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Abstract

This paper investigates the powers and limitations of quantum entanglement in the context
of cooperative games of incomplete information. We give several examples of such nonlocal
games where strategies that make use of entanglement outperform all possible classical strate-
gies. One implication of these examples is that entanglement can profoundly affect the sound-
ness property of two-prover interactive proof systems. We then establish limits on the proba-
bility with which strategies making use of entanglement can win restricted types of nonlocal
games. These upper bounds may be regarded as generalizations of Tsirelson-type inequalities,
which place bounds on the extent to which quantum information can allow for the violation
of Bell inequalities. We also investigate the amount of entanglement required by optimal and
nearly optimal quantum strategies for some games.

1 Introduction

This paper studies the implications of quantum entanglement to nonlocal games, which are coop-
erative games of incomplete information. There are two cooperating players in a nonlocal game:
Alice and Bob. A referee, also sometimes called a verifier in this context, determines the game as
follows. First, the referee randomly chooses questions for the players, drawn from finite sets
according to some fixed probability distribution, and sends each player their question. Without
communicating, and therefore without knowing (in general) what question was asked of the other
player, Alice and Bob must each respond to the referee with an answer. The referee then evaluates
some predicate on the questions asked of the players together with their answers, to determine
whether they win or lose.

When analyzing a given nonlocal game, we assume that Alice and Bob have complete knowl-
edge of the probability distribution that determines the referee’s questions, as well as the predicate
that determines whether they win or lose. Based on this information they can agree before the
game starts on a joint strategy. A quantum strategy allows Alice and Bob to make use of a shared
entangled state, while a classical strategy does not. For some nonlocal games, quantum strategies
can allow the players to win with a higher probability than is possible for any classical strategy,
due to the fact that measurements of an entangled state can result in correlations that are not
achievable without the use of entanglement.
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Nonlocal games are natural abstractions of multi-prover interactive proof systems (consisting
of a single round of interaction with two provers), and have previously been considered in this
context in purely classical terms [19, 13, 45]. They also provide a natural setting in which the
quantum-physical notion of nonlocality can be cast. In quantum information theory, a Bell inequality
is analogous to an upper bound on the probability with which Alice and Bob can win a nonlocal
game using a classical strategy, and a violation of a Bell inequality is analogous to the situation
in which a quantum strategy wins a particular nonlocal game with a higher probability than is
possible for any classical strategy. Tsirelson-type inequalities are bounds on the amount by which
quantum information can allow for the violation of Bell inequalities, and therefore are analogous
to upper bounds on the probabilities with which nonlocal games can be won using quantum
strategies.

We will begin our study of nonlocal games in Section 2, where we give precise definitions of
nonlocal games and the classical and quantum values of these games. These values represent the
optimal probabilities with which Alice and Bob can win the games using classical and quantum
strategies, respectively.

Then, in Section 3, we present four examples of nonlocal games for which quantum strategies
outperform classical strategies, including nonlocal games for which there exist perfect quantum
strategies (meaning that the strategies win with probability one), but for which there do not exist
perfect classical strategies. These examples are not new, but for the most part have been presented
in the theoretical physics literature as hypothetical thought experiments, and their connections
with nonlocal games and multi-prover interactive proofs are obscure. The simplicity of some of
our presentations may help to elucidate some of the features of nonlocality.

Next, in Section 4, we discuss the implications of quantum strategies for nonlocal games to the
study of multi-prover interactive proof systems. In particular, we exhibit two natural examples
of two-prover interactive proof systems that are classically sound, but become unsound when the
provers may employ quantum strategies.

Finally, in Section 5, we provide the beginnings of a systematic understanding of the limits
of nonlocal strategies for two restricted classes of games: binary games and XOR games. Binary
games are nonlocal games in which Alice and Bob each respond with a single bit, and XOR games
are binary games for which the referee’s predicate that determines whether Alice and Bob win
or lose depends only on the parity (or exclusive-OR) of their answer bits. The results proved in
this section include generalizations of Tsirelson’s inequality. We also prove upper bounds on the
amount of entanglement needed to play XOR games optimally or nearly optimally.

Remark on a previous version of this paper

A preliminary version of this paper appeared at the IEEE Conference on Computational Complexity
in 2004, and was posted to the arXiv.org e-print server in April of 2004. This preliminary version
contains an error: one of the technical lemmas (numbered Lemma 5.4 in the proceedings version
and Lemma 5.5 in the arXiv.org version) is false. The present version corrects this mistake, which
requires a new proof of Theorem 3 below.

Aside from this correction, the present version of this paper is similar to the preliminary ver-
sion. While some revisions to the writing, notation, and organization of the paper have been made,
and a few other minor points have been added, there is (for the most part) no discussion of newer
work that was done subsequent to the writing of the preliminary version. (Readers interested in
further developments on nonlocal games may, for instance, consult [17, 29, 32, 33].)
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Figure 1: The communication structure of a nonlocal game.

2 Definitions

Nonlocal games

Let π be a probability distribution on S × T, and let V be a predicate on S × T × A × B, for finite,
non-empty sets S, T, A, and B. Then V and π define a nonlocal game G = G(V, π) as follows.
A pair of questions (s, t) ∈ S × T is randomly chosen according to the distribution π, and s is
sent to Alice and t is sent to Bob. Alice must respond with an answer a ∈ A and Bob with an
answer b ∈ B. Alice and Bob are not permitted to communicate after receiving s and t, but they
may agree on whatever sort of strategy they like prior to receiving their questions. They win if V
evaluates to 1 on (s, t, a, b) and lose otherwise. To stress the fact that (a, b) is correct or incorrect
given questions (s, t) we will denote the value of the predicate V on (s, t, a, b) as V(a, b | s, t).

Classical strategies and classical values of nonlocal games

The classical value of a game G is the maximum probability with which Alice and Bob can win G,
ranging over all purely classical strategies. The classical value of a game G will be denoted ωc(G).
A deterministic strategy is a restricted type of classical strategy in which a and b are simply func-
tions of s and t, respectively. The classical value of a game is always obtained by some determin-
istic strategy given that any probabilistic strategy can be expressed as a convex combination of
deterministic strategies. In other words, it holds that

ωc(G(V, π)) = max
a,b

∑
s,t

π(s, t)V(a(s), b(t) | s, t),

where the maximum is over all functions a : S → A and b : T → B.

Quantum strategies and quantum values of nonlocal games

We will assume for this discussion and throughout the rest of the paper that the reader is familiar
with the basics of quantum information, which is discussed (for instance) in the books [43], [35],
and [31].

A quantum strategy for a game G consists of an initial bipartite state |ψ〉 shared by Alice and
Bob, a quantum measurement for Alice for each s ∈ S, and a quantum measurement for Bob for
each t ∈ T. On input (s, t), Alice performs her measurement corresponding to s on her portion of
|ψ〉, yielding an outcome a. Similarly, Bob performs his measurement corresponding to t on his
portion of |ψ〉, yielding outcome b. The results a and b are sent back to the referee.
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In more descriptive mathematical terms, a quantum strategy is determined by the following
items.

1. A positive integer n and a unit vector |ψ〉 ∈ A⊗B, for A and B isomorphic copies of the vector
space Cn. The space A represents Alice’s part of |ψ〉 and the space B represents Bob’s part.

2. Two collections of positive semidefinite n × n matrices

{

Xa
s : s ∈ S, a ∈ A

}

and
{

Yb
t : t ∈ T, b ∈ B

}

satisfying

∑
a∈A

Xa
s = 1 and ∑

b∈B

Yb
t = 1

for every choice of s ∈ S and t ∈ T, where 1 denotes the n × n identity matrix. For each s ∈ S,
the collection {Xa

s : a ∈ A} describes the measurement performed by Alice on her part of
|ψ〉 when she receives the question s. Likewise, for each t ∈ T, the collection {Yb

t : b ∈ B}
describes Bob’s measurement given the question t.

Given a question s ∈ S for Alice and a question t ∈ T for Bob, such a strategy causes Alice to
answer with a ∈ A and Bob to answer with b ∈ B with probability 〈ψ|Xa

s ⊗ Yb
t |ψ〉. The probability

that Alice and Bob win the game G using such a strategy is therefore given by

∑
(s,t)∈S×T

π(s, t) ∑
(a,b)∈A×B

〈ψ|Xa
s ⊗Yb

t |ψ〉V(a, b | s, t).

The quantum value of a game G, denoted ωq(G), is the supremum of the winning probabilities
over all quantum strategies of Alice and Bob. It is not known if the quantum value is always
achieved by some strategy, due to the fact that the number n is not a priori bounded. For instance,
it has not been ruled out that there could sometimes exist a sequence of strategies requiring in-
creasing values of n that win a game G with probabilities converging to, but never reaching, its
quantum value. (As is shown in [40], this phenomenon indeed occurs in an extended form of
nonlocal games in which the referee can send, receive, and process quantum information.)

Observables

When we refer to an observable in this paper, we are referring to a Hermitian matrix that one as-
sociates with a projective measurement whose measurement outcomes are real numbers. More
precisely, suppose that we have a measurement described by a collection of projection matrices
{Π1, . . . , Πk} for which Π1 + · · ·+ Πk = 1, and suppose further that we associate the outcomes of
the measurement with a collection of real numbers {λ1, . . . , λk}. Then the observable correspond-
ing to this measurement is given by

A =
k

∑
j=1

λjΠj. (1)

Given such a matrix A, one may determine the corresponding projective measurement by com-
puting the spectral decomposition of A.

We will primarily use observables when discussing strategies for games that require Alice
and Bob to perform two-outcome measurements, especially in the case of binary games (which are
the main topic of Section 5). In this setting it is convenient to associate real numbers in the set
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{+1,−1} with the binary values {0, 1} using the correspondence 0 7→ +1 and 1 7→ −1 (as is
common when using discrete Fourier analysis of Boolean functions). When using this convention,
the observable A corresponding to a binary-valued projective measurement {Π0, Π1} is given by
A = Π0 − Π1.

3 Examples of nonlocal games

The fact that entanglement can cause non-classical correlations is a familiar idea in quantum
physics, introduced in a seminal 1964 paper by Bell [5]. In the following subsections, we give
four examples of this phenomenon.

3.1 The CHSH game

Our first example of a game for which a quantum strategy outperforms any classical strategy is
a well-known example based on the CHSH inequality, named for its discoverers Clauser, Horne,
Shimony, and Holt [14]. Rephrased in terms of nonlocal games, the example is as follows. Let
S = T = A = B = {0, 1}, let π be the uniform distribution on S × T, and let V be the predicate

V(a, b | s, t) =

{

1 if a ⊕ b = s ∧ t
0 otherwise.

The classical value of the game G = G(V, π) is ωc(G) = 3/4, which is easily verified by con-
sidering all deterministic strategies. Using a quantum strategy, however, Alice and Bob can win
this game with probability cos2(π/8) ≈ 0.85. This probability is optimal, so we have ωq(G) =
cos2(π/8). A description of a quantum strategy that achieves this probability of success follows,
and the fact that it is optimal follows from Tsirelson’s Inequality [34, 47].

First, let the entangled state shared by Alice and Bob be |ψ〉 = (|00〉+ |11〉)/
√

2, define

|φ0(θ)〉 = cos(θ) |0〉+ sin(θ) |1〉 ,

|φ1(θ)〉 = − sin(θ) |0〉+ cos(θ) |1〉 ,

and let Alice and Bob’s measurements be given as

Xa
0 = |φa(0)〉 〈φa(0)| ,

Xa
1 = |φa(π/4)〉 〈φa(π/4)| ,

Yb
0 = |φb(π/8)〉 〈φb(π/8)| ,

Yb
1 = |φb(−π/8)〉 〈φb(−π/8)|

for a, b ∈ {0, 1}. Each of these matrices is a rank-one projection matrix, so the measurements
Alice and Bob are making are examples of projective measurements. Given our particular choice
of |ψ〉, we have 〈ψ| X ⊗ Y |ψ〉 = 1

2 Tr
(

XTY
)

for arbitrary matrices X and Y. Thus, as each of the

matrices Xa
s and Yb

t is real and symmetric, the probability that Alice and Bob answer (s, t) with
(a, b) is 1

2 Tr
(

Xa
s Yb

t

)

. It is now routine to check that in every case, the correct answer is given with

probability cos2(π/8) and the incorrect answer with probability sin2(π/8).
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3.2 The Odd Cycle game

For the following game, imagine that Alice and Bob are trying to convince the referee that an odd
cycle of length n is 2-colorable (which it is not, as n is odd). The referee sends the name of a vertex
to each of Alice and Bob such that the two vertices are either the same or adjacent. Alice and Bob
each send one of two colors back to the referee. The referee’s requirement is that, when the vertices
are the same, the two colors should agree, and when the vertices are adjacent, the colors should
be different.

Formally, let n ≥ 3 be an odd integer, let S = T = Zn, and let A = B = {0, 1}. Take π to be
the uniform distribution over the set {(s, t) ∈ Zn × Zn : s = t or s + 1 ≡ t (mod n)} and let V be
defined as

V(a, b | s, t) =

{

1 if a ⊕ b = [s + 1 ≡ t (mod n)]
0 otherwise.

(Here we have written [s + 1 ≡ t (mod n)] to denote the Boolean value representing the truth
or falsehood of the congruence s + 1 ≡ t (mod n).) This is a variation on a game based on the
chained Bell inequalities of Braunstein and Caves [10] that generalize the CHSH inequality. It is also
discussed by Vaidman [49].

It is easy to see that ωc(G) = 1 − 1/2n for this game. Any deterministic strategy must fail
for at least one of the possible pairs (s, t), as an odd cycle cannot be 2-colored, while a strategy
achieving success probability 1 − 1/2n is that Alice and Bob let a = s mod 2 and b = t mod 2.

On the other hand, a quantum strategy can attain a success probability quadratically closer
to 1. The following quantum strategy [10] wins with probability cos2(π/4n) ≥ 1 − (π/4n)2. The
shared state is the same as for the CHSH game:

|ψ〉 = 1√
2
(|00〉+ |11〉).

This time we define

Xa
s = |φa(αs)〉 〈φa(αs)| ,

Yb
t = |φb(βt)〉 〈φb(βt)| ,

where

αs =
(π

2
− π

2n

)

s +
π

4n
,

βt =
(π

2
− π

2n

)

t,

and where |φ0(θ)〉 and |φ1(θ)〉 are as defined for the CHSH game. Given questions (s, t), the
probability that Alice and Bob answer the same bit may be calculated to be cos2(αs − βt), which
implies they answer different bits with probability sin2(αs − βt). In case s = t we have

αs − βt =
π

4n
,

so they answer correctly (i.e., with a = b) with probability cos2(π/4n). If s + 1 ≡ t (mod n), on
the other hand, we have

αs − βt =
π

2
− π

4n
,

so they answer correctly (i.e., with a 6= b) with probability sin2(π/2 − π/4n) = cos2(π/4n).
Therefore this strategy answers correctly with probability cos2(π/4n) on every pair of questions.
This quantum strategy is optimal, as we shall show in Corollary 9 later in the paper.
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3.3 The Magic Square game

The next game we consider is based on the fact that there does not exist a 3 × 3 binary matrix with
the property that each row has even parity and each column has odd parity. It is a slight variation
of an example presented by Aravind [3], which builds on work by Mermin [41, 42]. The idea is
to ask Alice to fill in the values in either a row or a column of the matrix (randomly selected) and
to ask Bob to fill in a single entry of the matrix, that is randomly chosen among the three entries
given to Alice. The requirement is that the parity conditions are met by Alice’s answers (even for
rows, odd for columns) and that Bob’s answer is consistent with Alice’s answers.

Formally, let S = Z6 index the six possible questions to Alice (three rows plus three columns)
and let T = Z9 index the nine possible questions to Bob (one for each entry of the matrix). Let
A = {0, 1}3 and B = {0, 1}. The predicate V(a, b | s, t) is defined to take value 1 if and only if a has
the appropriate parity (0 for a row and 1 for a column) and the entry of a corresponding to t has
value b. The distribution π is the uniform distribution over {(s, t) ∈ S × T : entry t is in triple s}.
It is not hard to see that ωc(G) = 17/18 for this game. It should be noted that, although it is
convenient to set A = {0, 1}3 for this game, we could take A = {0, 1}2, because the third bit of
Alice’s output is determined by the first two bits and the parity constraints.

Remarkably, there exists a perfect quantum strategy for this game, meaning that the strategy
wins with probability 1. The particular strategy we will describe is derived from [3], where a slight
variant of this game is presented.

This strategy is best described using the notion of observables, which were discussed at the
end of Section 2. Consider the following 3 × 3 matrix of observables, each corresponding to a
measurement of two qubits:







σx ⊗ σy σy ⊗ σx σz ⊗ σz

σy ⊗ σz σz ⊗ σy σx ⊗ σx

σz ⊗ σx σx ⊗ σz σy ⊗ σy






.

Here, the matrices σx, σy, and σz are the (non-identity) Pauli matrices:

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

.

Alice and Bob will share two copies of the state

|ψ−〉 = 1√
2
|01〉 − 1√

2
|10〉 .

To answer any question they receive about the 3 × 3 square, Alice and Bob simply measure their
parts of the two shared states with respect to the corresponding observables in the above matrix.
For example, if Alice is asked to assign values to the first row of the square, she measures her
two qubits with respect to the observable σx ⊗ σy, then with respect to the observable σy ⊗ σx, and
finally with respect to σz ⊗ σz, each time obtaining a ±1 outcome corresponding to a binary value.
Similarly, if Bob is asked to assign a value to the (1, 2) entry of the square, he measures his two
qubits with respect to the observable σy ⊗ σx.

To understand why this strategy works perfectly, a few basic observations are required. The
first observation is that |ψ−〉 is a −1 eigenvector of each of the operators σx ⊗ σx, σy ⊗ σy, and
σz ⊗ σz, which implies

〈ψ−|σx ⊗ σx|ψ−〉 = 〈ψ−|σy ⊗ σy|ψ−〉 = 〈ψ−|σz ⊗ σz|ψ−〉 = −1. (2)
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This implies that Alice and Bob’s answers are always in agreement, as the product of their mea-
surement outcomes (considered as ±1 values) always equals 1. For instance, if Alice and Bob
both measure their two copies of |ψ−〉 with respect to the observable σy ⊗ σx, the product of their
outcomes will be

〈ψ−| σy ⊗ σy |ψ−〉 〈ψ−| σx ⊗ σx |ψ−〉 = (−1)(−1) = 1.

The second observation is that the Pauli matrices anti-commute in pairs:

σxσy = −σyσx, σxσz = −σzσx, σyσz = −σzσy. (3)

This implies that the observables commute within any row or column. For instance, σy ⊗ σx and
σz ⊗ σz both belong to the first row, and we have

(σy ⊗ σx)(σz ⊗ σz) = (σyσz)⊗ (σxσz) = (−σzσy)⊗ (−σzσx) = (σzσy)⊗ (σzσx) = (σz ⊗ σz)(σy ⊗ σx).

This implies that Alice can simultaneously measure the three observables within whichever row
or column she was asked—or equivalently that the outcomes she obtains do not depend on the
order in which she performs these measurements.

The final observation that is required is that the product of the observables in each row is equal
to 1 ⊗ 1, while the product of the observables in each column is −1 ⊗ 1. This implies that Alice’s
parity requirements are always met.

3.4 The Kochen-Specker game

This game is based on the Kochen-Specker Theorem, which can be stated as follows.

Theorem 1 (Kochen and Specker [37]). There exists an explicit set of vectors {|v0〉 , . . . , |vm−1〉} in R3

that cannot be {0, 1}-colored so that both of the following conditions hold:

1. For every orthogonal pair of vectors |vi〉 and |vj〉, they are not both colored 1.

2. For every mutually orthogonal triple of vectors |vi〉, |vj〉, and |vk〉, at least one of them is colored 1.

The original theorem in [37] used 117 vectors, but this has subsequently been reduced to 31
vectors [44]. We will assume that every orthogonal pair of vectors in the set is part of an orthogonal
triple—which is easily achieved by adding a few more vectors to the set—and that the vectors are
normalized. Connections between the Kochen-Specker Theorem and nonlocality have previously
been made in [28].

The Kochen-Specker game is defined relative to the above set of vectors. Alice receives a
random triple of orthogonal vectors as her input and Bob receives a single vector randomly chosen
from the triple as his input. Alice outputs a trit indicating which of her three vectors is assigned
color 1 (implicitly, the other two vectors are assigned color 0). Bob outputs a bit assigning a color
to his vector. The requirement is that Alice and Bob assign the same color to the vector that they
receive in common.

It is straightforward to show that the existence of a perfect classical strategy for this game
would violate the Kochen-Specker Theorem, so ωc(G) < 1 for this game. On the other hand
there is a perfect quantum strategy, using entanglement |ψ〉 = (|00〉 + |11〉 + |22〉)/

√
3. Alice’s

projectors (for input |vi〉 , |vj〉 , |vk〉) are |vi〉 〈vi| , |vj〉 〈vj| , |vk〉 〈vk|, and Bob’s projectors (for input
|vl〉) are |vl〉 〈vl | and 1 − |vl〉 〈vl |.
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4 Connections with multi-prover interactive proof systems

The two-prover interactive proof system model was defined by Ben-Or, Goldwasser, Kilian, and
Wigderson [7], and has been the focus of a great deal of study. Babai, Fortnow, and Lund [4]
proved that every language in NEXP has a two-prover interactive proof system. Several refine-
ments to this result were made [12, 18, 39], leading to a proof by Feige and Lovász [19] that a
language is in NEXP if and only if it has a two-prover one-round proof system with perfect com-
pleteness and exponentially small soundness error.

In most work on multi-prover interactive proof systems, the provers are computationally un-
bounded, subject to the restriction that they cannot communicate with each other during the
course of the protocol. Because the spirit of the interactive proof system paradigm is to bound the
capabilities of the verifier rather than the prover(s), it is natural to consider prover strategies that
entail sharing entangled quantum information prior to the execution of the proof system. Note
that such a strategy does not necessarily require the computationally bounded verifier to manipu-
late (or know anything about) quantum information. However, much of the study of multi-prover
interactive proof systems occurred prior to the mid 1990s, when quantum information was not
well-known within the theoretical computer science community, and quantum strategies were
generally not considered. In fact, the methodologies for analyzing these proof systems usually
make the implicit assumption that provers are restricted to classical strategies.

In this section, we consider what happens when the provers can employ quantum strategies.
We do not make any change to the verifier, who remains classical, and all communication between
the verifier and the provers remains classical.1 A natural question is: What is the expressive power
of such proof systems?

Let us write MIP and MIP∗ to distinguish between the cases of no shared entanglement and
shared entanglement, respectively. That is, MIP denotes the class of languages recognized by
multi-prover interactive proof systems where all communication between the provers and verifier
is classical and the provers do not share entanglement (as has been implicitly assumed in previous
contexts). The definition of MIP∗ is identical to that of MIP, except that the provers may share
an arbitrary entangled quantum state at the beginning of the protocol. Furthermore, let MIP[k]
and MIP∗[k] denote the same classes, but with the number of provers set to k. It is known that
MIP = MIP[2] = NEXP. We do not know any relationships between MIP∗, MIP∗[2] and NEXP,
except the trivial containment MIP∗[2] ⊆ MIP∗.

A one-round two-prover interactive proof system is one where the interaction is restricted to
two stages: a query stage where the verifier sends information to the provers, and a response
stage where the provers send information to the verifier. Note that such a proof system associates
a nonlocal game Gx to each string x with the following property. For all yes-inputs x, the value of
ωq(Gx) is close to one, and, for all no-inputs x, the value of ωq(Gx) is close to zero.

We give two examples of natural two-prover one-round proof systems that are classically
sound, but become unsound when the provers use quantum strategies: one is for languages that
express graph chromatic numbers and the other is for 3-SAT. These examples are related to the
examples in Section 3. We also explain why the existing proofs that equate MIP with NEXP break
down in terms of their methodology in the case of MIP∗. Results in [36] imply that, if the amount
of entanglement between the provers is polynomially bounded, then any language recognized by
an MIP∗ proof system is contained in NEXP; but without this polynomial restriction, we do not
know if this holds.

1Kobayashi and Matsumoto [36] consider a related but different model, where the provers and the verifier manipu-
late quantum information and quantum communication occurs between the verifier and the provers.
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4.1 Graph Coloring proof system

The Odd Cycle game in Section 3.2 can be regarded as a protocol where two provers are trying
to convince a verifier that a particular graph is two-colorable. This idea generalizes to any graph
G and number of colors k. The verifier asks each prover for the color (among k possibilities) of a
vertex and requires that the colors be the same whenever each prover gets the same vertex and
different whenever the provers get adjacent vertices. Formally, the game for G and k is as follows.
Let S = T = V(G), let A = B = Zk, let

V(a, b | s, t) =

{

1 if (s = t and a = b) or ((s, t) ∈ E(G) and a 6= b)
0 otherwise,

and π be the uniform distribution on {(s, s) : s ∈ V(G)} ∪ {(s, t) ∈ E(G)}.
If G is k-colorable then the provers can satisfy V by basing their answers on a valid coloring

of G. Therefore, the value of the associated game is 1. If G is not k-colorable then, for any classical
strategy on the part of the provers, there must be an inconsistency for some value of (s, t), so the
classical value of the associated game is at most 1− 1/(|V(G)|+ |E(G)|). The verifier can amplify
the difference between the two cases (k-colorable and not k-colorable) by repeating this game a
polynomial number of times (in parallel [45]). Thus this is a classical two-prover interactive proof
system for the language consisting of all k-colorable graphs.

This proof system breaks down in the case of entangled provers. Based on a protocol in [9],
there exists a sequence of graphs Gn (where n ranges over all powers of two) with the following
properties. First, for any n, there is a perfect quantum strategy for the Graph Coloring proof system
with graph Gn and k = n colors. Second, for sufficiently large n, Gn is not n-colorable.

For any n, Gn is simple to describe: it has vertices {0, 1}n and two vertices are adjacent if and
only if the Hamming distance between them is n/2. However, results in [9] show that there exists
an n such that Gn is not n-colorable, without giving an explicit n for which this holds. (The proof
is based on a related result in [11], which makes use of a combinatorial result in [23].) The result is
made explicit in [24], where it is shown that G16 is not 16-colorable. Thus, the resulting graph for
which the Graph Coloring proof system breaks down has 216 vertices, and it can be simplified by
taking only half of its vertices, resulting in a graph of 32,768 vertices.

4.2 3-SAT proof system

Next we consider a simple and natural two-prover interactive proof system for proving that 3-CNF
formulas are satisfiable. The verifier sends the first prover (Alice) a clause and the second prover
(Bob) a variable from that clause. Alice must provide a satisfying assignment to the variables in
that clause and Bob must assign a value for the variable he receives that is consistent with Alice’s
assignment.

This proof system associates a nonlocal game G f with every 3-CNF Boolean formula f over
variables x0, . . . , xn−1 with m clauses c0, . . . , cm−1. Specifically, we take

S = Zm, T = Zn, A = {0, 1}3, and B = {0, 1}.

For each clause, every a ∈ {0, 1}3 induces an assignment to each variable that occurs in the clause
in a natural way. The predicate V(a, b | s, t) takes the value 1 if and only if the assignment for
the variables in cs induced by a satisfies cs and is consistent with the assignment xt = b, and the
distribution π may be taken to be uniform on

{(s, t) ∈ S × T : clause cs contains variable xt}.
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If f is satisfiable then ωc(G f ) = 1 by the two provers returning values corresponding to a
specific truth assignment. If f is unsatisfiable then ωc(G f ) ≤ 1 − 1/3m, as then at least one of the
3m possible (s, t) queries must violate the predicate.

However, this proof system breaks down in the case of entangled provers. Upon seeing the
aforementioned counterexample for the Graph Coloring proof system, Ambainis [2] showed that
a counterexample for 3-SAT could be based on it. Intuitively, the idea is to construct a 3-CNF
formula that, for truth assignment x, expresses the statement “x is a k-coloring of G.” Based on the
above counterexample graph with 32,768 vertices (the smallest that we are aware of), the resulting
3-SAT formula consists of roughly 108 clauses.

A simpler counterexample can be based on the Magic Square game in Section 3.3 that consists
of 24 clauses. We will construct an instance of 3-SAT, where the resulting formula is not satisfiable
but for which there is a perfect quantum strategy for the above two-prover proof system. Let
the variables be x00, x01, x02, x10, x11, x12, x20, x21, x22, which intuitively correspond to a 3 × 3
Boolean matrix. There are six parity conditions in the Magic Square game: each row has even
parity and each column has odd parity. Each parity condition can be expressed with four clauses.
For example, for the first row,

(x00 ∨ x01 ∨ x02) ∧ (x00 ∨ x01 ∨ x02) ∧ (x00 ∨ x01 ∨ x02) ∧ (x00 ∨ x01 ∨ x02)

is satisfied if and only if x00 ⊕ x01 ⊕ x02 = 0. Thus 24 clauses suffice to express all six parity
conditions. This formula is unsatisfiable, but the perfect quantum strategy for the Magic Square
game in Section 3.3 defeats the 3-SAT game for this formula with certainty.

4.3 Oracularization paradigm

The above example also constitutes a counterexample to a commonly-used primitive that enables
a two-prover system to simulate an oracle machine. An oracle machine is a one-prover interactive
system where the prover’s responses to a series of questions are required to be non-adaptive. Non-
adaptive means that when the prover receives a series of queries s1, s2, . . . , sm, his response to si

must be a function of si alone, not depending on any sj for j 6= i. There is a simple oracle machine
proof system for 3-SAT, where a random clause is selected and its three variables are sent as three
queries to the prover, who must return a value for each one. The verifier accepts if and only if
the responses satisfy the clause. The prover’s success probability is less than one whenever the
formula is unsatisfiable.

Fortnow, Rompel, and Sipser [22] showed that, with a second prover, who is sent a single
randomly chosen query from those of the first prover, the first prover must behave as an oracle
or be detected with positive probability. Nevertheless, the above quantum strategy for the magic
square game is a counterexample to this result for the case of entangled provers. Because this is a
component in the proof that MIP = NEXP, this proof does not carry over to the case of MIP∗.

5 Binary games and XOR games

In this section we focus our attention on two simple types of games that we call binary games and
XOR games. Binary games are games in which Alice and Bob’s answers are bits: A = B = {0, 1}.
XOR games are binary games that are further restricted in that the value of the predicate V may
depend only on a ⊕ b and not on a and b independently. The CHSH and Odd Cycle games are
examples of XOR games.

11



We begin by establishing some basic properties of binary games and XOR games, and then
prove upper bounds on the quantum values of these games. In particular, we prove that any bi-
nary game having a perfect quantum strategy also has a perfect classical strategy, and for XOR
games we obtain quantitatively stronger upper bounds through the use of a theorem due to
Tsirelson. We then prove upper bounds on the amount of entanglement required for Alice and
Bob to play XOR games optimally and nearly optimally, and finally point out a further connection
between these games and multi-prover interactive proof systems.

5.1 Optimality of projective measurements for binary games

In accordance with the description of quantum strategies in Section 2, Alice and Bob’s strategy
for a binary game consists of a shared entangled state |ψ〉 ∈ A ⊗ B, for A and B isomorphic
copies of the space Cn, together with a collection of matrices representing measurements: X0

s

and X1
s , for each s ∈ S, and Y0

t and Y1
t , for each t ∈ T. In this section we observe that these

matrices may always be taken to be projection matrices, even when restricted to the support of
the vector |ψ〉. This fact is easily proved, and in some sense it is more direct than the well-known
fact that general measurements can be simulated by projective measurements. (Note also that this
simulation requires the use of an ancillary system, and therefore does not immediately imply the
claimed fact.)

Proposition 2. Let G be a binary game, and let |ψ〉 ∈ A⊗ B be any fixed state shared by Alice and Bob.
Then among the set of all strategies for G for which the shared entangled state is |ψ〉, there is an optimal
strategy for which all of Alice’s measurements {X0

s , X1
s} and Bob’s measurements {Y0

t , Y1
t } are projective

measurements on A and B, respectively.

Proof. Consider any choice of measurements {X0
s , X1

s } and {Y0
t , Y1

t }. We will show that these mea-
surements can be replaced by projective measurements on A and B without decreasing the proba-
bility that Alice and Bob win. Because the set of all possible choices for the measurements {X0

s , X1
s}

and {Y0
t , Y1

t } can be represented as a compact set, the theorem then follows from the fact that there
must exist an optimal choice of measurements.

For each choice of s ∈ S, let

X0
s =

n

∑
j=1

λs,j |φs,j〉 〈φs,j| ,

be a spectral decomposition of X0
s . We will consider the possible strategies for Alice that are

obtained by viewing the vectors {|φs,j〉 : s ∈ S, j = 1 . . . , n} as being fixed but the eigenvalues
{λs,j : s ∈ S, j = 1 . . . , n} as being variables. Because it must be the case that 0 ≤ X0

s ≤ 1, these
eigenvalues are subject to the constraint that λs,j ∈ [0, 1] for all s ∈ S and j = 1, . . . , n. Also note

that because X1
s = 1 − X0

s , it holds that

X1
s =

n

∑
j=1

(

1 − λs,j

)

|φs,j〉 〈φs,j| .

Now, the probability that Alice and Bob’s strategy wins is

Pr[Alice and Bob win] = ∑
s,t

π(s, t)∑
a,b

V(a, b | s, t) 〈ψ| Xa
s ⊗ Yb

t |ψ〉 ,

which may be expressed as an affine function of the variables {λs,j : s ∈ S, j = 1, . . . , n}. Subject
to the constraint that each λs,j ∈ [0, 1], this function must therefore be maximized for some choice
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for these variables for which λs,j ∈ {0, 1} for each s ∈ S and j = 1, . . . , n. For such a choice

of the eigenvalues λs,j we have that each of Alice’s measurements {X0
s , X1

s} becomes a projective
measurement. Repeating a similar argument for Bob’s measurements yields the desired result.

5.2 Perfect strategies for binary games

We now prove that if G is a binary game for which there exists a perfect quantum strategy, then G
has a perfect classical strategy as well: ωc(G) = 1. This fact depends on the assumption that the
game is binary. The Kochen-Specker game discussed in Section 2, for instance, is a ternary-binary
game (i.e., A = {0, 1, 2} and B = {0, 1}) for which there exists a perfect quantum strategy, but no
perfect classical strategy.

Theorem 3. Let G be a binary game. If there exists a quantum strategy for G that wins with probability 1,
then ωc(G) = 1.

Proof. Assume that a perfect quantum strategy for G is given. More specifically, we assume that
this strategy uses a shared entangled state |ψ〉 ∈ A⊗B, for A and B isomorphic copies of Cn, and
by Proposition 2 we may assume that Alice and Bob’s measurements are projective measurements
on A and B, respectively. It is therefore possible to describe these measurements by two collections
of ±1 observables {As : s ∈ S} and {Bt : t ∈ T} on A and B, respectively, and for the remainder
of the proof we will consider for the sake of convenience that Alice and Bob’s answer sets are
given by {+1,−1} rather than {0, 1}. We note that the probability that Alice and Bob respond to
a given question pair (s, t) ∈ S × T with the answers (α, β) ∈ {+1,−1} × {+1,−1} is given by

q(α, β | s, t) =
1

4
〈ψ| (1 + αAs)⊗ (1 + βBt) |ψ〉

=
1

4
+

α

4
〈ψ| As ⊗ 1 |ψ〉+ β

4
〈ψ| 1 ⊗ Bt |ψ〉+

αβ

4
〈ψ| As ⊗ Bt |ψ〉 .

We will now define functions a : S → {+1,−1} and b : T → {+1,−1} that represent a perfect
deterministic strategy for Alice and Bob. First, fix an orthonormal basis {|φ1〉 , . . . , |φn2〉} of A⊗B
such that |φ1〉 = |ψ〉 and where |φ2〉 , . . . , |φn2〉 are chosen arbitrarily (subject to the constraint of
orthonormality). Next, define functions k : S → {1, . . . , n2} and ℓ : T → {1, . . . , n2} as

k(s) = min
{

j ∈ {1, . . . , n2} : 〈φj| As ⊗ 1 |ψ〉 6= 0
}

ℓ(t) = min
{

j ∈ {1, . . . , n2} : 〈φj| 1 ⊗ Bt |ψ〉 6= 0
}

and also define a function κ : C\{0} → {+1,−1} over the nonzero complex numbers as

κ (z) =

{

+1 if arg(z) ∈ [0, π)
−1 if arg(z) ∈ [π, 2π).

Finally, define

a(s) = κ
(

〈φk(s)| As ⊗ 1 |ψ〉
)

and b(t) = κ
(

〈φℓ(t)| 1 ⊗ Bt |ψ〉
)

.

We will now prove that the functions a and b define a perfect deterministic strategy for G, so
that ωc(G) = 1. To do this, we prove that every question pair (s, t) is answered with (a(s), b(t))
by the given quantum strategy with a positive probability: q(a(s), b(t) | s, t) > 0. Given that the
quantum strategy is perfect, it follows that (a(s), b(t)) is correct for (s, t) whenever π(s, t) > 0.
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To prove that q(a(s), b(t) | s, t) > 0 for every choice of s and t, we first observe the following
two facts:

1. if 〈ψ| As ⊗ 1 |ψ〉 6= 0, then a(s) 〈ψ| As ⊗ 1 |ψ〉 > 0, and

2. if 〈ψ| 1 ⊗ Bt |ψ〉 6= 0, then b(t) 〈ψ| 1 ⊗ Bt |ψ〉 > 0.

The first fact follows from the observation that 〈ψ| As ⊗ 1 |ψ〉 is a real number, and if it is nonzero
we have k(s) = 1, so that a(s) = sign(〈ψ| As ⊗ 1 |ψ〉). The second fact is similar to the first. It
follows that if either or both of the numbers 〈ψ| As ⊗ 1 |ψ〉 or 〈ψ| 1 ⊗ Bt |ψ〉 is nonzero, then

a(s) 〈ψ| As ⊗ 1 |ψ〉+ b(t) 〈ψ| 1 ⊗ Bt |ψ〉 > 0.

As 〈ψ| As ⊗ Bt |ψ〉 ≥ −1, it follows that

q(a(s), b(t) | s, t) =
1

4
+

a(s)

4
〈ψ| As ⊗ 1 |ψ〉+ b(t)

4
〈ψ| 1 ⊗ Bt |ψ〉+

a(s)b(t)

4
〈ψ| As ⊗ Bt |ψ〉 > 0.

The quantum strategy therefore results in the answers (a(s), b(t)) to the question pair (s, t) with a
nonzero probability.

The remaining case to consider is that 〈ψ| As ⊗ 1 |ψ〉 = 〈ψ| 1 ⊗ Bt |ψ〉 = 0. In this case we have

q(a(s), b(t) | s, t) =
1

4
+

a(s)b(t)

4
〈ψ| As ⊗ Bt |ψ〉 .

As in the first case, we wish to prove that q(a(s), b(t) | s, t) is positive, so we assume toward con-
tradiction that q(a(s), b(t) | s, t) = 0, which implies that a(s)b(t) 〈ψ| As ⊗ Bt |ψ〉 = −1. We have
that

a(s)b(t) 〈ψ| As ⊗ Bt |ψ〉 =
n2

∑
j=1

a(s)b(t) 〈ψ| As ⊗ 1 |φj〉 〈φj| 1 ⊗ Bt |ψ〉 ,

and we observe that this quantity corresponds to the inner product of the two n2 dimensional unit
vectors whose j-th entries are given by a(s) 〈φj| As ⊗ 1 |ψ〉 and b(t) 〈φj| 1 ⊗ Bt |ψ〉, respectively. If
it is the case that this inner product is −1, then it must hold that

a(s) 〈φj| As ⊗ 1 |ψ〉 = −b(t) 〈φj| 1 ⊗ Bt |ψ〉 (4)

for every choice of j = 1, . . . , n2. However, if it is the case that k(s) 6= ℓ(t), then (4) must fail to
hold for j = min{k(s), ℓ(t)}, while if k(s) = ℓ(t), then for j = k(s) = ℓ(t) we find that the values
arg(a(s) 〈φj| As ⊗ 1 |ψ〉) and arg(b(t) 〈φj| 1 ⊗ Bt |ψ〉) are both in the range [0, π), and therefore (4)
again fails to hold. We have obtained a contradiction, which completes the proof.

5.3 Bounds on values of XOR games

We now prove upper bounds on quantum strategies for XOR games, which are binary games
where the predicate V(a, b | s, t) depends only on c = a ⊕ b and not a and b independently. It
will be convenient to view the predicate V as taking only three inputs in this case, so we write
V(a ⊕ b | s, t) rather than V(a, b | s, t).
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Tsirelson’s correspondence

To establish upper bounds on quantum strategies for XOR games, we begin with a theorem due
to Tsirelson [48]. This theorem is most naturally stated in terms of observables, as described in
Section 2. (By Proposition 2, there will be no loss of generality in considering only projective
measurements, or equivalently their corresponding observables, in the context of binary games.)

Theorem 4 (Tsirelson [48]). Let S and T be finite, nonempty sets, and let {cs,t : (s, t) ∈ S × T} be a
collection of real numbers in the range [−1, 1]. Then the following are equivalent:

1. There exists a positive integer n, complex Hilbert spaces A and B with finite dimension n, a unit vector
|ψ〉 ∈ A⊗ B, a collection {As : s ∈ S} of ±1 observables on A, and a collection {Bt : t ∈ T} of ±1
observables on B, such that

〈ψ| As ⊗ Bt |ψ〉 = cs,t

for all (s, t) ∈ S × T.

2. There exists a positive integer m and two collections {|us〉 : s ∈ S} and {|vt〉 : t ∈ T} of unit vectors
in Rm such that

〈us|vt〉 = cs,t

for all (s, t) ∈ S × T.

Moreover, if the first item holds for a fixed choice of n, then the second holds for m = 2n2; and if the second
item holds for a fixed choice of m, then the first holds for n = 2⌈m/2⌉.

Advantage over the trivial strategy

Next, to state certain upper bounds on ωq(G) for XOR games, it will be helpful to define the trivial
random strategy for Alice and Bob as one where they ignore their inputs and answer uniformly
generated random bits. If τ(G) denotes the success probability of game (G, π) when Alice and
Bob are restricted to this trivial strategy, then

τ(G) =
1

2 ∑
c∈{0,1}

∑
s,t

π(s, t)V(c | s, t).

Proposition 5. Let G(V, π) be an XOR game and let m = min(|S|, |T|). Then

ωq(G)− τ(G) =
1

2
max

{|us〉},{|vt〉}
∑
s,t

π(s, t) (V(0 | s, t) − V(1 | s, t)) 〈us|vt〉 , (5)

where the maximum is over all choices of unit vectors {|us〉 : s ∈ S} ∪ {|vt〉 : t ∈ T} in Rm.

Proof. Consider any quantum strategy for Alice and Bob given by a shared entangled state |ψ〉 ∈
A ⊗ B and collections of observables {As : s ∈ S} and {Bt : t ∈ T}. We associate with each As

a real unit vector |us〉 and with each Bt a real unit vector |vt〉, according to Theorem 4. On input
(s, t), the probability that Alice and Bob’s answers are equal is

〈ψ|X0
s Y0

t + X1
s Y1

t |ψ〉 =
1

2
+

1

2
〈ψ| As ⊗ Bt |ψ〉 =

1

2
+

1

2
〈us|vt〉 .
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It follows that their answers are not equal with probability (1 − 〈us|vt〉) /2. Hence the probability
that Alice and Bob win using this strategy is

1

2 ∑
s,t,c

π(s, t)V(c | s, t) +
1

2 ∑
s,t

π(s, t) (V(0 | s, t) − V(1 | s, t)) 〈us|vt〉

Assuming the spaces A and B have dimension n, the vectors |us〉 and |vt〉 are unit vectors in

R2n2
. Although the dimension n is a priori unbounded, the winning probability depends only on

the inner products among the unit vectors {|us〉 : s ∈ S} and {|vt〉 : t ∈ T}. We may therefore
project onto the span of {|us〉 : s ∈ S} ∪ {|vt〉 : t ∈ T}, which is a space with dimension at
most |S| + |T|. Indeed, it is sufficient to project the vectors {|us〉 : s ∈ S} onto the span of the
vectors {|vt〉 : t ∈ T} (or vice versa). The dimension of this space is at most m = min(|S|, |T|).
Without loss of generality, let us assume |S| ≤ |T|. Although the vectors {|us〉 : s ∈ S} will
not necessarily remain unit vectors after orthogonal projection, the maximum over all vectors
{|us〉 ∈ R|T| : s ∈ S, ‖ |us〉 ‖ ≤ 1} is achieved by points on the boundary—unit vectors—and so it
is sufficient to restrict to this case.

We now show this strategy can be realized as a quantum protocol. The maximization in (5) is
over a compact set, so the maximum is achieved by some choice of vectors {|us〉 : s ∈ S} and
{|vt〉 : t ∈ T} in Rm. Let |ψ〉 be a maximally entangled state on ⌈m/2⌉ qubits. By Theorem 4,
there are observables {As} and {Bt} such that

〈ψ| As ⊗ Bt |ψ〉 = 〈us|vt〉

for all s ∈ S and t ∈ T. Thus the strategy can be realized as a quantum strategy.

The maximization in Proposition 5 can be cast as a semidefinite program, which can be ap-
proximated to within an additive error of ε in time polynomial in |S|+ |T| and in log(1/ε). (See
Ref. [8] for an introduction to semidefinite programming.)

It is trivial to write an expression similar to (5) for the classical value of an XOR game, viz.,

ωc(G)− τ(G) =
1

2
max

a(s),b(t)
∑
s,t

π(s, t)(V(0 | s, t) − V(1 | s, t))a(s)b(t),

where the maximum is over functions a : S → {−1,+1} and b : T → {−1,+1}. This integer
quadratic program is MAXSNP hard [1]. Unless P = NP, finding the quantum value of an XOR
game is easier than finding the classical value.

Upper bound for XOR games with weak classical strategies

We now give two bounds for XOR games. We first consider the regime where the success prob-
ability of the best classical strategy is not much better than τ(G), the success probability of the
trivial random strategy. In this case no quantum strategy can do significantly better. The bound
will be expressed in terms of Grothendieck’s constant [26].

Definition 6. Grothendieck’s constant KG is the smallest number such that, for all integers N ≥ 2
and all N × N real matrices M, if

∣

∣

∣

∣

∣

∑
s,t

M(s, t) asbt

∣

∣

∣

∣

∣

≤ 1,
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for all numbers a1, . . . , aN , b1, . . . , bN in [−1, 1], then

∣

∣

∣

∣

∣

∑
s,t

M(s, t) 〈us|vt〉
∣

∣

∣

∣

∣

≤ KG,

for all unit vectors |u1〉 , . . . , |uN〉 , |v1〉 , . . . , |vN〉 in Rn (for any choice of n).

(See also [20].) Grothendieck’s constant is known to satisfy

1.6769 ≤ KG ≤ π

2 log
(

1 +
√

2
) ≈ 1.7822,

but the exact value is not known. The upper bound is due to Krivine [38] (who conjectures it is
the exact value), and the lower bound is due to Davie [16] and, independently, Reeds [46] (see
also [21]).

Theorem 7. Let G be an XOR game. Then

ωq(G)− τ(G) ≤ KG [ωc(G)− τ(G)] .

Proof. Suppose, without loss of generality, that |S| = |T|, and let N = |S| = |T|. Define an N × N
matrix M by

M(s, t) =
1

2 [ωc(G)− τ(G)]
π(s, t) [V(0 | s, t) − V(1 | s, t)] .

It follows that
∣

∣

∣

∣

∣

∑
s,t

M(s, t) asbt

∣

∣

∣

∣

∣

≤ 1

for all numbers a1, . . . , an, b1, . . . , bn in [−1, 1]. By Proposition 5, we have

ωq(G)− τ(G) = [ωc(G)− τ(G)] max
{|us〉},{|vt〉}

M(s, t) 〈us|vt〉 ≤ KG [ωc(G)− τ(G)] ,

which establishes the result.

For the CHSH game, we have τ(G) = 1/2 and

ωq(G)− τ(G) =
√

2 [ωc(G)− τ(G)] .

Games for which the ratio of ωq(G)− τ(G) to ωc(G)− τ(G) is greater than
√

2 can be constructed
from the results in Ref. [21]. In particular, the smallest known game for which this ratio is larger
than

√
2 has |S| = |T| = 20.

Upper bound for XOR games with strong classical strategies

We now consider the regime where a classical strategy performs well, but not perfectly. For the
Odd Cycle game of Section 3.2, we obtained

ωc(G) = 1 − 1

2n
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and
ωq(G) ≥ cos2(π/4n) ≥ 1 − (π/4n)2;

the quantum strategy is quadratically better than the classical one in terms of its failure probability.
In fact such a quadratic improvement is all that is possible for XOR games, as will be shown shortly
in Theorem 8.

In order to state and prove Theorem 8, we first define a function g : [0, 1] → [0, 1] and two
constants, γ1 and γ2. The function g has the property that it is minimal subject to being concave
and bounded below by sin2(π

2 x). To determine g, consider the unique linear mapping h(x) = γ1x

such that h is the tangent line to sin2(π
2 x) at some point 0 < γ2 < 1. It is straightforward to show

that g(x) = h(x) for x ≤ γ2 and g(x) = sin2(π
2 x) for x > γ2. To determine the constants γ1 and

γ2, note that the condition on h and the fact that d
dx sin2(π

2 x) = π
2 sin(πx) imply that

π

2
sin(πγ2) =

sin2(π
2 γ2)

γ2
= γ1. (6)

Theorem 8. Let G be an XOR game with classical value ωc(G). Then ωq(G) ≤ g(ωc(G)), where g is as
defined above, i.e.,

ωq(G) ≤
{

γ1ωc(G) if ωc(G) ≤ γ2

sin2
(

π
2 ωc(G)

)

if ωc(G) > γ2,
(7)

where γ1 ≈ 1.1382 and γ2 ≈ 0.74202 are as defined above.

Proof. Consider an optimal quantum strategy and let

{|us〉 : s ∈ S}, {|vt〉 : t ∈ T} ⊂ R
m

be the unit vectors associated with it, according to Proposition 5. We use these vectors to define
the following classical strategy:

1. Alice and Bob share a unit vector |λ〉 ∈ Rm, chosen uniformly at random.

2. When asked question s, Alice answers a′ = [1 + sign(〈λ|us〉)] /2.

3. When asked question t, Bob answers b′ = [1 + sign(〈λ|vt〉)] /2.

Here the sign function is defined by sign(x) = +1 if x ≥ 0 and −1 otherwise.
Let us calculate the probability that a′ ⊕ b′ = 1. Introduce an azimuthal coordinate φ for |λ〉

in the plane spanned by |us〉 and |vt〉, such that |us〉 has coordinate φ = 0 and |vt〉 has coordinate
φ = θst ≡ cos−1 〈us|vt〉 ∈ [0, π]. Then sign(〈us|λ〉) = 1 for φ ∈ [−π/2, π/2] and −1 otherwise,
while sign(〈vt|λ〉) = 1 for φ ∈ [θst − π/2, θst + π/2] and −1 otherwise. Because |λ〉 is distributed
uniformly in Rm, φ is distributed uniformly in [0, 2π). The probability that a ⊕ b = 1 is then
proportional to the measure of the subset of [0, 2π) on which sign(〈us|λ〉) = − sign (〈vt|λ〉). In
particular, a′ 6= b′ when

φ ∈ [−π/2, θst − π/2) ∪ [π/2, θst + π/2).

Therefore, on input (s, t),
Pr[a′ ⊕ b′ = 1] = 1

π θst. (8)
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Using the quantum strategy, the probability that a ⊕ b = 1 is given by

Pr[a ⊕ b = 1] = 1
2 (1 − 〈us|vt〉) = sin2

(

1
2 θst

)

,

so that
Pr[a ⊕ b = 1] = sin2

(

π
2 Pr[a′ ⊕ b′ = 1]

)

≤ g(Pr[a′ ⊕ b′ = 1]).

Similarly, it can be shown that

Pr[a ⊕ b = 0] = sin2
(

π
2 Pr[a′ ⊕ b′ = 0]

)

≤ g
(

Pr[a′ ⊕ b′ = 0]
)

.

For each (s, t) ∈ S × T, let ̟c(s, t) and ̟q(s, t) be the probabilities of winning the game when
using the classical and quantum strategies, respectively, given that question (s, t) was asked. From
the above, together with the concavity of g, it follows that ̟q(s, t) ≤ g(̟c(s, t)). The overall
probability of winning using the quantum strategy is

∑
s,t

π(s, t)̟q(s, t) ≤ ∑
s,t

π(s, t)g(̟c(s, t)) ≤ g

(

∑
s,t

π(s, t)̟c(s, t)

)

≤ g(ωc(G)),

where we have again used the fact that g is concave.

We emphasize that our means of defining the classical strategy in the above proof is not orig-
inal; indeed we can trace the technique back to Grothendieck, who used it to establish the first
upper bound on the constant that bears his name [26]. More recently, Goemans and Williamson
used the same idea to derive randomized approximation algorithms for MAX-CUT and related
problems [25].

One consequence of Theorem 8 is that the quantum strategy for the Odd Cycle game given in
Section 3.2 is optimal.

Corollary 9. For G being the Odd Cycle game, we have ωq(G) = cos2(π/4n).

5.4 Bounds on entanglement for XOR games

The final results we prove concern the amount of entanglement needed for Alice and Bob to play a
given game optimally. With respect to this question, our results are restricted to XOR games. The
following theorem follows immediately from the results of Section 5.3.

Theorem 10. Let G be an XOR game and let m = min(|S|, |T|). There exists an optimal strategy for
Alice and Bob for G in which they share a maximally-entangled state on ⌈m/2⌉ qubits.

Unfortunately, even in this restricted setting of XOR games, the bound on the amount of entan-
glement provided by this theorem is still huge—the number of qubits shared by Alice and Bob is
exponential in the sizes of their inputs.

However, if we are willing to settle for a slightly sub-optimal strategy, a polynomial number
of shared qubits suffices. This fact follows from the Johnson-Lindenstrauss lemma [30], which we
now state, following Ref. [15].

Lemma 11 (Johnson-Lindenstrauss). For ε ∈ (0, 1) and n a positive integer, let K be a positive integer
such that

K ≥ 4
(

ε2/2 − ε3/3
)−1

log n.

Then for any set V of n points in Rd, there is a mapping f : Rd → RK such that for all |u〉 , |v〉 ∈ V,

(1 − ε)‖ |u〉 − |v〉 ‖2 ≤ ‖ f (|u〉)− f (|v〉)‖2 ≤ (1 + ε)‖ |u〉 − |v〉 ‖2.
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Theorem 12. Let G = G(V, π) be an XOR game with quantum value ωq(G). Let 0 < ε < 1/10, and
suppose K is an even integer such that

K ≥ 4
(

ε2/2 − ε3/3
)−1

log (|S|+ |T|+ 1) .

Then, if Alice and Bob share a maximally entangled state on K/2 qubits, they can win with probability
greater than ωq(G)− ε.

Proof. Let M = |S| + |T| and 0 < ε < 1/10. Let {|us〉 : s ∈ S} and {|vt〉 : t ∈ T} be the vectors
associated with the optimal quantum strategy according to Proposition 5. Let f be the mapping
obtained from the Johnson-Lindenstrauss Lemma to the M + 1 points

{|us〉 : s ∈ S}, {|vt〉 : t ∈ T}, and 0.

Set

|u′
s〉 =

f (|us〉)− f (0)

‖ f (|us〉)− f (0)‖ and |v′t〉 =
f (|vt〉)− f (0)

‖ f (|vt〉)− f (0)‖ .

for each s ∈ S and t ∈ T. Because 〈x|y〉 = 1 − ‖x − y‖/2 for real unit vectors x and y, we have

∣

∣ 〈u′
s|v′t〉 − 〈us|vt〉

∣

∣ =
1

2

∣

∣ ‖ |u′
s〉 − |v′t〉 ‖ − ‖ |us〉 − |vt〉 ‖

∣

∣ .

A straightforward calculation based on the fact that

√
1 − ε ≤ ‖ f (|us〉)− f (0)‖ ≤

√
1 + ε,

√
1 − ε ≤ ‖ f (|vt〉)− f (0)‖ ≤

√
1 + ε,

and √
1 − ε‖ |us〉 − |vt〉 ‖ ≤ ‖ f (|us〉)− f (|vt〉)‖ ≤

√
1 + ε‖ |us〉 − |vt〉 ‖

proves that
1

2

∣

∣

∥

∥|u′
s〉 − |v′t〉

∥

∥− ‖|us〉 − |vt〉‖
∣

∣ < 2ε.

We note that these vectors can be realized as a quantum strategy by Theorem 4. It follows that
the difference in the probability of winning using this strategy instead of the optimal one is

1

2 ∑
s,t

π(s, t) [V(0 | s, t)− V(1 | s, t)]
(

〈us|vt〉 − 〈u′
s|v′t〉

)

≤ 1

2 ∑
s,t

π(s, t)
∣

∣〈us|vt〉 − 〈u′
s|v′t〉

∣

∣ ≤ ǫ ∑
s,t

π(s, t) = ε.

Hence Alice and Bob win using this strategy with probability greater than ωq(G)− ε.

Oded Regev has described to us an improved form of this theorem where K has no dependence
on |S| and |T |.
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5.5 Further connections with multi-prover interactive proof systems

One motive for considering upper bounds on the quantum values of games in general is due to
their connections with multi-prover interactive proof systems. For example, recall that the Odd
Cycle game can be regarded as a simple proof system for the two-colorability of odd cycles—for
which the correct response of the verifier is to reject. Although this is valid as a classical two-
prover interactive proof system, if the quantum value of the game were one (or exponentially
close to one) then it would not be valid as a quantum proof system. The upper bound on the value
of the Odd Cycle game proved in this section (Corollary 9) implies that it is a valid quantum proof
system, and with a polynomial number of repetitions2, the probability of the verifier incorrectly
accepting can be made arbitrarily close to zero. For any one-round two-prover quantum inter-
active proof system, the soundness condition will correspond to a nontrivial upper bound of the
quantum value of a nonlocality game. Therefore upper bounds are important tools for analyzing
such proof systems.

Regarding upper bounds on entanglement required by an optimal quantum strategy, we note
that results in [36] imply that if a polynomial upper bound can be established then MIP∗[2] ⊆
NEXP. This indicates that upper bounds on entanglement are also relevant for analyzing such
proof systems.

Definition 13. For 0 ≤ s < c ≤ 1, let ⊕MIPc,s[2] denote the class of all languages L recognized by
classical two-prover interactive proof systems of the following form:

• They operate in one round, each prover sends a single bit in response to the verifier’s ques-
tion, and the verifier’s decision is a function of the parity of those two bits.

• If x 6∈ L then, whatever strategy Alice and Bob follow, the Prover’s acceptance probability is
at most s (the soundness probability).

• If x ∈ L then there exists a strategy for Alice and Bob for which the Prover’s acceptance
probability is at least c (the completeness probability).

Definition 14. For 0 ≤ s < c ≤ 1, let ⊕MIP∗
c,s[2] denote the class corresponding to the previous

definition, where all communication remains classical, but where the provers may share prior
quantum entanglement.

The following result is implicit in the work of Håstad [27], based on the application of methods
described in [6].

Theorem 15. For all ε ∈ (0, 1/16), if s = 11/16 + ε and c = 12/16 then ⊕MIPc,s[2] = NEXP.

Sketch of Proof. We refer the reader to [6, 27] for all detailed information about probabilistically
checkable proof systems (PCPs). Let PCPc,s[r, k] denote the class of languages recognized by PCPs
that makes k queries on the basis of r random bits, and have completeness and soundness prob-
abilities c and s respectively. That is, a verifier can query k bits of a purported proof, selected on
the basis of r random bits, and makes a determination of language membership on the basis of
those k values. A language L is in PCPc,s[r, k] if: (a) for all x ∈ L, there exists a proof for which the
verifier’s acceptance probability is at least c; and (b) for all x 6∈ L, the verifier’s acceptance never
exceeds s. Håstad [27] essentially shows that, for all ε > 0, if s = 11/16 + ε, and c = 12/16 then

2In the absence of a quantum analogue of Raz’s Parallel Repetition Theorem [45], the repetitions can be applied
sequentially.
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PCPc,s[O(log n), 2] = NP using PCPs where the verifier’s determination is based on the XOR of
the two queried bits. This can be scaled up one exponential in n along the lines discussed in [6] to
yield PCPc,s[nO(1), 2] = NEXP with the same XOR property. Moreover, the proof system has the
feature that, if each possible pair of queries is taken as an edge of a graph then the resulting graph
is bipartite. This means that the PCP can be converted into a two-prover interactive proof system
with the same completeness and soundness probabilities (c and s) as follows. The verifier ran-
domly chooses an edge, just as in the PCP, and sends one query to Alice and one to Bob, according
to the bipartite structure of the graph.

An obvious question is: Do there exist c and s (with 0 ≤ s < c ≤ 1) such that ⊕MIP∗
c,s[2] =

NEXP? The answer is that this cannot be the case unless EXP = NEXP, following from the discus-
sion in Section 5.3.

Corollary 16. For all s and c such that 0 ≤ s < c ≤ 1, ⊕MIP∗
c,s[2] ⊆ EXP.
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