class is. We study whether this intuition
provides an appropriate correlate to folklore wisdom on the interpretability of models [20, 23, 28].

Our contributions. We formalize the framework described above (Section 2) and use it to perform a
theoretical study of the computational complexity of three important types of explainability queries
over three classes of models. We focus on models often mentioned in the literature as extreme points
in the interpretability spectrum: decision trees, linear models, and deep neural networks. In particular,
we consider the class of free binary decision diagrams (FBDDs), that generalize decision trees, the
class of perceptrons, and the class of multilayer perceptrons (MLPs) with ReLU activation functions.
The instantiation of our framework for these classes is presented in Section 3.

We show that, under standard complexity assumptions, the computational problems associated to our
interpretability queries are strictly less complex for FBDDs than they are for MLPs. For instance, we
show that for FBDDs, the queries minimum-change-required and counting-completions can be solved
in polynomial time, while for MLPs these queries are, respectively, NP-complete and #P-complete
(where #P is the prototypical intractable complexity class for counting problems). These results,
together with results for other explainability queries, show that under our definition for comparing the
interpretability of classes of models, FBDDs are indeed more interpretable than MLPs. This correlates
with the folklore statement that tree-based models are more interpretable than deep neural networks.
We prove similar results for perceptrons: most explainability queries that we consider are strictly
less complex to answer for perceptrons than they are for MLPs. Since perceptrons are a realization
of a linear model, our results give theoretical evidence for another folklore claim stating that linear
models are more interpretable than deep neural networks. On the other hand, the comparison between
perceptrons and FBDDs is not definitive and depends on the particular explainability query. We
establish all our computational complexity results in Section 4.

Then, we observe that standard complexity classes are not enough to differentiate the interpretability
of shallow and deep MLPs. To present a meaningful comparison, we then use the machinery of
parameterized complexity [12, 16], a theory that allows the classification of hard computational
problems on a finer scale. Using this theory, we are able to prove that there are explainability queries
that are more difficult to solve for deeper MLPs compared to shallow ones, thus giving theoretical
evidence that shallow MLPs are more interpretable. This is the most technically involved result of
the paper, that we think provides new insights on the complexity of interpreting deep neural networks.
We present the necessary concepts and assumptions as well as a precise statement of this result
in Section 5.

Most definitions of interpretability in the literature are directly related to humans in a subjective
manner [5, 10, 25]. In this respect we do not claim that our complexity-based notion of interpretability
is the right notion of interpretability, and thus our results should be taken as a study of the correlation
between a formal notion and the folklore wisdom regarding a subjective concept. We discuss this and
other limitations of our results in Section 6. We only present a few sketches for proofs in the body of
the paper and refer the reader to the appendix for detailed proofs of all our claims.

2 A framework to compare interpretability

In this section we explain the key abstract components of our framework. The idea is to introduce the
necessary terminology to formalize our notion of being more interpretable in terms of complexity.
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Models and instances. We consider an abstract definition of a model M simply as a Boolean
functionM : {0, 1}n → {0, 1}. That is, we focus on binary classifiers with Boolean input features.
Restricting inputs and outputs to be Booleans makes our setting cleaner while still covering several
relevant practical scenarios. A class of models is just a way of grouping models together. An instance
is a vector in {0, 1}n and represents a possible input for a model. A partial instance is a vector
in {0, 1,⊥}n, with ⊥ intuitively representing “undefined” components. A partial instance x ∈
{0, 1,⊥}n represents, in a compact way, the set of all instances in {0, 1}n that can be obtained by
replacing undefined components in x with values in {0, 1}. We call these the completions of x.

Explainability queries. An explainability query is a question that we ask about a modelM and a
(possibly partial) instance x, and refers to what the modelM does on instance x. We assume all
queries to be stated either as decision problems (that is, YES/NO queries) or as counting problems
(queries that ask, for example, how many completions of a partial instance satisfy a given property).
Thus, for now we can think of queries simply as functions having models and instances as inputs. We
will formally define some specific queries in the next section, when we instantiate our framework.

Complexity classes. We assume some familiarity with the most common computational complexity
classes of polynomial time (PTIME) and nondeterministic polynomial time (NP), and with the notion
of hardness and completeness for complexity classes under polynomial time reductions. In the
paper we also consider the class Σp2, consisting of those problems that can be solved in NP if we
further grant access to an oracle that solves NP queries in constant time. It is strongly believed that
PTIME ( NP ( Σp2 [2], where for complexity classes K1 and K2 we have that K1 ( K2 means
the following: problems in K1 can be solved in K2, but complete problems for K2 cannot be solved
in K1.

While for studying the complexity of our decision problems the above classes suffice, for counting
problems we will need another one. This will be the class #P, which corresponds to problems that
can be defined as counting the number of accepting paths of a polynomial-time nondeterministic
Turing machine [2]. Intuitively, #P is the counting class associated to NP: while the prototypical
NP-complete problem is checking if a propositional formula is satisfiable (SAT), the prototypical #P-
complete problem is counting how many truth assignments satisfy a propositional formula (#SAT).
It is widely believed that #P is “harder” than Σp2, which we write as Σp2 ( #P.1

Complexity-based interpretability of models. Given an explainability query Q and a class C of
models, we denote by Q(C) the computational problem defined by Q restricted to models in C. We
define next the most important notion for our framework: that of being more interpretable in terms of
complexity (c-interpretable for short). We will use this notion to compare among classes of models.
Definition 1. Let Q be an explainability query, and C1 and C2 be two classes of models. We say
that C1 is strictly more c-interpretable than C2 with respect to Q, if the problem Q(C1) is in the
complexity class K1, the problem Q(C2) is hard for complexity class K2, and K1 ( K2.

For instance, in the above definition one could take K1 to be the PTIME class and K2 to be the NP
class, or K1 = NP and K2 = Σp2.

3 Instantiating the framework and main results

Here we instantiate our framework on three important classes of Boolean models and explainability
queries, and then present our main theorems comparing such models in terms of c-interpretability.

3.1 Specific models

Binary decision diagrams. A binary decision diagram (BDD [35]) is a rooted directed acyclic
graphM with labels on edges and nodes, verifying: (i) each leaf is labeled with true or with false;
(ii) each internal node (a node that is not a leaf) is labeled with an element of {1, . . . , n}; and

1One has to be careful with this notation, however, as Σp
2 and #P are complexity classes for problems of

different sort: the former being for decision problems, and the latter for counting problems. Although this issue
can be solved by considering the class PP, we skip these technical details as they are not fundamental for the
paper and can be found in most complexity theory textbooks, such as that of Arora and Barak [2].
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(iii) each internal node has an outgoing edge labeled 1 and another one labeled 0. Every instance
x = (x1, . . . , xn) ∈ {0, 1}n defines a unique path πx from the root to a leaf inM, which satisfies
the following condition: for every non-leaf node u in πx, if i is the label of u, then the path πx goes
through the edge that is labeled with xi. The instance x is positive, i.e.,M(x) := 1, if the label of
the leaf in the path πx is true, and negative otherwise. The size |M| ofM is its number of edges. A
binary decision diagramM is free (FBDD) if for every path from the root to a leaf, no two nodes on
that path have the same label. A decision tree is simply an FBDD whose underlying graph is a tree.

Multilayer perceptron (MLP). A multilayer perceptron M with k layers is defined by a se-
quence of weight matrices W (1), . . . ,W (k), bias vectors b(1), . . . , b(k), and activation func-
tions f (1), . . . , f (k). Given an instance x, we inductively define

h(i) := f (i)(h(i−1)W (i) + b(i)) (i ∈ {1, . . . , k}), (1)

assuming that h(0) := x. The output ofM on x is defined asM(x) := h(k). In this paper we
assume all weights and biases to be rational numbers. That is, we assume that there exists a sequence
of positive integers d0, d1, . . . , dk such that W (i) ∈ Qdi−1×di and b(i) ∈ Qdi . The integer d0 is
called the input size ofM, and dk the output size. Given that we are interested in binary classifiers,
we assume that dk = 1. We say that an MLP as defined above has (k − 1) hidden layers. The size of
an MLPM, denoted by |M|, is the total size of its weights and biases, in which the size of a rational
number p/q is log2(p) + log2(q) (with the convention that log2(0) = 1).

We focus on MLPs in which all internal functions f (1), . . . , f (k−1) are the ReLU function relu(x) :=
max(0, x). Usually, MLP binary classifiers are trained using the sigmoid as the output function f (k).
Nevertheless, when an MLP classifies an input (after training), it takes decisions by simply using
the pre activations, also called logits. Based on this and on the fact that we only consider already
trained MLPs, we can assume without loss of generality that the output function f (k) is the binary
step function, defined as step(x) := 0 if x < 0, and step(x) := 1 if x ≥ 0.

Perceptron. A perceptron is an MLP with no hidden layers (i.e., k = 1). That is, a perceptronM is
defined by a pair (W , b) such that W ∈ Qd×1 and b ∈ Q, and the output isM(x) = step(xW +b).
Because of its particular structure, a perceptron is usually defined as a pair (w, b) with w a rational
vector and b a rational number. The output of M(x) is then 1 if and only if 〈x,w〉 + b ≥ 0,
where 〈x,w〉 denotes the dot product between x and w.

3.2 Specific queries

Given instances x and y, we define d(x,y) :=
∑n
i=1 |xi − yi| as the number of components in

which x and y differ. We now formalize the minimum-change-required problem, which checks if the
output of the model can be changed by flipping the value of at most k components in the input.

Problem: MINIMUMCHANGEREQUIRED (MCR)
Input: ModelM, instance x, and k ∈ N

Output: YES, if there exists an instance y with d(x,y) ≤ k
andM(x) 6=M(y), and NO otherwise

Notice that, in the above definition, instead of “finding” the minimum change we state the problem
as a YES/NO query (a decision problem) by adding an additional input k ∈ N and then asking for a
change of size at most k. This is a standard way of stating a problem to analyze its complexity [2].
Moreover, in our results, when we are able to solve the problem in PTIME then we can also output a
minimum change, and it is clear that if the decision problem is hard then the optimization problem is
also hard. Hence, we can indeed state our problems as decision problems without loss of generality.

To introduce our next query, recall that a partial instance is a vector y = (y1, . . . , yn) ∈ {0, 1,⊥}n,
and a completion of it is an instance x = (x1, . . . , xn) ∈ {0, 1}n such that for every i where yi ∈
{0, 1} it holds that xi = yi. That is, x coincides with y on all the components of y that are
not ⊥. Given an instance x and a model M, a sufficient reason for x with respect to M [32]
is a partial instance y, such that x is a completion of y and every possible completion x′ of y
satisfiesM(x′) = M(x). That is, knowing the value of the components that are defined in y is
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enough to determine the outputM(x). Observe that an instance x is always a sufficient reason for
itself, and that x could have multiple (other) sufficient reasons. However, given an instance x, the
sufficient reasons of x that are most interesting are those having the least possible number of defined
components; indeed, it is clear that the less defined components a sufficient reason has, the more
information it provides about the decision ofM on x. For a partial instance y, let us write ‖y‖
for its number of components that are not ⊥. The previous observations then motivate our next
interpretability query.

Problem: MINIMUMSUFFICIENTREASON (MSR)
Input: ModelM, instance x, and k ∈ N

Output: YES, if there exists a sufficient reason y for x wrt.M with ‖y‖ ≤ k,
and NO otherwise

As for the case of MCR, notice that we have formalized this interpretability query as a decision
problem. The last query that we will consider refers to counting the number of positive completions
for a given partial instance.

Problem: COUNTCOMPLETIONS (CC)
Input: ModelM, partial instance y

Output: The number of completions x of y such thatM(x) = 1

Intuitively, this query informs us on the proportion of inputs that are accepted by the model, given
that some particular features have been fixed; or, equivalently, on the probability that such an instance
is accepted, assuming the other features to be uniformly and independently distributed.

3.3 Main interpretability theorems

We can now state our main theorems, which are illustrated in Figure 1. In all these theorems we
use CMLP to denote the class of all models (functions from {0, 1}n to {0, 1}) that are defined by MLPs,
and similarly for CFBDD and CPerceptron. The proofs for all these results will follow as corollaries from
the detailed complexity analysis that we present in Section 4. We start by stating a strong separation
between FBDDs and MLPs, which holds for all the queries presented above.

Theorem 2. CFBDD is strictly more c-interpretable than CMLP with respect to MCR, MSR, and CC.

For the comparison between perceptrons and MLPs, we can establish a strict separation for MCR
and MSR , but not for CC. In fact, CC has the same complexity for both classes of models, which
means that none of these classes strictly “dominates” the other in terms of c-interpretability for CC.

Theorem 3. CPerceptron is strictly more c-interpretable than CMLP with respect to MCR and MSR. In
turn, the problems CC(CPerceptron) and CC(CMLP) are both complete for the same complexity class.

The next result shows that, in terms of c-interpretability, the relationship between FBDDs and
perceptrons is not clear, as each one of them is strictly more c-interpretable than the other for some
explainability query.

Theorem 4. The problems MCR(CFBDD) and MCR(CPerceptrons) are both in PTIME. How-
ever, CPerceptron is strictly more c-interpretable than CFBDD with respect to MSR, while CFBDD is
strictly more c-interpretable than CPerceptron with respect to CC.

We prove these results in the next section, where for each query Q and class of models C we pinpoint
the exact complexity of the problem Q(C).
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MLPs

FBDDs Perceptrons

MCR, MSRMCR, MSR, CC

CC

MSR

Figure 1: Illustration of the main interpretability results. Arrows depict that the pointed class of
models is harder with respect to the query that labels the edge. We omit labels (or arrows) when a
problem is complete for the same complexity class for two classes of models.

4 The complexity of explainability queries

FBDDs Perceptrons MLPs

MINIMUMCHANGEREQUIRED PTIME PTIME NP-complete
MINIMUMSUFFICIENTREASON NP-complete PTIME Σp

2-complete
CHECKSUFFICIENTREASON PTIME PTIME coNP-complete
COUNTCOMPLETIONS PTIME #P-complete #P-complete

Table 1: Summary of our complexity results.

In this section we present our technical complexity results proving Theorems 2, 3, and 4. We divide
our results in terms of the queries that we consider. We also present a few other complexity results that
we find interesting on their own. A summary of the results is shown in Table 1. With the exception of
Proposition 6, items (1) and (3), the proofs for this section are relatively routine, were already known
or follow from known techniques. As mentioned in the introduction, we only present the main ideas
of some of the proofs in the body of the paper, and a detailed exposition of each result can be found
in the appendix.

4.1 The complexity of MINIMUMCHANGEREQUIRED

In what follows we determine the complexity of the MINIMUMCHANGEREQUIRED problem for the
three classes of models that we consider.
Proposition 5. The MINIMUMCHANGEREQUIRED query is (1) in PTIME for FBDDs, (2) in PTIME
for perceptrons, and (3) NP-complete for MLPs.

Proof sketch. This query has been shown to be solvable in PTIME for ordered binary decision
diagrams (OBDDs, a restricted form of FBDDs) by Shih et al. [31, Theorem 6] (the query is called
robusteness in the work of Shih et al. [31]). We show that the same proof applies to FBDDs. Recall
that in an FBDD every internal node is labeled with a feature index in {1, . . . , n}. The main idea is to
compute a quantity mcru(x) ∈ N∪{∞} for every node u of the FBDDM. This quantity represents
the minimum number of features that we need to flip in x to modify the classificationM(x) if we are
only allowed to change features associated with the paths from u to some leaf in the FBDD. One can
easily compute these values by processing the FBDD bottom-up. Then the minimum change required
for x is the value mcrr(x) where r is the root ofM, and thus we simply return YES if mcrr(x) ≤ k,
and NO otherwise.

For the case of a perceptronM = (w, b) and of an instance x, let us assume without loss of generality
that M(x) = 1. We first define the importance s(i) ∈ Q of every input feature at position i as
follows: if xi = 1 then s(i) := wi, and if xi = 0 then s(i) := −wi. Consider now the set S that
contains the top k most important input features for which s(i) > 0. We can easily show that it is
enough to check whether flipping every feature in S changes the classification of x, in which case we
return YES, and return NO otherwise.

Finally, NP membership of MCR for MLPs is clear: guess a partial instance y with d(x,y) ≤ k and
check in polynomial time thatM(x) 6= M(y). We prove hardness with a simple reduction from
the VERTEXCOVER problem for graphs, which is known to be NP-complete.
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Notice that this result immediately yields Theorems 2, 3, and 4 for the case of MCR.

4.2 The complexity of MINIMUMSUFFICIENTREASON

We now study the complexity of MINIMUMSUFFICIENTREASON. The following result yields
Theorems 2, 3, and 4 for the case of MSR.
Proposition 6. The MINIMUMSUFFICIENTREASON query is (1) NP-complete for FBDDs (and
hardness holds already for decision trees), (2) in PTIME for perceptrons, and (3) Σp2-complete for
MLPs.

Proof sketch. Membership of the problem in the respective classes is easy. We show NP-completeness
of the problem for FBDDs by a nontrivial reduction from the NP-complete problem of determining
whether a directed acyclic graph has a dominating set of size at most k [22]. For a perceptronM =
(w, b) and an instance x, assume without loss of generality that M(x) = 1. As in the proof of
Proposition 5, we consider the importance of every component of x, and prove that it is enough to
check whether the k most important features of x are a sufficient reason for it, in which case we
return YES, and simply return NO otherwise. Finally, the Σp2-completeness for MLPs is obtained
again using a technical reduction from the problem called SHORTEST IMPLICANT CORE, defined
and shown to be Σp2-complete by Umans [34].

To refine our analysis, we also consider the natural problem of checking if a given partial instance is a
sufficient reason for an instance.

Problem: CHECKSUFFICIENTREASON (CSR)
Input: ModelM, instance x and a partial instance y

Output: YES, if y is a sufficient reason for x wrt.M, and NO otherwise

We obtain the following (easy) result.
Proposition 7. The query CHECKSUFFICIENTREASON is (1) in PTIME for FBDDs, (2) in PTIME
for perceptrons, and (3) co-NP-complete for MLPs.

We note that this result for FBDDs already appears in [9] (under the name of implicant check).
Interestingly, we observe that this new query maintains the comparisons in terms of c-interpretability,
in the sense that CFBDD and CPerceptron are strictly more c-interpretable than CMLP with respect to CSR.

4.3 The complexity of COUNTCOMPLETIONS

What follows is our main complexity result regarding the query COUNTCOMPLETIONS, which yields
Theorems 2, 3, and 4 for the case of CC.
Proposition 8. The query COUNTCOMPLETIONS is (1) in PTIME for FBDDs, (2) #P-complete for
perceptrons, and (3) #P-complete for MLPs.

Proof sketch. Claim (1) is a a well-known fact that is a direct consequence of the definition of FBDDs;
indeed, we can easily compute by bottom-up induction of the FBDD a quantity representing for each
node the number of positive completions of the sub-FBDD rooted at that node (e.g., see [9, 35]). We
prove (2) by showing a reduction from the #P-complete problem #KNAPSACK, i.e., counting the
number of solutions to a 0/1 knapsack input.2 For the last claim, we show that MLPs with ReLU
activations can simulate arbitrary Boolean formulas, which allows us to directly conclude (3) since
counting the number of satisfying assignments of a Boolean formula is #P-complete.

Comparing perceptrons and MLPs. Although the query COUNTCOMPLETIONS is #P-complete
for perceptrons, we can still show that the complexity goes down to PTIME if we assume the weights
and biases to be integers given in unary; this is commonly called pseudo-polynomial time.
Proposition 9. The query COUNTCOMPLETIONS can be solved in pseudo-polynomial time for
perceptrons (assuming the weights and biases to be integers given in unary).

2Recall that such an input consists of natural numbers (given in binary) s1, . . . , sn, k ∈ N, and a solution to
it is a set S ⊆ {1, . . . , n} with

∑
i∈S si ≤ k.

7



Proof sketch. This is proved by first reducing the problem to #KNAPSACK, and then using a classical
dynamic programming algorithm to solve #KNAPSACK in pseudo-polynomial time.

This result establishes a difference between perceptrons and MLPs in terms of CC, as this query
remains #P-complete for the latter even if weights and biases are given as integers in unary. Another
difference is established by the fact that COUNTCOMPLETIONS for perceptrons can be efficiently
approximated, while this is not the case for MLPs. To present this idea, we briefly recall the notion of
fully polynomial randomized approximation scheme (FPRAS [21]), which is heavily used to refine
the analysis of the complexity of #P-hard problems. Intuitively, an FPRAS is a polynomial time
algorithm that computes with high probability a (1− ε)-multiplicative approximation of the exact
solution, for ε > 0, in polynomial time in the size of the input and in the parameter 1/ε. We show:

Proposition 10. The problem COUNTCOMPLETIONS restricted to perceptrons admits an FPRAS
(and the use of randomness is not even needed in this case). This is not the case for MLPs, on the
other hand, at least under standard complexity assumptions.

5 Parameterized results for MLPs in terms of number of layers

In Section 4.1 we proved that the query MINIMUMCHANGEREQUIRED is NP-complete for MLPs.
Moreover, a careful inspection of the proof reveals that MCR is already NP-hard for MLPs with only
a few layers. This is not something specific to MCR: in fact, all lower bounds for the queries studied
in the paper in terms of MLPs hold for a small, fixed number of layers. Hence, we cannot differentiate
the interpretability of shallow and deep MLPs with the complexity classes that we have used so far.

In this section, we show how to construct a gap between the (complexity-based) interpretability of
shallow and deep MLPs by considering refined complexity classes in our c-interpretability framework.
In particular, we use parameterized complexity [12, 16], a branch of complexity theory that studies
the difficulty of a problem in terms of multiple input parameters. To the best of our knowledge, the
idea of using parameterized complexity theory to establish a gap in the complexity of interpreting
shallow and deep networks is new.

We first introduce the main underlying idea of parameterized complexity in terms of two classical
graph problems: VERTEXCOVER and CLIQUE. In both problems the input is a pair (G, k) with G a
graph and k an integer. In VERTEXCOVER we verify if there exists a set of nodes of size at most k
that includes at least one endpoint for every edge in G. In CLIQUE we check if there exists a set of
nodes of size at most k such that all nodes in the set are adjacent to each other. Both problems are
known to be NP-complete. However, this analysis treats G and k at the same level, which might not
be fair in some practical situations in which k is much smaller than the size of G. Parameterized
complexity then studies how the complexity of the problems behaves when the input is only G, and k
is regarded as a small parameter.

It happens to be the case that VERTEXCOVER and CLIQUE, while both NP-complete, have a
different status in terms of parameterized complexity. Indeed, VERTEXCOVER can be solved in
time O(2k · |G|), which is polynomial in the size of the input G – with the exponent not depending
on k – and, thus, it is called fixed-parameter tractable [12]. In turn, it is widely believed that there is
no algorithm for CLIQUE with time complexity O(f(k) · poly(G)) – with f being any computable
function, that depends only on k – and thus it is fixed-parameter intractable [12]. To study the notion
of fixed-parameter intractability, researchers on parameterized complexity have introduced the W[t]
complexity classes (with t ≥ 1), which form the so called W-hierarchy. For instance CLIQUE
is W[1]-complete [12]. A core assumption in parameterized complexity is that W[t] ( W[t+ 1], for
every t ≥ 1.

In this paper we will use a related hierarchy, called the W(Maj)-hierarchy [14]. We defer the formal
definitions of these two hierachies to the appendix. We simply mention here that both classes, W[t]
and W(Maj)[t], are closely related to logical circuits of depth t. The circuits that define the W-
hierarchy use gates AND, OR and NOT, while circuits for W(Maj) use only the MAJORITY gate
(which outputs a 1 if more than half of its inputs are 1). Our result below applies to a special class of
MLPs that we call restricted-MLPs (rMLPs for short), where we assume that the number of digits
of each weight and bias in the MLP is at most logarithmic in the number of neurons in the MLP (a
detailed exposition of this restriction can be found in the appendix). We can now formally state the
main result of this section.
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Proposition 11. For every t ≥ 1 the MINIMUMCHANGEREQUIRED query over rMLPs with 3t+ 3
layers is W(Maj)[t]-hard and is contained in W(Maj)[3t+ 7].

By assuming that the W(Maj)-hierarchy is strict, we can use Proposition 11 to provide separations
for rMLPs with different numbers of layers. For instance, instantiating the above result with t = 1
we obtain that for rMLPs with 6 layers, the MCR problem is in W(Maj)[3t + 7] = W(Maj)[10].
Moreover, instantiating it with t = 11 we obtain that for rMLPs with 36 layers, the MCR problem
is W(Maj)[11]-hard. Thus, assuming that W(Maj)[10] ( W(Maj)[11] we obtain that rMLPs with 6
layers are strictly more c-interpretable than rMLPs with 36 layers. We generalize this observation in
the following result.

Proposition 12. Assume that the W(Maj)-hierarchy is strict. Then for every t ≥ 1 we have that
rMLPs with 3t+ 3 layers are strictly more c-interpretable than rMLPs with 9t+ 27 layers wrt. MCR.

6 Discussion and concluding remarks

Related work. The need for model interpretability in machine learning has been heavily advocated
during the last few years, with works covering theoretical and practical issues [3, 19, 23, 26, 27].
Nevertheless, a formal definition of interpretability has remained elusive [23]. In parallel, a related
notion of interpretability has emerged from the field of knowledge compilation [9, 30, 31, 32,
33]. The intuition here is to construct a simpler and more interpretable model from a complex
one. One can then study the simpler model to understand how the initial one makes predictions.
Motivated by this, Darwiche and Hirth [8] use variations of the notion of sufficient reason to
explore the interpretability of Ordered BDDs (OBDDs). The FBDDs that we consider in our
work generalize OBDDs, and thus, our results for sufficient reasons over FBDDs can be seen as
generalizations of the results in [8]. We consider FBDDs instead of OBDDs as FBDDs subsume
decision trees, while OBDDs do not. We point out here that the notion of sufficient reason for a
Boolean classifier is the same as the notion of implicant for a Boolean function, and that minimal
sufficient reasons (with minimailty refering to subset-inclusion of the defined components) correspond
to prime implicants [9]. We did not incorporate a study of minimal sufficient reasons (also called
PI-explanations) to our work due to space constraints. In a contemporaneous work [24], Marques-
Silva et al. study the task of enumerating the minimal sufficient reasons of naïve Bayes and linear
classifiers. The queries COUNTCOMPLETIONS and CHECKSUFFICIENTREASON have already been
studied for FBDDs in [9] (CHECKSUFFICIENTREASON under the name of implicant check). The
query MINIMUMCHANGEREQUIRED is studied in [31] for OBDDs, where it is called robustness.
Finally, there are papers exploring queries beyond the ones presented here [30, 31, 32], such as
monotonicity, unateness, bias detection, minimum cardinality explanations, etc.

Limitations. Our framework provides a formal way of studying interpretability for classes of
models, but still can be improved in several respects. One of them is the use of a more sophisticated
complexity analysis that is not so much focused on the worst case complexity study propose here,
but on identifying relevant parameters that characterize more precisely how difficult it is to interpret
a particular class of models in practice. Also, in this paper we have focused on studying the local
interpretability of models (why did the model make a certain prediction on a given input?), but
one could also study their global interpretability, that is, making sense of the general relationships
that a model has learned from the training data [27]. Our framework can easily be extended to the
global setting by considering queries about models, independent of the input it receives. In order to
avoid the difficulties of defining a general notion of interpretability [23], we have used explainability
queries and their complexity as a formal proxy. Nonetheless, we do not claim that our notion of
complexity-based interpretability is the definitive notion of interpretability. Indeed, most definitions
of interpretability are directly related to humans in a subjective manner [5, 10, 25]. Our work is
thus to be taken as a study of the correlation between a formal notion of interpretability and the
folk wisdom regarding a subjective concept. Finally, even though the notion of complexity-based
interpretability gives a precise way to compare models, our results show that it is still dependent on
the particular set of queries that one picks. To achieve a more robust formalization of interpretability,
one would then need to propose a more general approach that prescinds of specific queries. This is a
challenging problem for future research.
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7 Broader impact

Although interpretability as a subject may have a broad practical impact, our results in this paper are
mostly theoretic, so we think that this work does not present any foreseeable societal consequences.
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