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On the Universality of Memcomputing Machines
Yan Ru Pei, Fabio L. Traversa, and Massimiliano Di Ventra

Abstract—Universal memcomputing machines (UMMs) [IEEE
Trans. Neural Netw. Learn. Syst. 26, 2702 (2015)] represent a
novel computational model in which memory (time non-locality)
accomplishes both tasks of storing and processing of information.
UMMs have been shown to be Turing-complete, namely they can
simulate any Turing machine. In this paper, using set theory
and cardinality arguments, we compare them with liquid-state
machines (or “reservoir computing”) and quantum machines
(“quantum computing”). We show that UMMs can simulate both
types of machines, hence they are both “liquid-” or “reservoir-
complete” and “quantum-complete”. Of course, these statements
pertain only to the type of problems these machines can solve,
and not to the amount of resources required for such simulations.
Nonetheless, the method presented here provides a general
framework in which to describe the relation between UMMs
and any other type of computational model.

Index Terms—memory, elements with memory, Memcomput-
ing, Turing Machine, Reservoir Computing, Quantum Comput-
ing.

I. INTRODUCTION

Memcomputing stands for “computing in and with memory”
[1]. It is a novel computing paradigm whereby memory (time
non-locality) is employed to perform both tasks: storing and
processing of information on the same physical location. This
paradigm is substantially different than the one implemented
in our modern-day computers [2]. In these machines there is
a separation of tasks between a memory (storage) unit and
one that performs the processing of information. Modern-day
computers are the closest physical approximation possible to
the well-known (mathematical) Turing paradigm of computa-
tion that maps a finite string of symbols into a finite string of
symbols in discrete time [3].

The memcomputing paradigm has been formalized by
Traversa and Di Ventra in Ref. [4]. In that paper it was shown
that universal memcomputing machines (UMMs) can be de-
fined as digital (so-called digital memcomputing machines
(DMMs) [5]) or analog [6], with the digital ones offering an
easy path to scalable (in terms of size) machines.

UMMs have several features that make them a powerful
computing model, most notably intrinsic parallelism, infor-
mation overhead, and functional polymorphism [4]. The first
feature means that they can operate collectively on all (or
portions of) the data at once, in a cooperative fashion. This
is reminiscent of neural networks, and indeed neural networks
can be viewed as special cases of UMMs. However, neural
networks do not have “information overhead”. This feature
is related to the topology (or architecture) of the network of
memory units (memprocessors). It means the machine has
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access, at any given time, to more information (precisely
originating from the topology of the network) than what
is available were the memprocessors not connected to each
other. Of course, this information overhead is not necessarily
stored by the machine (the stored information is the Shannon
one) [4]. Nevertheless, with appropriate topologies, hence with
appropriate information overhead, UMMs can solve complex
problems very efficiently [4]. Finally, functional polymor-
phism means that the machine is able to compute different
functions without modifying the topology of the machine
network, by simply applying the appropriate input signals [4].

In Ref. [4] it was shown that UMMs are Turing-complete,
meaning that UMMs can simulate any Turing machine. Note
that Turing-completeness means only that all problems a
Turing machine can solve, can also be solved by a UMM.
It does not imply anything about the resources (in terms of
time, space and energy) required to solve those problems.

The reverse, namely that all problems solved by UMMs are
also solved by Turing machines (namely equivalence between
the two models of computation) has not been proved yet.
Nevertheless, a practical realization of digital memcomputing
machines, using electronic circuits with memory [5], has
been shown to be efficiently simulated with our modern-
day computers (see, e.g., [7]). In other words, the ordinary
differential equations representing DMMs and the problems
they are meant to solve can be efficiently simulated on a
classical computer.

In recent years, other computational models, each address-
ing different types of problems, have attracted considerable
interest in the scientific community. On the one hand, quantum
computing, namely computing using features, like tunneling or
entanglement, that pertain only to quantum phenomena, has
become a leading candidate to solve specific problems, such
as prime factorization [8], annealing [9], or even simulations
of quantum Hamiltonians [10]. This paradigm has matured
from a simple proposal [11] to full-fledged devices for possible
commercial use [12]. However, its scalability faces consider-
able practical challenges, and its range of applicability is very
limited compared to even classical Turing machines.

Another type of computing model pertains to a seemingly
different domain, the one of spiking (recurrent) neural net-
works, in which spatio-temporal patterns of the network can be
used to, e.g., learn features after some training [13]. Although
somewhat different realizations of this type of networks have
been suggested, for the purposes of this paper, here we will fo-
cus only on the general concept of “reservoir-computing” [14],
and in particular on its “liquid-state machine” (LSM) real-
ization [15], rather than the “echo-state network” one [16].
The results presented in this paper carry over to this other
type of realization as well. Therefore, we will use the term
“reservoir-computing” as analogous to “liquid-state machine”
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and will not differentiate among the different realizations of
the former.

Our goal for this paper is to study the relation between
these seemingly different computational models. In particular,
we will show that UMMs encompass both quantum machines
and liquid-state machines, in the sense that, on a theoretical
level, they can simulate any quantum computer or any liquid-
state machine. Again, this does not say anything about the
resources needed to simulate such machines, only that such
a mapping exists. In other words, we prove here that UMMs
are not only Turing-complete, but also “liquid-complete” (or
“reservoir-complete”) and “quantum-complete”.

In order to prove these statements, we will use set the-
ory and cardinality arguments to show that the LSM and
quantum computers can be mapped to subsets of the UMM.
This methodology is general. Therefore, we expect it to be
applicable to any other type of computational model, other
than the ones we consider in this work.

Our paper is organized as follows. In Sec. II we briefly re-
view the mathematical definition of the machines we consider
in this work, starting with UMMs. In Sec. III we introduce the
basic ingredients of set theory that are needed to prove the
completeness statements that we will need later. In Sec. IV
we show how to define a general computing model in terms
of set theory and cardinality arguments. We will use these
results in Sec. V to re-write UMMs, quantum computers and
liquid-state machines in this set-theory language. This allows
us to show explicitly in Sec. VI that UMMs are not only
Turing-complete, but also quantum-complete and liquid-state
complete. In Sec. VII we offer our conclusions and thoughts
for future work.

II. REVIEW OF MACHINE DEFINITIONS

We first provide a brief review of the definitions of the three
machines we will be discussing in this paper, so the reader will
have a basis of reference.

A. Universal Memcomputing Machines

The UMM is an ideal machine formed by interconnected
memory cells (“memcells” for short or memprocessors). It
is set up in such a way that it has the properties we have
anticipated of intrinsic parallelism, functional polymorphism,
and information overhead [4].

We can define a UMM as the eight-tuple [4]:

(M,∆, P, S,Σ, p0, s0, F ) (1)

where M is the set of possible states of a single memory cell,
and ∆ is the set of all transition functions:

δa : Mma \ F × P →Mm′
a × P 2 ×A (2)

where ma is the number of cells used as input (being read),
F is the final state, P is the set of input pointers, m′a is
the number of cells used as output (being written), P 2 is the
Cartesian product of the set of output pointers and the set of
input pointers for the next step, and A is the set of indices a.

Informally, the machine does the following: every transition
function has some label a, and the chosen transition function

directs the machine to what cells to read as inputs. Depending
on what is being read, the transition function then writes
the output on a new set of cells (not necessarily distinct
from the original ones). The transition function also contains
information on what cells to read next, and what transition
function(s) to use for the next step.

Using this definition, we can better explain what the two
properties of intrinsic parallelism and functional polymor-
phism mean. Unlike a Turing machine, the UMM does not
operate on each input cell individually. Instead, it reads the
input cells as a whole, and writes to the output cells as a whole.
Formally, what this means is that the transition function cannot
be written as a Cartesian product of transition functions acting
on individual cells, namely δ(

∏
iMi) 6=

∏
i(δi(Mi)). This is

the property of intrinsic parallelism. We will later show that
the set of transition functions without intrinsic parallelism is,
in fact, a small subset of the set of transition functions with
intrinsic parallelism.

Furthermore, the transition function of the UMM is dy-
namic, meaning that it is possible for the transition function
to change after each time step. This is shown as the set A at
the output of the transition function, whose elements indicate
what transition functions to use for the next time step. This
is the property of functional polymorphism, meaning that the
machine can admit multiple transition functions. Finally, the
topology of the network is encoded in the definition of the
transition functions which map a given state of the machine
into another. A more in depth discussion of these properties
can be found in the original paper [4].

B. Liquid-State Machines

Informally, we can think of the LSM as a reservoir of
water [16]. The process of sending the input signals into the
machine is analogous to us dropping stones into the water,
and the evolution of the internal states of the machine is
the propagation of the water waves. Different waveforms will
be excited depending on what stones were being dropped,
how and when they were dropped, and the properties of the
waveforms will encompass the information of the stones being
dropped. Therefore, we can train a function that maps the
waveforms to the corresponding output states that we desire.

Formally, we can define the machine using a set of filters
and a trained function [13]. A series of filters defines the
evolution of the internal states, and the trained function maps
the internal states to some output.

The set of filters must satisfy the point-wise separation
property. This is defined as follows:

Definition 1. A class B of basis filters has the pointwise
separation property if for any two input functions u and v,
with u(s) 6= v(s) for some s ≤ t, there is a basis filter b ∈ B
such that (b ◦ u)(t) 6= (b ◦ v)(t).

This means that we can choose a series of filters such
that the evolution of the internal states will be unique to any
given signal, at any given time. In other words, this property
ensures that different ”stones” excite different ”waveforms”.
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The trained output function must satisfy the “fading mem-
ory” property. This is defined as follows:

Definition 2. F : U → Rn has fading memory if for every
internal state u ∈ U and every ε > 0, there exist δ > 0 and
T > 0 so that |(Fv)(0) − (Fu)(0)| < ε for all v ∈ U with
|u(t)− v(t)| < δ for all t ∈ [−T, 0].

Intuitively, this means that we do not need to know the
evolution of the internal states from the infinite past to
determine a unique output. Instead, we only need to know
the evolution starting from a finite time −T .

C. Quantum Computers

There are many ways in which one can define a quantum
computer. For simplicity sake, we consider the most general
model of quantum computing and ignore its specific opera-
tions.

Consider a quantum computer with n identical qubits, and
each qubit can be expressed as a linear combination of m
basis states. The choice of the basis states can be arbitrary.
However, they have to span the entire Hilbert space of the
system. If we look at one single qubit, then every state that it
admits can be expressed in terms of a linear combination of
the m basis states. (Typically m is chosen equal to 2, but we
do not restrict the quantum machine to this basis number here.)
In other words, |ψ〉 =

∑m−1
i=0 ci |i〉, where i simply labels the

basis state, and ci is some complex number. Note that we have
to impose the normalization condition

∑m−1
i=0 |ci|2 = 1.

Now, let us consider the whole system. In gen-
eral, the total state can be expressed as |ψ〉 =∑m−1
i1=0

∑m−1
i2=0 ...

∑m−1
in=0 ci1i2...in |i1i2...in〉. Here, ij denotes

that the j-th qubit is in the i-th basis state. A basis state
of the total wavefunction can be expressed as the tensor
product of the basis states of the individual qubits. Then
it is not hard to see that the total state will have a total
number of mn basis states. Each basis state is associated with
some complex factor ci1i2...in where, again, the normalization
condition

∑m−1
i1=0

∑m−1
i2=0 ...

∑m−1
in=0 |ci1i2...in |2 = 1 has to be

imposed.
Any quantum algorithm can be expressed as a series of

unitary operations [17]. Since the product of multiple unitary
operations is still a unitary operation, we can then express
the total operation after time t with a single operator Û(t),
so that |ψ(t)〉 = Û(t) |ψ(0)〉. In other words, the state of
the quantum system at any point in time can be expressed
as some unitary operation on the initial state. Note that Û(t)
can be either continuous or discrete in time. Either way, Û(t)
can be considered as the “transition function” of the quantum
computer.

Finally, we have to make measurements on the system
in order to convert the quantum state into some meaningful
output for the observable we are interested in. The process
of measurements can be considered as finding the expec-
tation value of some observable Ô, so the output function
of a quantum computer can be written as 〈ψ(t)|Ô|ψ(t)〉 =
〈ψ(0)|Û(t)†ÔÛ(t)|ψ(0)〉. Of course, to obtain an accurate
result of the expectation value, many measurements have to

be made. In fact, the initial state has to be prepared multiple
times, evolved multiple times, and the corresponding expecta-
tion value at a given time, must be measured multiple times.
A quantum computer is thus an intrinsically probabilistic-type
of machine.

III. MATHEMATICAL TOOLS

After the description of the three machines we consider in
this work, we now introduce the necessary mathematical tools
that will allow us to construct a general model of a computing
machine using set theory and cardinality arguments. Most of
the definitions and theorems in this section, with their detailed
proofs can be found in the literature on the subject (see, e.g.,
the textbook [18]).

We denote the cardinality of the set of all natural numbers
as ℵ0 (|N| = ℵ0), and the cardinality of the set of all real
numbers as c (|R| = c). Then, one can prove the following
theorems [19]:

Theorem III.1. The power set of natural numbers has cardi-
nality c, |2ℵ0 | = 2|ℵ0| = c.

Theorem III.2. Any open interval of real numbers has cardi-
nality c.

We can generalize the concept of infinity by introducing
Beth numbers [20], defined as follows:

Definition 3. Let i0 = ℵ0, and iα+1 = 2iα for all α ∈ N.

By this definition, we see that c = i1 and 2c = i2. Each
Beth number is strictly greater than the one preceding it. The
following theorem [18] allows us to perform arithmetics on
infinite cardinal numbers, and derive relationships between
Beth numbers.

Theorem III.3. Given any two numbers, µ and κ, if at least
one of them is infinite, then µ+ κ = µκ = max{µ, κ}.

Using this theorem, we can prove the following properties
of Beth numbers:

Corollary III.3.1. iβiα = iβ + iα = iβ for all α, β ∈ N,
where α ≤ β.

Corollary III.3.2. µiα = iα+1 if 2 ≤ µ ≤ iα+1. (iα)κ =
iα if 1 ≤ κ ≤ iα−1
Proof. Corollary III.3.1 can be proven trivially if we note that
each Beth number is greater than its predecessor.

Proof. Corollary III.3.2 can be proven as follows. By defi-
nition 2iα = iα+1. Furthermore, (iα+1)iα = (2iα)iα =
2(iαiα) = 2iα = iα+1, where iαiα = iα from Corollary
III.3.1. Since 2 ≤ µ ≤ iα+1, then iα+1 = 2iα ≤ µiα ≤
(iα+1)iα = iα+1. This implies µiα = iα+1. The second
equality can be proven in the same vein.

In the following section, we will define computing models
using Cartesian products and mapping functions. The follow-
ing two theorems will be helpful [18]:

Theorem III.4. Let the set S be the Cartesian product of the
sets S1 and S2, or S = S1 × S2. Then |S| = |S1||S2|.
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Theorem III.5. Let f : S → T be a function that maps set
S to set T , and let F be the set of all possible functions f .
Then |F | = |T ||S|.

Finally, we introduce the following theorem, which can be
derived directly from the definition of cardinality [18]:

Theorem III.6. Two sets have the same cardinality if and only
if there is a bijection between them.

This theorem implies that there is a bijection between any
two real coordinate spaces regardless of their dimensions:

Corollary III.6.1. There is a bijection between Rn and Rm,
for any n,m ∈ N.

Proof. From Corollary III.3.2, we see that |Rn| = |R|n =
(i1)n = i1. Similarly, |Rm| = i1. Therefore, the two sets
have the same cardinality, so there is a bijection between the
two.

Note that for complex coordinate spaces, |Cn| = |C|n =
|R2|n = |R|2n = (i1)2n = i1. Therefore, there is a bijection
between any two complex coordinate spaces as well. Further-
more, there is a bijection between any complex coordinate
space and any real coordinate space.

IV. GENERAL COMPUTING MODEL

We have now introduced all the mathematical tools neces-
sary to define a computing machine using set theory. We begin
by describing the Cartesian product of two sets - the set of all
internal states and the set of all transition functions.

A. Internal States

Consider a general computing machine. We let the state
variable s describe the full internal state of the machine,
which belongs to a set S of states. The internal state should
encompass all the necessary information, such that given this
state variable s and any transition function δ (which will be
defined shortly), the machine can fully determine the next
internal state. The important thing to note is that not all the
elements of S are necessarily possible internal states of the
machine. In other words, the set of all possible internal states
is only a subset of S. The set S and this subset are however not
necessarily equivalent. The reason for this will be explained
in greater detail later in Sec. IV-C.

As an example, consider the full internal state of the Tur-
ing machine. The internal state should include the Cartesian
product of three states - the register state of the control (s(1)),
the tape symbols written on the cells (s(2)), and the current
address of the head (s(3)) [21]. Given these three states and
some transition function (which depends on how the machine
is coded), then the processor will know what to write (thereby
changing s(2)), in what direction to move (thereby changing
s(3)), and what new state to be in (thus changing s(1)).

We see that the set S is expressible as a Cartesian prod-
uct of three sets, S = S(1) × S(2) × S(3), then |S| =
|S(1)||S(2)||S(3)|. Consider a Turing machine with m tape
symbols, n tape cells, and k register states. It is easy to see that
|S(1)| = k, |S(2)| = mn, and |S(3)| = n. Therefore, we can

Fig. 1. The set of all transition functions for |S| = 2. There are 22 = 4
transition functions in total. A transition function on this set is described by
two red arrows.

calculate |S| = |S(1)||S(2)||S(3)| = kmnn < |N| = i0. The
strict inequality comes from the fact that m, n, and k are all
finite numbers. In other words, this is a finite digital/discrete
machine, and in general, the |S| < i0 is true for a finite digital
machine.

On the other hand, if we consider the theoretical model of a
Turing machine with infinite tape cells µ, then the calculation
changes significantly. First, note that µ = |N| = i0 because
we are working with infinite discrete cells and we can map
each cell to an integer in N. Then, we have |S(1)| = k,
|S(2)| = mi0 = i1 (from Corollary III.3.2), and |S(3)| = i0.
Therefore, we see that |S| = |S(1)|S(2)||S(3)| = ki1i0 = i1

(from Corollary III.3.1). For the purpose of proving Turing-
completeness, we use this model of infinite tape.

B. Transition Function

1) General Definition of Transition Function: The opera-
tion of any computing machine is defined using a transition
function [21] (or a set of transition functions such as in
a general UMM [4]). However the transition functions we
consider are defined as “deterministic” in contrast to the “non-
deterministic” transition functions used for example to define
the non-deterministic Turing Machine [3]. Here, we give a
much more general definition of the (deterministic) transition
function. Essentially, we are throwing away constraints such
as initial states, accepting states, tape symbols, and so forth,
and simply define the transition function as a mapping from
some state to some other (or the same) state. We can then
formally define the transition function as follows:

Definition 4. Let S be any set, then ϕS is said to be a
transition function on S if, for every s ∈ S, we have a unique
ϕS(s) ∈ S. In other words, ϕS is a function that maps S
to itself, or ϕS : S 7→ S. We denote the set of all transition
functions on S as ΦS .

From Theorem III.5, it is easy to see that the cardinality of
ΦS is simply |ΦS | = |S||S|. Again, it is important to note that
the set of the actual transition functions of a given machine is
a subset of all possible transition functions ΦS . The two are
generally not equivalent. This is because we are not defining



5

the transition function based on the operation of the machine.
Instead, we are defining the transition function as the mapping
of a set to itself (see Fig. 1 for a schematic representation),
so there are transitions that are impossible for the machine to
support. The difference between the “possible” and “actual”
transition functions will be formalized in section IV-C.

2) Turing Machine as Example: For a Turing machine, after
the machine is coded, the transition function remains stationary
and cannot be changed during the execution of an algorithm
(unlike a UMM where the transition function is dynamic). In
other words, the machine will take some initial internal state si
and apply some transition function ϕS to it recursively until
the final state sf is reached and the machine halts. We can
express this as sf = ϕS(...ϕS(ϕS︸ ︷︷ ︸

n iterations

(si))), where n is some

integer. Furthermore, when the final state is reached, we should
have sf = ϕS(sf ), meaning that the transition function should
not alter the final state, and this represents the termination of
the algorithm.

The entire machine process can be fully described given
some initial state si and some transition function ϕS . To show
this, we only have to consider a single step process, or show
that there is an appropriate choice of ϕS such that given some
state s, ϕS(s) will always give us the expected next state for
any algorithm. The following argument will demonstrate why
this is true.

From section IV-A, we know that given a state si, we can
divide the state into three components, si = s

(1)
i × s

(2)
i × s

(3)
i .

Recall that the three components give the register state, the
tape symbols on the tape cells, and the address of the head
respectively. First, the machine reads the tape symbol under
the head. This is equivalent to the transition function taking
the input s(3)i (locating the head) and s

(2)
i (reading the tape

symbol). Then, according to what is being read and the register
state of the control, the head writes a new symbol on the
tape cell. This corresponds to the transition function taking
the input s(1)i (reading the register state) and outputting s

(2)
i′

(updating the tape symbol). Finally, the machine moves the
head and changes the register state. This is equivalent to the
transition function outputting s(1)i′ (updating the register state)
and s(3)i′ (updating the address). Therefore, we see that a single
state machine process is fully encompassed in the transition
si → si′ . For every si ∈ S, there exists a unique si′ ∈ S
associated with it. Then we can choose ϕS ∈ ΦS such that
ϕS(si) = si′ is satisfied for every si ∈ S. Therefore, we see
that ϕS fully describes the single step machine process, and
this implies that recursions of ϕS can describe any Turing
machine algorithm.

Even though one can find a ϕS ∈ ΦS for every Turing
machine algorithm, the reverse is not true. In fact, there are
transition functions in ΦS that the Turing machine cannot
support. For example, consider the operation of simultaneously
writing two tape symbols on two cells. This cannot be done
by the Turing machine since by definition, a Turing machine
can only write one tape symbol on one tape cell at a time.
However, this transition function is not excluded a priori from
ΦS , because we can always find a ϕS ∈ ΦS , such that s(2)i and

Fig. 2. Let S and T be two sets of the same cardinality, and label the
set elements such that si pairs with ti. The blue arrows represent a single
transition function for each set. Informally, the pairing of the two transition
functions under the “proper bijection” is represented by the purple arrows that
pair the arrows in set S with their respective counterparts in set T .

s
(2)
i′ = ϕS(s

(2)
i ) differ by two tape symbols for some si ∈ S.

3) Proper Bijection: Let us first consider the following
important theorem:

Theorem IV.1. If |S1| = |S2|, then |ΦS1 | = |ΦS2 |.

The theorem can be easily proven using cardinality argu-
ments (from Theorem III.6). In other words, if there exists a
bijection between two sets, then there must also be a bijection
between the sets of their respective transition functions.

Note that at this point, we have only proved that there is
a bijection between the two transition function sets. However,
in our case, we are really only interested in one particular
bijection. For simplicity, let us define this bijection for the
|S| = i1 case. This definition will easily generalize to cases
where |S| > i1.

If |S| = i1, then there is a bijection from S to R. Denote
this bijective function as R = f(S). Let ϕS ∈ ΦS be some
transition function on S, and for ∀si ∈ S, let sj = ϕS(si),
where i, j ∈ R are just arbitrary real number labels. Then
we can define a bijection from S to R such that f(si) = i
and f(sj) = j. Note that if we let ϕR = f ◦ ϕS ◦ f−1, then
j = ϕR(i). Now let T be another set such that |T | = |S|, then
similarly, we can let g(ti) = i and g(tj) = j. Now if we let
ϕT = g−1 ◦ϕR ◦ g, then tj = ϕT (ti). We can then define ϕT
as the proper bijection of ϕS , and we do this for every single
element of the transition function set.

To put this informally, we first define some bijection from
set S to set T , then if s bijects to t, then ϕS(s) also bijects
to ϕT (t). The proper bijection essentially maps all machine
operations from one machine to another machine. See Fig.
2 for a schematic representation of a pairing of transition
functions under the proper bijection.

The following theorem is a restatement of the above dis-
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cussion:

Theorem IV.2. If |S| = |T |, then there is a proper bijection
from ΦS to ΦT .

It is easy to see that a proper bijection implies that any
algorithm that the machine S × ΦS can run, can also be run
by machine T ×ΦT . This essentially means that S and T are
equivalent [22]. However, this is under the assumption that
there are absolutely no constraints whatsoever on the transition
functions and/or states of the machines. As we will see shortly,
this is generally not the case.

C. Constraints

The above naive argument essentially states that if the inter-
nal states of two different machines have the same cardinality,
then the two machines are equivalent. This is obviously not the
case. Any computational model has always some constraints,
either on the internal states or the transition functions (or both)
of the machine at hand.

In other words, the actual set of internal states S′ is a subset
of S, and the actual set of transition functions Φ′S is a subset of
ΦS . In some sense, the computational structure of a machine
is defined by its constraints, so we should carefully discuss
what constraints actually are.

1) Constraints on Internal States: We make the following
distinction between the full set of internal states and the actual
set of internal states.

Definition 5. Let S′ be the set of all possible internal states
that a machine can support. We call this the actual set of
internal states. Let S be some arbitrary superset of S′. We
call S the full set of internal states.

As an example, consider a very simple computer that only
consists of two bits, with each bit supporting two states, 0 and
1. However, the two bits are connected in such a way that they
must have the same state at a given time. In other words, the
actual set of internal states is S′ = {00, 11}, where ij denotes
the first bit being in state i and the second bit being in state
j.

A natural choice for the full set is instead S =
{00, 01, 10, 11}, namely the set of internal states if the two
bits were not connected (constrained). However, we may as
well have chosen S to be, for example, S = {00, 01, 10} or
S = {00, 01, 10, 11,−10}. (Note that the last element of the
second set, −10, represents a state that is not supported by the
machine, even if the constraint were to be removed.) However,
it is usually convenient for us to choose the full set such that
it includes, and only includes, all the possible states when the
constraints on the machine are removed.

2) Constraints on transition function: Following a similar
reasoning, we distinguish between the full set of transition
functions and the actual set of transition functions. The full
set of transition functions on S is already defined in Def. 4,
and the definition of the actual set is as follows:

Definition 6. Let Φ′S be the set of all transition functions of
a machine when the constraints on the machine are included.
We call this the actual set of transition functions.

Following the above example, S = {00, 01, 10, 11} and
S′ = {00, 11}. For convenience, let us express the set
elements in decimal representation. Then S = {0, 1, 2, 3} and
S′ = {0, 3}.

We can then choose Φ′S so that it only contains 4 transition
functions, and we let them to be ϕS1(n) = n, ϕS2(n) =
(n+ 1) (mod 4), ϕS3(n) = (n+ 2) (mod 4), and ϕS4(n) =
(n + 3) (mod 4). Note that this is obviously not the full
set of transition functions because, for example, there is no
transition function such that ϕSi(0) = 2 ∧ ϕSi(2) = 3
(where ∧ is the logical AND) is satisfied. In fact, the full
set of transition functions has cardinality of 44 = 256, and we
merely considered 4 of them.

In addition, the transition functions Φ′S and ΦS′ are not the
same. ΦS′ is the full set of transition functions on the actual
set of internal states S′.

To illustrate this difference, consider the previous example
of S′ = {0, 3}. Let us try to find the full set of transition
functions on this set. There should be 22 = 4 possible
transition functions. They are ϕS′1(n) = n, ϕS′2(n) = 3−n,
ϕS′3(n) = 3, and ϕS′4(n) = 0. Without any formal proof, we
can already see that ΦS′ is very different from Φ′S , and there
is no proper bijection between Φ′S and ΦS′ even though they
have the same cardinality of 4. This is because the sets that
the transition functions act on are different (they have different
cardinality), so it makes no sense to pair them together.

An important aside is that the transition function is defined
by its operation on every element of a particular set and not
its analytic representation. For example, ϕS′(n) = 3 − n is
different from ϕS(n) = 3 − n even though they have the
same analytic expression. (For example, ϕS′(2) is not defined
while ϕS(2) = 1.) On the other hand, ϕS′i(n) = 3 − n and
ϕS′j(n) = 3 − n2

3 are the same on set S′ even though their
analytic expressions are different. (They are, however, not the
same on set S.)

D. Equivalence and Completeness
At this point we can recall the traditional definitions

of “equivalence” and “completeness” among machines. The
equivalence relationship is defined as follows [22]:

Definition 7. Two machines, S × Φ′S and T × Φ′T , are said
to be equivalent if S×Φ′S can simulate T ×Φ′T , and T ×Φ′T
can simulate S × Φ′S .

Then the following theorem is clearly true:

Theorem IV.3. Two machines, S × Φ′S and T × Φ′T , are
equivalent if |S| = |T |, and there is a proper bijection between
Φ′S and Φ′T .

This theorem is fairly obvious. If there is a proper bijection
between two sets of transition functions, then we can map
every machine operation from the first machine to the second
machine, and vice versa. This implies that the two machines
can simulate each other. Note that from Section IV-B3, it is
clear that there is always a proper bijection between the two
full sets of transition functions ΦS and ΦT if |S| = |T |, so
if two equal-sized machines admit the full sets of transition
functions, then the two machines are equivalent.
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Now, the natural next step is to define the concept of
completeness, but before we do so, let us first introduce the
concept of a reduced machine.

Definition 8. Consider a machine S × Φ′S . If S′ ⊂ S, then
we call S′ × Φ′S′ the reduced machine of S × Φ′S .

It is easy to obtain mathematically a reduced machine from
a full machine. First, we let S′′ = S\S′ = {s|s ∈ S ∧ s /∈ S′},
then we can express the full set as S = S′ ∪ S′′ (note this is
only true if S′ ⊆ S). It is not hard to show that Φ′S′ ×Φ′S′′ ⊆
Φ′S , and from this subset we can simply “ignore” the Φ′S′′

factor. Then it is clear that S×Φ′S simulates S′×Φ′S′ , but not
the other way around. Informally, we are using a machine with
greater “resources” to simulate another machine with lesser
“resources”.

Let us then recall the conventional definition of complete-
ness [22]:

Definition 9. Machine, S × Φ′S , is T × Φ′T -complete if the
former can simulate the latter.

From this definition, it is clear that, for the example above,
S × Φ′S is S′ × Φ′S′ -complete. Note also that equivalence
implies completeness, but the reverse is not true.

It is also obvious that S×ΦS can simulate S×Φ′S , since Φ′S
is just a subset of the full set of machine processes (transition
functions). Then we can also say that S × ΦS is S × Φ′S-
complete. Informally, we are using an unconstrained machine
to simulate a constrained machine.

Let us then recall a few obvious lemmas:

Lemma IV.4. If machine A is equivalent to machine B, and
machine B is equivalent to machine C, then machine A is
equivalent to machine C.

Lemma IV.5. If machine A is B-complete, and machine B is
C-complete, then machine A is C-complete.

With these lemmas and preliminaries, we can then prove
this important theorem:

Theorem IV.6. Machine S×Φ′S is T ×Φ′T -complete if |T | ≤
|S|, and if we can find a reduced machine S′×Φ′S′ such that
|S′| = |T | and there is a proper bijection between Φ′T and
some subset of Φ′S′ .

Proof. The proof of this is quite simple. We know that S ×
Φ′S is S′ × Φ′S′ -complete, since the latter is just the reduced
machine of the former. Furthermore, we also know that S′ ×
Φ′S′ is T×Φ′T -complete. This is because Φ′T is just a subset of
Φ′S′ , or there is a “proper injection” from Φ′T to Φ′S′ , implying
that any machine process of T × Φ′T can be simulated by
S′ × Φ′S′ . Therefore, from Lemma IV.5, we see that S × Φ′S
is T × Φ′T complete.

From this theorem, we can immediately derive a corollary
that will be useful for showing the universality of memcom-
puting machines in section VI:

Corollary IV.6.1. Machine S × ΦS is T × Φ′T -complete if
|T | ≤ |S|, where ΦS is the full set of transition functions and
Φ′T can either be the actual set or the full set of transition
functions.

Proof. First, we find a reduced machine S′ ×ΦS′ of S ×ΦS
such that |S′| = |T |. Note that if a machine admits the
full set of transition functions, then its reduced machine also
admits the full set. Since |S′| = |T |, then we can find a
proper bijection from ΦS′ to ΦT (since both sets of transition
functions are full). Under the same proper bijective mapping,
we can map Φ′T (a subset of ΦT ) to Φ′S′ (a subset of ΦS′ ).
In other words, there is a proper bijection from Φ′T to some
subset of ΦS′ , and from Theorem IV.6, machine S × ΦS is
T × Φ′T -complete.

V. REVISED MACHINE DEFINITIONS WITHIN SET THEORY

Up to this point, we have avoided the discussion of the con-
cept of “output states” of a machine. However, under this new
mathematical framework, this concept is easily expressible.

In general, the internal state of the machine must be
“decoded” into an output state to be read by the user. We
can denote the set of all possible output states as F . Then it
is obvious that |F | ≤ |S′|, otherwise we would not be able
to find a function that maps S′ to F . In other words, every
internal state must correspond to a unique output state, and
it is easy to show that the output function is expressible as a
transition function.

To show this, we first choose a subset S′F ⊆ S′ such
that |S′F | = |F |, then there is a bijection between F and
S′F . Therefore, we can simply describe the output mapping
function as a transition function that maps S′ to S′F . Then it
is clear that the set of all output mapping functions is a subset
of ΦS′ , so there is no need to redefine a new set to include
the output functions.

The mathematical framework has now been fully estab-
lished, and we are ready to redefine the three machines we
are considering in this work within this framework.

A. Universal Memcomputing Machines

In the original definition of the UMM, there is the complica-
tion of input and ouput pointers (see Eq. (1)). Within the new
set-theory framework, we can avoid the concept of pointers,
since the transition function always reads the full internal state
(all the cells) and writes the full internal state. In other words,
we consider the combination of all cell states as a whole, and
make no effort in describing which cell admits which state. In
this case, intrinsic parallelism is obviously implied.

Let us then discuss the cardinality of the set of internal
states. For a UMM, there is a finite number of cells, n < i0,
and each cell may admit a continuous state (with cardinality
i1). In this case, it is easy to show that |S| = (i1)n = i1.

Furthermore, in the original definition of the UMM
[Eq. (1)], there are no constraints on the transition function
δ. This means that we can use the full set of transition
functions, ΦS , to describe the machine. In this case, functional
polymorphism is obviously implied. Therefore, we can define
the UMM machine as S × ΦS , with |S| = i1.

B. Liquid-State Machine

It is not hard to see that the internal state structures for the
LSM and the UMM are similar. Instead of memory cells, the
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LSM has neurons. But if we make the conservative assumption
that there are no constraints on the internal states of the LSM,
then the cardinality of the set of internal states for this machine
is the same as that of a UMM, |S| = i1. However, what
real distinguishes the LSM from the UMM is that the set of
transition functions for the LSM is not full.

Recall that the LSM consists of a series of filters and an
output function (see Sec. II). The set of filters satisfies the
point-wise separation property, and the function satisfies the
fading-memory property. There is no need to express the two
properties in the language of our new framework. Instead, it
is enough to note that the point-wise property is a property of
a set, while the fading-memory property is a property of an
element of the set.

Therefore, we can find a subset (ΦS)1 ⊆ ΦS such that its
elements represent the filters, with the subset itself satisfying
the point-wise separation property. As discussed earlier, we
can express the output function as a transition function, so
we can find a subset (ΦS)2 ⊆ ΦS such that its elements
represent the output functions, and they satisfy the fading-
memory property. Then, we can take the union of the two
subsets Φ′S = (ΦS)1∪ (ΦS)2 to get the actual set of transition
functions on S.

Therefore, we can describe the LSM as S×Φ′S , with |S| =
i1. The specific structure of the machine can be defined by
expressing the two properties as constraints on Φ′S . This is a
slightly tedious process, so we will not be presenting it here,
since it is irrelevant for our conclusions.

C. Quantum Computers

Again, consider a quantum computer with n identical
qubits, each having m basis states. In subsection II-C,
we have shown that the total number of basis states for
the entire system is mn < |N|. Each basis state is as-
sociated with some complex factor ci1i2...in ∈ C. And
these factors are constrained by the normalization condi-
tion

∑m−1
i1=0

∑m−1
i2=0 ...

∑m−1
in=0 |ci1i2...in |2 = 1. Furthermore, in

practice we usually ignore an overall phase factor since it does
not affect the expectation value of an observable.

At this point, it is clear that we can fully describe a quantum
state as the Cartesian product of the complex factors for all
basis states. In other words, we can represent an internal state
as c0102...0n × c1101...0n ... × c(m−1)1(m−1)2...(m−1)n , where
there are mn factors.

Given this information, we can calculate the cardinality of
the full set of internal states to be |S| = |Cmn | − |R2| =
|Cmn | ≤ |CN| = |C||N| = (|R||N|)2 = (ii0

1 )2 = (i1)2 =
i1. (The unimportant |R2| is from the normalization condition
and factoring out the overall phase factor.) In addition, |S| =
|Cmn | ≥ |R| = i1. Therefore, we have |S| = i1.

The full set of internal states contains quantum states with
varying degrees of entanglement. It is worth stressing though
that, in practice, it is extremely hard to construct a quantum
computer that can support the full set of quantum states. For
example, it is very challenging to prepare 100 qubits that are
fully entangled. (The current record is on the order of tens of
fully-entangled qubits [23][24].) Therefore, the actual set S′ is

a small subset of S, or S′ ⊆ S, unless m and n are both very
small. However, since we are making here only theoretical
arguments, let us just assume that the full set S of all possible
entangled states can be supported.

As discussed previously, the transition functions of a quan-
tum computer can be expressed as unitary operations on some
initial state. The set of all unitary operations is obviously a
strict subset of the full set of transition functions. For example,
you cannot find an unitary operation that collapses every single
state to |00...0〉 (setting c0102...0n = 1, and setting all the other
factors to 0), though this is included in ΦS . Therefore, we can
describe the quantum computer as S × Φ′S .

A few words on the “output function” of a quantum
computer are also in order. The output function essentially
represents the operation of taking the expectation value of
some observable on the internal state, or 〈ψ|Ô|ψ〉. This maps
the set of internal states to the set of output states F ⊆ R
(expectation values have to be real), so we obviously have
|F | ≤ |S|.

VI. UNIVERSALITY OF MEMCOMPUTING MACHINES

From the above discussions, we can summarize all the
results we have obtained so far, and express all the machines
we considered here in their most general form:
• Turing Machine: T ′ × Φ′T ′ , |T ′| ≤ i1,
• Liquid-State Machine: L× Φ′L, |L| = i1,
• Quantum Computer: Q× Φ′Q, |Q| = i1,
• Universal Memcomputing Machine: M×ΦM , |M | = i1.
Therefore, by applying Corollary IV.6.1, we see that a UMM

can simulate any Turing machine, any liquid-state machine,
and any quantum computer.

Let us expand on this for each pair of machines separately.
In particular, let us briefly discuss how a mapping between a
UMM and the three other machines can be realized in theory.
Of course, this mapping does not tell us anything about the
resources required for a UMM to simulate the other machines.
Hence, this is by no means a discussion on how to realize an
efficient or practical mapping.

1) UMM vs. Turing Machines: Let us look at the mapping
between a Turing machine and a UMM. First, we map each
tape cell to a memory cell (memcell). We can denote these
memcells collectively as a “memtape”. The tape symbols can
be mapped to the internal states of each memcell of the
memtape.

Then, we can map the state register to another memcell
which we will denote as “memregister”. The state of the
Turing machine is then stored as the internal state of the
memregister. Finally, we can store the current address of the
head as an internal state of yet another memcell which we
denote as “memaddress”.

We can then wire the memcells together into a circuit
such that it simulates the operation of the Turing machine.
Note that as a result of functional polymorphism, we do not
have to re-wire the circuit each time we choose to run a
different algorithm. The circuit first reads the memregister
and the memaddress, so that it knows which memcell of the
memtape to modify and how to modify it. After that memcell
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is modified, the memregister and memaddress then update
themselves to prepare for the next cycle. In short, we are
replacing the tape, head, and control with memprocessors.

2) UMM vs. LSM: The mapping between a LSM and
a UMM is fairly obvious. We simply have to map each
“reservoir cell” to a memcell, and wire the circuit such that
the point-wise separation and fading-memory properties are
satisfied. The explicit construction of the circuit to realize such
properties will not be explored here.

Although, in theory, it is possible to simulate an LSM with
a UMM, it is not always efficient or necessary to do so in
practice. The circuit topologies of the two machines are very
different, and they are designed to perform different tasks.

For the LSM model, the connections between the reservoir
cells are typically random, and the reservoir as a whole is
not trained. The expectation of getting the correct output
relies entirely on training the output function correctly. In
the end, the operation of the machine relies on statistical
methods, and is inevitably prone to making errors. In some
sense, the machine as a whole is analogous to a “learning
algorithm” [25].

On the other hand, for the UMM, we can connect the mem-
cells into a circuit specific to the tasks at hand. One realization
of this connection employs self-organizing logic gates [5] to
control the evolution of the machine such that it will always
evolve towards an equilibrium state representing the solution
to a particular problem (the machine is deterministic).

In the general case, the UMM is an entirely different
computing paradigm than the LSM, proven already to provide
exponential speed-up for certain hard problems [5], [7]. In
other words, while possible, utilizing a UMM to simulate an
LSM will not be exploiting all the properties of the UMM to
its full use. In practical applications, it would then be more
advantageous to use a UMM (and its digital version, a DMM)
to tackle directly the same problems investigated by LSMs.

3) UMM vs. Quantum Computers: Simulating a quantum
computer with a UMM requires “compressing” the internal
state of a quantum computer. Recall that a quantum computer
has mn basis states, and each basis state is associated with
some complex factor. All these complex factors would then
need to be represented with only k = O(n) interacting
memcells. In this work we have shown that this is in fact
doable on a theoretical level.

However, as already mentioned, this result does not provide
any information on the resources required for a UMM to simu-
late a quantum computer. Nevertheless, one of the features that
makes UMMs a practical and powerful model of computation
is precisely its “information overhead”.

Information overhead and quantum entanglement share
some similarities: in some sense, both of them allow the
machine to access a set of results of mathematical operations
(without actually storing them) that is larger than that provided
by simply the union of non-interacting processing units (cf.
Refs. [4] and [8]). We could then argue that we may exploit
the information overhead property of a UMM to precisely
represent efficiently the entanglement of a quantum system.
At this point, however, this question is still open.

VII. CONCLUSIONS

In conclusion, we have employed set theory and cardinality
arguments to describe the relation between universal mem-
computing machines and other types of computing models,
in particular liquid-state machines and quantum computers.
Using this mathematical framework we have confirmed that
UMMs are Turing-complete, a result already obtained in
Ref. [4] using a different approach.

In addition, we have also shown that UMMs are liquid-
complete (or reservoir-complete), and quantum-complete,
namely they can simulate any liquid-state (or reservoir-
computing) machine and any quantum computer. Of course,
the results discussed here do not provide an answer to the
question of what resources would be needed for a UMM to
efficiently simulate such machines, only that such a mapping
exists. Along these lines, it would be interesting to study
the relation between information overhead and quantum en-
tanglement. If such a relation exists and can be exploited
at a practical level, it may suggest how to utilize UMMs
to efficiently simulate quantum problems that are currently
believed to be only within reach of quantum computers (such
as the efficient simulation of quantum Hamiltonians). Further
work is however needed to address this practical question.
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