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Abstract
We investigate the parameterized complexity of finding diverse sets of solutions to three fundamental
combinatorial problems, two from the theory of matroids and the third from graph theory. The
input to the Weighted Diverse Bases problem consists of a matroid M , a weight function
ω : E(M) → N, and integers k ≥ 1, d ≥ 0. The task is to decide if there is a collection of k bases
B1, . . . , Bk of M such that the weight of the symmetric difference of any pair of these bases is at
least d. This is a diverse variant of the classical matroid base packing problem. The input to the
Weighted Diverse Common Independent Sets problem consists of two matroids M1, M2 defined
on the same ground set E, a weight function ω : E → N, and integers k ≥ 1, d ≥ 0. The task is to
decide if there is a collection of k common independent sets I1, . . . , Ik of M1 and M2 such that the
weight of the symmetric difference of any pair of these sets is at least d. This is motivated by the
classical weighted matroid intersection problem. The input to the Diverse Perfect Matchings
problem consists of a graph G and integers k ≥ 1, d ≥ 0. The task is to decide if G contains k perfect
matchings M1, . . . , Mk such that the symmetric difference of any two of these matchings is at least d.

The underlying problem of finding one solution (basis, common independent set, or perfect
matching) is known to be doable in polynomial time for each of these problems, and Diverse
Perfect Matchings is known to be NP-hard for k = 2. We show that Weighted Diverse Bases
and Weighted Diverse Common Independent Sets are both NP-hard. We show also that
Diverse Perfect Matchings cannot be solved in polynomial time (unless P = NP) even for the
case d = 1. We derive fixed-parameter tractable (FPT) algorithms for all three problems with (k, d)
as the parameter.

The above results on matroids are derived under the assumption that the input matroids are given
as independence oracles. For Weighted Diverse Bases we present a polynomial-time algorithm
that takes a representation of the input matroid over a finite field and computes a poly(k, d)-sized
kernel for the problem.
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1 Introduction

In this work we study the parameterized complexity of finding diverse collections of solutions
to three basic algorithmic problems. Two of these problems arise in the theory of matroids.
The third problem belongs to the domain of graph theory, and its restriction to bipartite
graphs can be rephrased as a question about matroids. Each of these is a fundamental
algorithmic problem in its respective domain.

Diverse FPT Algorithms.

Nearly every existing approach to solving algorithmic problems focuses on finding one solution
of good quality for a given input. For algorithmic problems which are—eventually—motivated
by problems from the real world, finding “one good solution” may not be of much use for
practitioners of the real-world discipline from which the problem was originally drawn. This
is primarily because the process of abstracting out a “nice” algorithmic problem from a
“messy” real-world problem invariably involves throwing out a lot of “side information” which
is very relevant to the real-world problem, but is inconvenient, difficult, or even impossible
to model mathematically.

The other extreme of enumerating all (or even all minimal or maximal) solutions to an
input instance is also usually not a viable solution. A third approach is to look for a few
solutions of good quality which are “far away” from one another according to an appropriate
notion of distance. The intuition is that given such a collection of “diverse” solutions, an
end-user can choose one of the solutions by factoring in the “side information” which is
absent from the algorithmic model.

These and other considerations led Fellows to propose the Diverse X Paradigm [9]. Here
“X” is a placeholder for an optimization problem, and the goal is to study the fixed-parameter
tractability of finding a diverse collection of good-quality solutions for X. Recall that the
Hamming distance of two sets is the size of their symmetric difference. A natural measure of
diversity for problems whose solutions are subsets of some kind is the minimum Hamming
distance of any pair of solutions. In this work we study the parameterized complexity of
finding diverse collections of solutions for three fundamental problems with this diversity
measure and its weighted variant.
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Our problems.

Let M be a matroid on ground set E(M) and with rank function r(). The departure point
of our work is the classical theorem of Edmonds from 1965 [6] about matroid partition. This
theorem states that a matroid M has k pairwise disjoint bases if and only if, for every subset
X of E(M),

k · r(X) + |E(M)−X| ≥ k · r(M).

An important algorithmic consequence of this result is that given access to an independence
oracle for a matroid M , one can find a maximum number of pairwise disjoint bases of M
in polynomial time (See, e.g., [18, Theorem 42.5]). This in turn implies, for instance, that
the maximum number of pairwise edge-disjoint spanning trees of a connected graph can be
found in polynomial time.

We take a fresh look at this fundamental result of Edmonds: what happens if we don’t
insist that the bases be pairwise disjoint, and instead allow them to have some pairwise
intersection? We work in the weighted setting where each element e of the ground set E(M)
has a positive integral weight ω(e) associated with it, and the weight of a subset X of E(M)
is the sum of the weights of the elements in X. The relaxed version of the pairwise disjoint
bases problem is then: Given an independence oracle for a matroid M and integers k, d as
input, find if M has k bases B1, . . . , Bk such that for every pair of bases Bi, Bj ; i 6= j the
weight ω(Bi 4Bj) of their symmetric difference is at least d. We call this the Weighted
Diverse Bases problem:

Input: A matroid M , a weight function ω : E(M) → N, and integers k ≥ 1 and
d ≥ 0.

Task: Decide whether there are bases B1, . . . , Bk of M such that ω(Bi4Bj) ≥ d

holds for all distinct i, j ∈ {1, . . . , k}.

Weighted Diverse Bases

Due to the expressive power of matroids Weighted Diverse Bases captures many interest-
ing computational problems. We list a few examples; in each case the weight function assigns
positive integral weights, k ≥ 1 and d ≥ 0 are integers, and we say that a collection of objects
is diverse if the weight of the symmetric difference of each pair of objects in the collection is
at least d. When M is a graphic matroid Weighted Diverse Bases corresponds to finding
diverse spanning trees in an edge-weighted graph. When M is a vector matroid then this
is the problem of finding diverse column (or row) bases of a matrix with column (or row)
weights. And when M is a transversal matroid on a weighted ground set then this problem
corresponds to finding diverse systems of distinct representatives.

Another celebrated result of Edmonds is the Matroid Intersection Theorem [7] which
states that if M1,M2 are matroids on a common ground set E and with rank functions r1, r2,
respectively, then the size of a largest subset of E which is independent in both M1 and M2
(a common independent set) is given by

min
T⊆E

(r1(T ) + r2(E − T )).

Edmonds showed that given access to independence oracles for M1 and M2, a maximum-
size common independent set of M1 and M2 can be found in polynomial time [7]. This is
called the Matroid Intersection problem. Frank [12] found a polynomial-time algorithm
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for the more general Weighted Matroid Intersection problem where the input has
an additional weight function ω : E → N and the goal is to find a common independent set
of the maximum weight. The second problem that we address in this work is a “diverse”
take on Weighted Matroid Intersection where we replace the maximality requirement
on individual sets with a lower bound on the weight of their symmetric difference. Given
M1,M2, ω as above and integers k, d, we ask if there are k common independent sets whose
pairwise symmetric differences have weight at least d each; this is the Weighted Diverse
Common Independent Sets problem.

Input: Matroids M1 and M2 with a common ground set E, a weight function
ω : E → N, and integers k ≥ 1 and d ≥ 0.

Task: Decide whether there are sets I1, . . . , Ik ⊆ E such that Ii is independent in
both M1 and M2 for every i ∈ {1, . . . , k} and ω(Ii4 Ij) ≥ d for all distinct
i, j ∈ {1, . . . , k}.

Weighted Diverse Common Independent Sets

Weighted Diverse Common Independent Sets also captures many interesting
algorithmic problems. We give a few examples (cf. [18, Section 41.1a]). We use “diverse”
here in the sense defined above. Given a bipartite graph G with edge weights, Weighted
Diverse Common Independent Sets can be used to ask if there is a diverse collection of k
matchings in G. A partial orientation of an undirected graph G is a directed graph obtained
by (i) assigning directions to some subset of edges of G and (ii) deleting the remaining edges.
Given an undirected graph G = (V,E) with edge weights and a function ι : V → N, we say
that a partial orientation O of G respects ι if the in-degree of every vertex v in O is at most
ι(v). We can use Weighted Diverse Common Independent Sets to ask if there is a
diverse collection of k partial orientations of G, all of which respect ι. For a third example,
let G = (V,E) be an undirected graph with edge weights, in which each edge is assigned
a—not necessarily distinct—color. A colorful forest in G is any subgraph of G which is a
forest in which no two edges have the same color. We can use Weighted Diverse Common
Independent Sets to ask if there is a diverse collection of k colorful forests in G.

Finding whether a bipartite graph has a perfect matching or not is a well-known application
of Matroid Intersection ([18, Section 41.1a]). The third problem that we study in this
work is a diverse version of the former problem, extended to general graphs. Note that
there is no known interpretation of the problem of finding perfect matchings in (general)
undirected graphs in terms of Matroid Intersection.

Input: An undirected graph G on n vertices, and integers k ≥ 1 and d ≥ 0.
Task: Decide whether there are perfect matchings M1, . . . , Mk of G such that

|Mi 4Mj | ≥ d for all distinct i, j ∈ {1, . . . , k}.

Diverse Perfect Matchings

Our results.

We assume throughout that matroids in the input are given in terms of an independence
oracle. Recall that with this assumption, we can find one basis of the largest weight and one
common independent set (of two matroids) of the largest weight, both in polynomial time.
In contrast, we show that the diverse versions Weighted Diverse Bases and Weighted
Diverse Common Independent Sets are both NP-hard, even when the weights are
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expressed in unary1.

I Theorem 1. Both Weighted Diverse Bases and Weighted Diverse Common
Independent Sets are strongly NP-complete, even on the uniform matroids U3

n.

Given this hardness, we analyze the parameterized complexity of these problems with d, k
as the parameters. Our first result is that Weighted Diverse Bases is fixed-parameter
tractable (FPT) under this parameterization:

I Theorem 2. Weighted Diverse Bases can be solved in 2O(dk2(log k+log d)) · |E(M)|O(1)

time.

We have a stronger result if the input matroid is given as a representation over a finite field
(and not just as a “black box” independence oracle): in this case we show that Weighted
Diverse Bases admits a polynomial kernel with this parameterization.

I Theorem 3. Given a representation of the matroid M over a finite field GF(q) as input,
we can compute a kernel of Weighted Diverse Bases of size O(k6d4 log q).

We then show that our second matroid-related diverse problem is also FPT under the
same parameterization.

I Theorem 4. Weighted Diverse Common Independent Sets can be solved in
2O(k3d2 log(kd)) · |E|O(1) time.

We now turn to the problem of finding diverse perfect matchings. Diverse Perfect
Matchings is known to be NP-hard already when k = 2 and G is a 3-regular graph [16, 10].
Since all perfect matchings of a graph have the same size the symmetric difference of two
distinct perfect matchings is at least 2. Setting d = 1 in Diverse Perfect Matchings
is thus equivalent to asking whether G has at least k distinct perfect matchings. Since a
bipartite graph on n vertices has at most n

2 ! perfect matchings and since log(n2 !) = O(n logn)
we get—using binary search—that there is a polynomial-time Turing reduction from the
problem of counting the number of perfect matchings in a bipartite graph to Diverse
Perfect Matchings instances with d = 1. Since the former problem is #P-complete [20]
we get

I Theorem 5. Diverse Perfect Matchings with d = 1 cannot be solved in time polyno-
mial in n = |V (G)| even when graph G is bipartite, unless P = NP.

Thus we get that Diverse Perfect Matchings is unlikely to have a polynomial-time
algorithm even if one of the two numbers k, d is a small constant. We show that the problem
does have a (randomized) polynomial-time algorithm when both these parameters are bounded;
Diverse Perfect Matchings is (randomized) FPT with k and d as parameters:

I Theorem 6. There is an algorithm that given an instance of Diverse Perfect Match-
ings, runs in time 22O(kd)

nO(1) and outputs the following: If the input is a No-instance then
the algorithm outputs No. Otherwise the algorithm outputs Yes with probability at least
1− 1

e .

Note that Theorem 6 implies, in particular, that Diverse Perfect Matchings can be
solved in (randomized) polynomial time when kd ≤ c1 + log logn

c2
holds for some constants

c1, c2 which depend on the constant hidden by the O() notation.

1 See Theorem 7 for an alternative hardness result for Weighted Diverse Bases.
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Our methods.

We prove the NP-hardness results (Theorem 1) by reduction from the 3-Partition problem.
To show that Weighted Diverse Bases is FPT (Theorem 2) we observe first that if the
input matroid M contains a set of size Ω(kd) which is both independent and co-independent
in M then the input is a Yes instance of Weighted Diverse Bases (Lemma 10). We can
check for the existence of such a set in time polynomial in |E(M)|, so we assume without
loss of generality that no such set exists. We then show that starting with an arbitrary
basis of M and repeatedly applying the greedy algorithm (Proposition 9) poly(k, d)-many
times we can find, in time polynomial in (|E(M)|+ k + d), (i) a subset S∗ ⊆ E(M) of size
poly(k, d) and (ii) a matroid M̃ on the ground set S∗ such that (M̃, ω, k, d) is equivalent to
the input instance (M,ω, k, d) (Lemma 11). We also show how to compute a useful partition
of E(M̃) = S∗ which speeds up the subsequent FPT-time search for a diverse set of bases in
M̃ . The kernelization result for Weighted Diverse Bases (Theorem 3) follows directly
from Lemma 11. This “compression lemma” is thus the main technical component of our
algorithms for Weighted Diverse Bases.

To show that Weighted Diverse Common Independent Sets is FPT (Theorem 4)
we observe first that if the two input matroids M1,M2 have a common independent set of
size Ω(kd) then the input is a Yes instance of Weighted Diverse Common Independent
Sets (Lemma 16). So we assume that this is not the case, and then show (Lemma 17) that
we can construct, in f(k, d) time, a collection F of common independent sets of M1 and
M2 of size g(k, d) such that if the input is a Yes-instance then it has a solution I1, . . . , Ik
with Ii ∈ F for i ∈ {1, . . . , k}. The FPT algorithm for Weighted Diverse Common
Independent Sets follows by a simple search in the collection F .

Our algorithm for Diverse Perfect Matchings is based on two procedures.
P1 Given an undirected graph G on n vertices, perfect matchings M1, . . . ,Mr of G, and a

non-negative integer s as input, this procedure (Lemma 23) runs in time 2O(rs)nO(1) and
outputs a perfect matching M of G such that |M 4Mi| ≥ 2s holds for all i ∈ {1, . . . , r}
(if such a matching exists), with probability at least 2

3e
−rs.

P2 Given an undirected graph G on n vertices, a perfect matching M of G, and non-negative
integers r, d, s, this procedure(Lemma 25) runs in time 2O(r2s)nO(1), and outputs r perfect
matchings M?

1 , . . . ,M
?
r of G such that |M 4M?

i | ≤ s holds for all i ∈ {1, . . . , r} and
|M?

i 4M?
j | ≥ d holds for all distinct i, j ∈ [r] (if such matchings exist), with probability

at least e−rs. If no such perfect matchings exist, then the algorithm outputs No.

Let (G, k, d) be the input instance of Diverse Perfect Matchings. We use procedure
P1 to greedily compute a collection of matchings which are “far apart”: We start with
an arbitrary perfect matching M1. In step i, we have a collection of perfect matchings
M1, . . . ,Mi−1 such that |Mj 4Mj′ | ≥ 2k−id holds for any two distinct j, j′ ∈ {1, . . . , i− 1}.
We now run procedure P1 with r = i− 1 and s = 2k−id to find—if it exists—a matching Mi

such that |Mi 4Mj | ≥ 2k−i+1d holds for all j ∈ {1, . . . , i}. By exhaustively applying P1 we
get a collection of perfect matchings M1, . . . ,Mq such that

(a) for any two distinct integers i, j ∈ {1, . . . , q}, |Mi 4Mj | ≥ 2k−q+1d, and
(b) for any other perfect matching M /∈ {M1, . . . ,Mq}, |M 4Mj | ≤ 2k−qd.

Thus, if k ≤ q, then clearly {M1, . . . ,Mk} is a solution. Otherwise, letM = {M?
1 , . . . ,M

?
k}

be a hypothetical solution. Then for eachM?
i there is a unique matchingMj in {M1, . . . ,Mq}

such that |Mj 4M?
i | < 2(k−q)d holds (Claim 28). For each i ∈ {1, . . . , q} we guess the

number ri of perfect matchings from M that are close to Mi, and use procedure P2 to
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compute a set of ri diverse perfect matchings that are close to Mi. The union of all the
matchings computed for all i ∈ {1, . . . , q} form a solution.

We use algebraic methods and color coding to design procedure P1. The Tutte matrix A
of an undirected graph G over the field F2[X] is defined as follows, where F2 is the Galois
field on {0, 1} and X = {xe : e ∈ E(G)}. The rows and columns of A are labeled with
V (G) and for each e = {u, v} ∈ E(G), A[u, v] = A[v, u] = xe. All other entries in A are
zeros. There is a bijective correspondence between the set of monomials of det(A) and the
set of perfect matchings of G. Procedure P1 extracts the required matching from det(A)
using color coding. Procedure P2 is realized using color coding and dynamic programming.

Related work.

Recall that all bases of a matroid have the same size, and that the number of bases of a
matroid on ground set E is at most 2|E|. So using the same argument as for Theorem 5
we get that Weighted Diverse Bases generalizes—via Turing reductions—the problem
of counting the number of bases of a matroid. Each of these reduced Weighted Diverse
Bases instances will have d = 1, and a weight function which assigns the weight 1 to each
element in the ground set. Counting the number of bases of a matroid is known to be
#P-complete even for restricted classes of matroids such as transversal [3], bircircular [14],
and binary matroids [21]. Hence we have the following alternative2 hardness result for
Weighted Diverse Bases

I Theorem 7. Weighted Diverse Bases cannot be solved in time polynomial in |E(M)|
unless P = NP, even when d = 1 and every element of the ground set E(M) has weight 1.

The study of the parameterized complexity of finding diverse sets of solutions is a very
recent development, and only a handful of results are currently known. In the work which
introduced this notion Baste et al. [1] showed that diverse variants of a large class of graph
problems which are FPT when parameterized by the treewidth of the input graph, are also
FPT when parameterized by the treewidth and the number of solutions in the collection.
In a second article [2] the authors show that for each fixed positive integer d, two diverse
variants—one with the minimum Hamming distance of any pair of solutions, and the other
with the sum of all pairwise Hamming distances of solutions—of the d-Hitting Set problem
are FPT when parameterized by the size of the hitting set and the number of solutions. In
a recent manuscript on diverse FPT algorithms [10] the authors show that the problem of
finding two maximum-sized matchings in an undirected graph such that their symmetric
difference is at least d, is FPT when parameterized by d. Note that our result on Diverse
Perfect Matchings generalizes this to k ≥ 2 matchings, provided the input graph has a
perfect matching.

In a very recent manuscript Hanaka et al. [15] propose a number of results about finding
diverse solutions. We briefly summarize their results which are germane to our work. For a
collection of sets X1, . . . , Xk let dsum(X1, . . . , Xk) denote the sum of all pairwise Hamming
distances of these sets and let dmin(X1, . . . , Xk) denote the smallest Hamming distance of
any pair of sets in the collection. Hanaka et al. show that there is an algorithm which takes
an independence oracle for a matroid M and an integer k as input, runs in time polynomial
in (|E(M)| + k), and finds a collection B1, B2, . . . , Bk of k bases of M which maximizes
dsum(B1, B2, . . . , Bk). This result differs from our work on Weighted Diverse Bases in

2 Compare with Theorem 1.



8 Diverse Collections in Matroids and Graphs

two key aspects. They deal with the unweighted (counting) case, and their diversity measure
is the sum of the pairwise symmetric differences, whereas we look at the minimum (weight
of the) symmetric difference. These two measures are, in general, not comparable.

Hanaka et al. also look at the complexity of finding k matchings M1, . . . ,Mk in a graph
G where each Mi is of size t. They show that such collections of matchings maximizing
dmin(M1, . . . ,Mk) and dsum(M1, . . . ,Mk) can be found in time 2O(kt log(kt)) · |V (G)|O(1). The
key difference with our work is that their algorithm looks for matchings of a specified size
t whereas ours looks for perfect matchings, of size t = |V (G)|

2 ; note that this t does not
appear in the exponential part of the running time of our algorithm (Theorem 6). The
manuscript [15] has a variety of other interesting results on diverse FPT algorithms as well.

Organization of the rest of the paper.

In the next section we collect together some definitions and preliminary results. In Section 3
we prove that Weighted Diverse Bases and Weighted Diverse Common Independent
Sets are strongly NP-hard. In Section 4 we derive our FPT and kernelization algorithms for
Weighted Diverse Bases, and in Section 5 we show that Weighted Diverse Common
Independent Sets is FPT. We derive our results for Diverse Perfect Matchings in
Section 6. We conclude in Section 7.

2 Preliminaries

We use X 4 Y to denote the symmetric difference (X \ Y ) ∪ (Y \X) of sets X and Y . We
use N to denote the set of positive integers.

Parameterized complexity.

A parameterized problem Π is a subset of Σ∗ × N, where Σ is a finite alphabet. We say that
a parameterized problem Π is fixed parameter tractable (FPT), if there is an algorithm that
given an instance (x, k) of Π as input, solves in time f(k)|x|O(1), where f is an arbitrary
function and |x| is the length of x. A kernelization algorithm for a parameterized problem
Π is a polynomial time algorithm (computable function) A : Σ∗ × N→ Σ∗ × N such that
(x, k) ∈ Π if and only if (x′, k′) = A((x, k)) ∈ Π and |x′|+ k′ ≤ g(k) for some computable
function g. When g is a polynomial function, we say that Π admits a polynomial kernel. For
a detailed overview about parameterized complexity we refer to the monographs [5, 4, 11]

Matroids.

We give a brief description of the matroid-related notions that we need. See the book of
Oxley [17] for a detailed introduction to matroids. A pair M = (E, I), where E is a finite
ground set and I is a family of subsets of the ground set, called independent sets of E, is a
matroid if it satisfies the following conditions, called independence axioms:
(I1) ∅ ∈ I.
(I2) If A ⊆ B ⊆ E(M) and B ∈ I then A ∈ I.
(I3) If A,B ∈ I and |A| < |B|, then there is e ∈ B \A such that A ∪ {e} ∈ I.
We use E(M) and I(M) to denote the ground set and the set of independent sets, respectively.
As is standard for matroid problems, we assume that each matroid M that appears in the
input is given by an independence oracle, that is, an oracle that in constant (or polynomial)
time replies whether a given A ⊆ E(M) is independent in M or not. An inclusion-wise
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maximal independent set B is called a basis of M . We use B(M) to denote the set of bases
of M . The bases satisfy the following properties, called basis axioms:
(B1) B(M) 6= ∅.
(B2) If B1, B2 ∈ B(M), then for every x ∈ B1 \ B2, there is y ∈ B2 \ B1 such that

(B1 \ {x}) ∪ {y} ∈ B(M).
All the bases of M have the same size that is called the rank of M , denoted rank(M). The
rank of a subset A ⊆ E(M), denoted rank(A), is the maximum size of an independent set
X ⊆ A; the function rank : 2E(M) → Z is the rank function of M . A set A ⊆ E(M) spans
an element x ∈ E(M) if rank(A ∪ {x}) = rank(A). The closure (or span) of A is the set
cl(A) = {x ∈ E(M) | A spans x}. Closures satisfy the following properties, called closure
axioms:
(CL1) For every A ⊆ E(M), A ⊆ cl(A).
(CL2) If A ⊆ B ⊆ E(M), then cl(A) ⊆ cl(B).
(CL3) For every A ⊆ E(M), cl(A) = cl(cl(A)).
(CL4) For every A ⊆ E(M) and every x ∈ E(M) and y ∈ cl(A∪{x})\cl(A), x ∈ cl(A∪{y}).

The dual of a matroid M = (E, I), denoted M∗, is the matroid whose ground set is E
and whose set of bases is B∗ = {B | B ∈ B(M)}. That is, the bases of M∗ are exactly the
complements of the bases of M . A basis (independent set, rank, respectively) of M∗ is a
cobasis (coindependent set, corank, respectively) of M . We use I∗(M) to denote the set of
coindependent sets of M . Also, corank(M) denotes the corank of M and corank(A) denotes
the corank of a set A ⊆ E(M); corank(A) is the rank of set A in the dual matrix M∗, and
corank(A) = |A| − rank(M) + rank(E \ A). Given an independence oracle for M we can
construct—using the augmentation property (I3) and with an overhead which is polynomial
in |E|—a rank oracle for M , and thence corank and coindependence oracles for M .

For e ∈ E(M), the matroid M ′ = M − e is obtained by deleting e if E(M ′) = E(M) \ {e}
and I(M ′) = {X ∈ I(M) | e /∈ X}. It is said that M ′ = M/e is obtained by contracting e
if M ′ = (M∗ − e)∗. In particular, if e is not a loop (i.e., if {e} is independent) in M , then
I(M ′) = {X \ {e} | e ∈ X ∈ I(M)}. Notice that deleting an element in M is equivalent to
contracting it in M∗ and vice versa. Let X ⊆ E(M). Then M −X denotes the matroid
obtained from M by the deletion of the elements of X and M/X is the matroid obtained
by consecutive contractions of the elements of X. Note that an independence oracle for
M can itself act as an independence oracle for M −X if we restrict our queries to subsets
of E(M) \X. Let rankM/X denote the rank function of the matroid M/X. Then for any
Y ⊆ (E(M) \X) we have that rankM/X(Y ) = rank(X ∪ Y )− rank(X) [17, 3.1.7]. Given an
independence oracle for M we can thus easily construct an independence oracle for M/X.

Let M be a matroid and let F be a field. An n×m-matrix A over F is a representation
of M over F if there is one-to-one correspondence f between E(M) and the set of columns
of A such that for any X ⊆ E(M), X ∈ I(M) if and only if the columns f(X) are linearly
independent (as vectors of Fn); if M has such a representation, then it is said that M has a
representation over F. In other words, A is a representation of M if M is isomorphic to the
linear matroid of A, i.e., the matroid whose ground set is the set of columns of A and a set
of columns is independent if and only if these columns are linearly independent. Observe
that, given a representation A of M , we can verify whether a set is independent by checking
the linear independence of the corresponding columns of A. Hence, we don’t need an explicit
independence oracle in this case.

Let 1 ≤ r ≤ n be integers. We use Urn to denote the uniform matroid, that is, the matroid
with the ground set of size n such that the bases are all r-element subsets of the ground set.
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We use the classical results of Edmonds [7] and Frank [12] about the Weighed Matroid
Intersection problem. The task of this problem is, given two matroids M1 and M2 with
the same ground set E and a weight function ω : E → N, find a set X of maximum weight
such that X is independent in both matroids. Edmonds [7] proved that the problem can
be solved in polynomial time for the unweighted case (that is, the task is to find a common
independent set of maximum size; we refer to this variant as Matroid Intersection) and
the result was generalized for the variant with the weights by Frank in [12].

I Proposition 8 ([7, 12]). Weighted Matroid Intersection can be solved in polynomial
time.

We also need another classical result of Edmonds [8] that a basis of maximum weight can
be found by the greedy algorithm. Recall that, given a matroid M with a weight function
ω : E(M)→ N, the greedy algorithm finds a basis B of maximum weight as follows. Initially,
B := ∅. Then at each iteration, the algorithm finds an element of x ∈ E(M) \B of maximum
weight such that B ∪ {x} is independent and sets B := B ∪ {x}. The algorithms stops when
there is no element that can be added to B.

I Proposition 9 ([8]). The greedy algorithm finds a basis of maximum weight of a weighted
matroid in polynomial time.

We need the following observation(See [17, Lemma 2.1.10]).

I Observation 1. Let X and Y be disjoint sets such that X is independent and Y is
coindependent in a matroid M . Then there is a basis B of M such that X ⊆ B and
Y ∩B = ∅.

Observe that for any sets X and Y that are subsets of the same universe, X4Y = X4Y .
This implies the following.

I Observation 2. For every matroid M , every weight function ω : E(M) → N, and all
integers k ≥ 1 and d ≥ 0, the instances (M,ω, k, d) and (M∗, ω, k, d) of Weighted Diverse
Bases are equivalent.

3 Hardness of Weighted Diverse Bases and Weighted Diverse
Common Independent Sets

We show that Weighted Diverse Bases and Weighted Diverse Common Independent
Sets are NP-complete in the strong sense even for uniform matroids.

I Theorem 1. Both Weighted Diverse Bases and Weighted Diverse Common
Independent Sets are strongly NP-complete, even on the uniform matroids U3

n.

Proof. We prove the claim for Weighted Diverse Bases by a reduction from the 3-
Partition problem. The input to 3-Partition consists of a positive integer b and a
multiset S = {s1, . . . , s3n} of 3n positive integers such that (i) b

4 < si <
b
2 holds for each

i ∈ {1, . . . , 3n} and (ii)
∑3n
i=1 si = nb. The task is to decide whether S can be partitioned

into n multisets S1, . . . , Sn such that
∑
s∈Si

s = b holds for each Si. Note that each multiset
Si in such a partition must contain exactly three elements from S. This problem is known
to be NP-complete in the strong sense, i.e., it is NP-complete even if the input integers are
encoded in unary [13, SP15].

Let (b, S = {s1, . . . , s3n)} be an instance of 3-Partition with n ≥ 3. We set M to be
the uniform matroid U3

3n on the ground set {1, . . . , 3n}, and define the weight function to be
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ω(i) = si for i ∈ {1, . . . , 3n}. We set d = 2b. We will now show that (b, S) is a yes-instance
of 3-Partition if and only if (M,ω, n, d) is a yes-instance of Weighted Diverse Bases.

In the forward direction, suppose that S1, . . . , Sn is a partition of S into triples of integers
such that the sum of elements of each Si is b. Let B1, . . . , Bn be the corresponding partition
of {1, . . . , 3n}, that is, Bi = {i1, i2, i3} if and only if Si = {si1 , si2 , si3} for each i ∈ {1, . . . , n}.
Clearly, B1, . . . , Bn are pairwise disjoint bases of M . Then for every distinct i, j ∈ {1, . . . , n},
ω(Bi 4Bj) = ω(Bi) + ω(Bj) = 2b. Therefore, (M,ω, n, d) is a yes-instance of Weighted
Diverse Bases.

In the reverse direction, assume that (M,ω, n, d) is a yes-instance of Weighted Diverse
Bases. Let B1, . . . , Bn be bases of M such that ω(Bi 4 Bj) ≥ d = 2b for distinct i, j ∈
{1, . . . , n}.

We claim that B1, . . . , Bn are pairwise disjoint. For the sake of contradiction, assume that
there are distinct i, j ∈ {1, . . . , n} such that Bi∩Bj 6= ∅. Let X1 = Bi \Bj and X2 = Bj \Bi.
Note that |X1| ≤ 2 and |X2| ≤ 2. We have that ω(X1) =

∑
h∈X1

ω(h) =
∑
h∈X1

sh <

|X1|b/2 < b. Similarly, ω(X2) < b. Therefore, ω(Bi 4 Bj) = ω(X1) + ω(X2) < 2b; a
contradiction. We conclude that the bases B1, . . . , Bn are pairwise disjoint. This implies
that B1, . . . , Bn is a partition of {1, 2, . . . , 3n}.

Next we show that ω(Bi) = b holds for every i ∈ {1, . . . , n}. Suppose that there is an
h ∈ {1, . . . , n} such that ω(Bh) > b. Let I = {1, . . . , 3n} \Bh and J = {1, . . . , n} \ {h}. We
have that

∑
i∈I ω(i) <

∑3n
i=1 ω(i) − b = b(n − 1). Since B1, . . . , Bh−1, Bh+1 . . . , Bn form a

partition of I, we get that
∑
i∈J ω(Bi) < b(n− 1) holds as well. Recall that n ≥ 3. Then∑

{i,j} s.t. i,j∈J, i6=j

(ω(Bi) + ω(Bj)) ≤ (n− 2)
∑
i∈J

ω(Bi) < b(n− 1)(n− 2).

The first inequality above comes from the fact that since |J | = n− 1, for each index i ∈ J the
term ω(Bi) appears in at most n− 2 terms of the form (ω(Bi) +ω(Bj)) in the summation on
the left hand side. Now suppose (ω(Bi)+ω(Bj)) ≥ 2b holds for all pairs i, j ∈ J, i 6= j. Then
the sum on the left hand side would be at least

(|J|
2
)
· 2b = (n− 1)(n− 2)b, a contradiction.

Therefore, there must exist distinct i, j ∈ J such that ω(Bi) + ω(Bj) < 2b holds. And this
contradicts our assumption that ω(Bi 4Bj) ≥ 2b holds for all such i, j. We conclude that
ω(Bi) ≤ b holds for every i ∈ {1, . . . , n}. And since

∑n
i=1 ω(Bi) = bn, we get that ω(Bi) = b

holds for every i ∈ {1, . . . , n}.
Finally, we consider the partition S1, . . . , Sn of S corresponding to B1, . . . , Bi, that is, for

each Bi = {i1, i2, i3}, we define Si = {si1 , si2 , si3}. Clearly, si1 + si2 + si3 = ω(Bi) = b. Thus
we get that (b, S) is a yes-instance of 3-Partition. This concludes the proof for Weighted
Diverse Bases.

The reduction for Weighted Diverse Common Independent Sets is also from
3-Partition, and is nearly identical to the above reduction for Weighted Diverse Bases.
Given an instance (b, S = {s1, . . . , s3n)} of 3-Partition with n ≥ 3, we set each of M1,M2
to be the uniform matroid U3

3n on the ground set {1, . . . , 3n}, and define the weight function
to be ω(i) = si for i ∈ {1, . . . , 3n}. We set d = 2b. We will now show that (b, S) is a
yes-instance of 3-Partition if and only if (M1,M2, ω, n, d) is a yes-instance of Weighted
Diverse Common Independent Sets.

In the forward direction, suppose that S1, . . . , Sn is a partition of S into triples of integers
such that the sum of elements of each Si is b. Let I1, . . . , In be the corresponding partition of
{1, . . . , 3n}, that is, Ii = {i1, i2, i3} if and only if Si = {si1 , si2 , si3} for each i ∈ {1, . . . , n}.
Clearly, I1, . . . , In are pairwise disjoint common independent sets of M1 and M2, and for
every distinct i, j ∈ {1, . . . , n}, ω(Ii 4 Ij) = ω(Ii) + ω(Ij) = 2b. Therefore, (M1,M2, ω, n, d)
is a yes-instance of Weighted Diverse Common Independent Sets.
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In the reverse direction, assume that (M1,M2, ω, n, d) is a yes-instance of Weighted
Diverse Common Independent Sets, and let I1, . . . , In be common independent sets
of M1 and M2 such that ω(Ii 4 Ij) ≥ d = 2b for distinct i, j ∈ {1, . . . , n}. Since every
independent set in the matroids M1,M2 has at most three elements, and since si < b

2 holds
for each i ∈ {1, . . . , 3n}, we get that the sets I1, . . . , In are pairwise disjoint. If two of these
sets, say Ii, Ij have at most two elements each then ω(Ii 4 Ij) < 4 · b2 = 2b, a contradiction.
So at most one of these sets has at most two elements; every other set in the collection has
exactly three elements.

If all the sets I1, . . . , In have three elements each then they are a pairwise disjoint collection
of n bases of M1, and the argument that we used for the reverse direction in the proof for
Weighted Diverse Bases tells us that (b, S) is a yes-instance of 3-Partition. In the
remaining case there is exactly one set of size two among I1, . . . , In; without loss of generality,
let this smaller set be I1. Then |

⋃n
i=1 Ii| = 3n− 1. Let x = {1, 2, . . . , 3n} \

⋃n
i=1 Ii be the

unique element which is not in any of these independent sets. Then (I1 ∪ {x}), . . . , In is a
pairwise disjoint collection of n bases of M1 such that the weight of the symmetric difference
of any pair of these bases is at least d = 2b, and the argument that we used for the reverse
direction in the proof for Weighted Diverse Bases tells us that (b, S) is a yes-instance of
3-Partition. J

4 An FPT algorithm and kernelization for Weighted Diverse Bases

In this section, we show that Weighted Diverse Bases is FPT when parameterized by k
and d. Moreover, if the input matroid is representable over a finite field and is given by such
a representation, then Weighted Diverse Bases admits a polynomial kernel.

We start with the observation that if the input matroid has a sufficiently big set that is
simultaneously independent and coindependent, then diverse bases always exist.

I Lemma 10. LetM be a matroid, and let k ≥ 1 and d ≥ 0 be integers. If there is X ⊆ E(M)
of size at least kdd2e such that X is simultaneously independent and coindependent, then
(M,ω, k, d) is a yes-instance of Weighted Diverse Bases for any weight function ω.

Proof. LetX ⊆ E(M) be a set of size at least kdd2e such thatX is simultaneously independent
and coindependent. Then there is a partition X1, . . . , Xk of X such that |Xi| ≥ dd2e for every
i ∈ {1, . . . , k}. Let i ∈ {1, . . . , k}. Since X is independent, Xi is independent, and since X is
coindependent, then X \Xi is coindependent. Then by Observation 1, there is a basis Bi of
M such that Xi ⊆ Bi and Bi ∩ (X \Xi) = ∅. The latter property means that Bi ∩Xj = ∅
for every j ∈ {1, . . . , k} such that j 6= i. We consider the bases Bi defined in this manner for
all i ∈ {1, . . . , k}. Then for every distinct i, j ∈ {1, . . . , k}, Xi ∪Xj ⊆ Bi 4 Bj . Therefore,
ω(Bi 4 Bj) ≥ ω(Xi ∪ Xj) ≥ |Xi ∪ Xj | = |Xi| + |Xj | ≥ 2dd2e ≥ d for any ω : E(M) → N.
Hence, (M,ω, k, d) is a yes-instance of Weighted Diverse Bases. J

Our results are based on the following lemma.

I Lemma 11. There is an algorithm that, given an instance (M,ω, k, d) of Weighted
Diverse Bases, runs in time polynomial in (|E(M)|+ k + d) and either correctly decides
that (M,ω, k, d) is a yes-instance or outputs an equivalent instance (M̃, ω, k, d) of Weighted
Diverse Bases such that E(M̃) ⊆ E(M) and |E(M̃)| ≤ 2dd2e

2k3. In the latter case, the
algorithm also computes a partition (L,L∗) of E(M̃) with the property that for every basis
B of M̃ , |B ∩ L| ≤ dd2ek and |L∗ \B| ≤ dd2ek, and the algorithm outputs an independence
oracle for M̃ that answers queries for M̃ in time polynomial in |E(M)|. Moreover, if M is
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representable over a finite field F and is given by such a representation, then the algorithm
outputs a representation of M̃ over F.

Proof. Let (M,ω, k, d) be an instance of Weighted Diverse Bases. Recall that M is
given as an independence oracle. We construct an independence oracle for the dual matroid
M∗, and then solve Matroid Intersection for M and M∗ using Proposition 8. Let X
be the set computed by the Matroid Intersection algorithm. Then X ⊆ E(M) is a set
of maximum size that is both independent and coindependent in M . If |X| ≥ kdd2e, then
(M,ω, k, d) is a yes-instance of Weighted Diverse Bases by Lemma 10; the problem is
solved and we return the answer.

Assume from now on that this is not the case, and that |X| ≤ kdd2e − 1 holds. Let B be
an arbitrary basis of M , and let B = (E(M) \B). If rank(B) ≥ kdd2e then there exists an
independent set Y ⊆ B of size at least kdd2e. But Y is also a coindependent set of size at
least kdd2e, which contradicts our assumption. Thus we get that rank(B) ≤ kdd2e − 1 and
corank(B) ≤ kdd2e − 1 hold for any basis B of M .

Let ` = dd2ek
2. Fix an arbitrary basis B of M . We construct sets S0, . . . , S` iteratively.

We set S0 = B. For i ≥ 1 we construct Si from S(i−1) as follows. If E(M) \ Si−1 = ∅, we set
Xi = ∅. Otherwise we set Xi to be a basis of maximum weight in the matroid M − Si−1; we
find Xi using the greedy algorithm (see Proposition 9). Finally, we set Si = Si−1 ∪Xi.

Let S = S` and L = S \B. Since rank(B) ≤ kdd2e − 1, we get that every independent set
contained in the set B = (E(M) \B) has size at most kdd2e − 1. And since L is a disjoint
union of ` such independent sets we get that |L| = |S \B| ≤ `(kdd2e − 1) ≤ dd2e

2k3. We show
the following crucial claim.

B Claim 12. If (M,ω, k, d) is a yes-instance of Weighted Diverse Bases, then there is
a solution, that is, a family of bases B1, . . . , Bk such that ω(Bi 4 Bj) ≥ d for all distinct
i, j ∈ {1, . . . , k}, with the property that Bi ⊆ S for every i ∈ {1, . . . , k}.

Proof. Let (M,ω, k, d) be a yes-instance, and let the family of bases B1, . . . , Bk be a solution
which maximizes the size of the set ((

⋃k
i=1 Bi) ∩ S) of vertices in the bases which are

also in the set S. We show that Bi ⊆ S holds for every i ∈ {1, . . . , k}. The proof is
by contradiction. Assume that there is an h ∈ {1, . . . , k} such that Bh \ S 6= ∅. Recall
that rank(M − B) = rank(B) ≤ kdd2e − 1. Therefore, |Bi \ B| ≤ kdd2e − 1 holds for every
i ∈ {1, . . . , k}, and | ∪ki=1 (Bi \ B)| ≤ k(kdd2e − 1) < `. Let X1, . . . , X` be the independent
sets used to construct the sets S1, . . . , S`. Since (Xj ∩ B) = ∅ holds for all j ∈ {1, . . . , `}
we get that (Xj ∩ Bi) = (Xj ∩ (Bi \ B)) holds for all i ∈ {1, . . . , k}, j ∈ {1, . . . , `}. So the
number | ∪ki=1 (Bi \ B)| of elements from the bases B1, . . . , Bk which could potentially be
part of any of the sets X1, . . . , X` is strictly less than the number of these latter sets. Hence
from the pigeonhole principle we get that there is a t ∈ {1, . . . , `} such that Xt ∩ Bi = ∅
holds for all i ∈ {1, . . . , k}. Let A = Bh ∩ S(t−1) and Y = Bh \ S(t−1). We show that there is
Z ⊆ Xt such that
(i) B′h = A ∪ Z is a basis, and
(ii) ω(Z) ≥ ω(Y ).

We construct Z by greedily augmenting A with elements of Xt. Let σ be the order in
which the greedy algorithm picks elements from the set E(M) \S(t−1) to add them to the set
Xt. Initially we set Z := ∅. Then we select the first x ∈ Xt \ Z in σ such that A ∪ Z ∪ {x}
is independent, and we set Z := Z ∪ {x}. We stop when there is no x ∈ Xt \ Z such that
A ∪ Z ∪ {x} is independent. We prove that (i) and (ii) are fulfilled for Z.

First we show that (i) holds. From the construction we get that Xt is a basis of the matroid
M−S(t−1). This implies that (E(M)\S(t−1)) ⊆ cl(Xt) holds. Now since Y = (Bh \S(t−1)) is
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a subset of (E(M) \ S(t−1)) we get that Y ⊆ cl(Xt) holds. Since (A∪Z) is independent, and
there is no x ∈ Xt \Z such that A∪Z ∪{x} is independent, we get that Xt ⊆ cl(A∪Z) holds.
Now by (CL2) and (CL3), Y ⊆ cl(cl(A ∪ Z)) = cl(A ∪ Z). And by (CL1), A ⊆ cl(A ∪ Z)
and we conclude that A ∪ Y ⊆ cl(A ∪ Z) holds. But (A ∪ Y ) = Bh is a basis of M , and
so [17, Proposition 1.4.9] cl(A ∪ Y ) = E(M). Applying (CL2) and (CL3) we get that
E(M) ⊆ cl(A ∪ Z) which implies that cl(A ∪ Z) = E(M). Now since A ∪ Z is independent
we get (See, e.g., [17, Section 1.4, Exercise 2]) that B′h = A ∪ Z is a basis.

Now we show that (ii) holds. Let Z = {z1, . . . , zs}, where the elements are indexed
according to the order in which they are added to Z by the greedy augmentation described
above. Note that ω(z1) ≥ · · · ≥ ω(zs). Since Bh and B′h are bases, Y = (Bh \ S(t−1)), and
Z = (B′h \ S(t−1)), we get that |Y | = |Z|. Observe also that Y ∩Z = ∅. We define (i) Z0 = ∅
and (ii) Zi = {z1, . . . , zi} for i ∈ {1, . . . , s}. We show that there is an ordering 〈y1, . . . , ys〉 of
the elements of Y such that the set A ∪ Zi−1 ∪ {yi} is independent for every i ∈ {1, . . . , s}.
We define this order inductively, starting with ys and proceeding in decreasing order of the
subscript.

We set ys to be an element y ∈ (A∪Y )\(A∪Zs−1) = (Y \Zs−1) such that A∪Zs−1∪{y}
is independent. Since |A ∪ Zs−1| < |A ∪ Y | we know from (I3) such an element must exist.
For the inductive step, assume that for some fixed i ∈ {1, . . . , s − 1} distinct elements
yi+1, . . . , ys ∈ Y have been defined such that A ∪ Zi ∪ {yi+1, . . . , ys} is independent. Note
that |A ∪Zi ∪ {yi+1, . . . , ys}| = |A ∪ Y |. Then R = A ∪Zi−1 ∪ {yi+1, . . . , ys} is independent
by (I2), and by (I3), there must exist an element y ∈ (A ∪ Y ) \ R such that R ∪ {y} =
A ∪ Zi−1 ∪ {y, y(i+1), . . . , ys} is independent. We set yi to be this element y. Observe that
due to (I2), A ∪ Zi−1 ∪ {yi} is indeed independent for every i ∈ {1, . . . , s}.

We claim that ω(yi) ≤ ω(zi) holds for every i ∈ {1, . . . , s}. For the sake of contradiction,
assume that this is not the case and let i ∈ {1, . . . , s} be the first index such that ω(yi) > ω(zi)
holds. Recall that Xt is constructed by the greedy algorithm. Denote by W ⊂ Xt the set of
elements that are prior zi in the ordering σ. Suppose that yi ∈ cl(W ). By the construction
of Z, W ⊆ cl(A ∪ Zi−1), because zi is the first element in σ such that A ∪ Zi−1 ∪ {zi}
is independent. By (CL2) and (CL3), we have that yi ∈ cl(cl(A ∪ Zi−1)) = cl(A ∪ Zi−1).
However, this contradicts the property that A∪Zi−1∪{yi} is independent. Hence, yi /∈ cl(W ).
This implies that W ∪ {yi} is independent. But this means that the greedy algorithm would
have yi over zi in the construction of Xt, because ω(yi) > ω(zi); a contradiction. This proves
that ω(yi) ≤ ω(zi) holds for every i ∈ {1, . . . , s}. Therefore, ω(Z) ≥ ω(Y ) and (ii) is fulfilled.
This completes the proof of the existence of a set Z ⊆ Xt satisfying (i) and (ii).

We replace the basis Bh in the solution by B′h = A ∪ Z = (Bh \ Y ) ∪ Z. We show that
the resulting family of bases is a solution to the instance (M,ω, k, d). Clearly, it is sufficient
to show that for every i ∈ {1, . . . , k} such that i 6= h, ω(B′h 4 Bi) ≥ d, as the other pairs
of bases are the same as before. By the choice of t ∈ {1, . . . , `} we have that Xt ∩ Bi = ∅
holds for all i ∈ {1, . . . , k}. And since Z ⊆ Xt we have that Z ⊆ B′h 4 Bi holds. Then,
ω(B′h 4Bi) = ω(((Bh \ Y ) ∪ Z)4Bi)) ≥ ω(Bh 4Bi)− ω(Y ) + ω(Z) ≥ ω(Bh 4Bi) ≥ d as
required. We have that the replacement of Bh by B′h gives a solution. However B′h ⊆ St ⊆ S
whereas Bh \ S 6= ∅, and this contradicts the assumption that B1, . . . , Bk is a solution such
that the number of vertices of the bases in S is the maximum. This concludes the proof of
the claim. C

Let M̂ = M − (E(M) \ S). Then E(M̂) = S and the set B is a basis of M̂ as well.
Claim 12 immediately implies the following property.
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B Claim 13. The instances (M,ω, k, d) and (M̂, ω, k, d) of Weighted Diverse Bases are
equivalent.

We now repeat the argument that preceded Claim 12, this time with the dual matroid
M̂∗ and starting with its basis B̂ = (E(M̂) \B) = L. Recall that ` = dd2ek

2. We construct
sets S∗0 , . . . , S∗` iteratively. We set S∗0 = B̂. For i ≥ 1 we construct S∗i from S∗(i−1) as
follows. If E(M̂) \ S∗i−1 = ∅, we set X∗i = ∅. Otherwise we set X∗i to be a basis of maximum
weight in the matroid M̂∗ − S∗i−1, which we find using the greedy algorithm. Finally, we set
S∗i = S∗i−1 ∪X∗i .

Let S∗ = S∗` and L∗ = S∗ \ B̂ = S∗ ∩B. Since corank(B) ≤ kdd2e − 1, we get that every
coindependent set contained in the set B has size at most kdd2e−1. And since L∗ is a disjoint
union of ` such coindependent sets we get that |L∗| = |S∗ ∩ B| ≤ `(kdd2e − 1) ≤ dd2e

2k3.
Restating Claim 12 for M̂∗, we get that if (M̂∗, ω, k, d) is a yes-instance of Weighted
Diverse Bases, then there is a solution, that is, a family of bases B∗1 , . . . , B∗k of M̂∗ such
that ω(B∗i 4B∗j ) ≥ d holds for all distinct i, j ∈ {1, . . . , k}, with the property that B∗i ⊆ S∗

for every i ∈ {1, . . . , k}. In terms of M̂ , the same property can be stated as follows.

B Claim 14. If (M̂, ω, k, d) is a yes-instance of Weighted Diverse Bases, then there
is a solution, that is, a family of bases B1, . . . , Bk such that ω(Bi 4 Bj) ≥ d for all
distinct i, j ∈ {1, . . . , k} with the property that Bi ⊆ S∗ for every i ∈ {1, . . . , k}, where
Bi = (E(M̂) \Bi).

Since E(M̂) = (B ∪ B̂) and B̂ ⊆ S∗ ⊆ E(M̂) we have that E(M̂) = (B ∪ S∗). Hence
from Claim 14 we get that if (M̂, ω, k, d) is a yes-instance, then it has a solution B1, . . . , Bk
such that (B \ S∗) ⊆ Bi holds for every i ∈ {1, . . . , k}. That is, elements from the set
(B \ S∗) do not contribute to the weight ω(Bi 4Bj) for any distinct i, j ∈ {1, . . . , k}. So a
transformation that removes the subset (B \ S∗) from the ground set of M̂ is safe, provided
that (i) Bi \ (B \ S∗) = (Bi ∩ S∗) is a basis of the resulting matroid for all i ∈ {1, . . . , k},
and (ii) for any basis B′ of the resulting matroid, B′ ∪ (B \ S∗) is a basis of M̂ .

We now show that the operation of contracting the set (B \S∗) has both these properties.
Let M̃ = M̂/(B \ S∗). Then E(M̃) = (B ∪ S∗) \ (B \ S∗) = S∗. Let rank(M̂), rank(M̃)
be the ranks and r̂ank, r̃ank be the rank functions of the two matroids M̂, M̃ , respectively.
Recall that r̃ank(X) = r̂ank((B \ S∗) ∪ X) − r̂ank(B \ S∗) holds for all X ⊆ E(M̃) = S∗.
Now rank(M̃) = r̃ank(S∗) = r̂ank(B ∪ S∗)− r̂ank(B \ S∗) = rank(M̂)− |B \ S∗|, where the
last equation holds because B is a basis of M̂ . And for any i ∈ {1, . . . , k}, r̃ank(Bi ∩ S∗) =
r̂ank((B \ S∗) ∪ (Bi ∩ S∗)) − r̂ank(B \ S∗) = rank(M̂) − |B \ S∗| = rank(M̃), where the
second equation holds because B,Bi are bases of M̂ and Bi ⊆ ((B \ S∗) ∪ (Bi ∩ S∗)). Thus
(Bi ∩ S∗) is a basis of M̃ . Finally, let B′ be an arbitrary basis of M̃ . Then r̃ank(B′) =
rank(M̃) = rank(M̂)− |B \ S∗|. Rearranging the expression for r̃ank(B′) in terms of r̂ank we
get: r̂ank((B \S∗)∪B′) = r̃ank(B′)+ r̂ank(B \S∗) = rank(M̂)−|B \S∗|+ |B \S∗| = rank(M̂)
where the second equation holds because B is a basis of M̂ . Thus (B \ S∗) ∪B′ is a basis of
M̂ , and we have

B Claim 15. The instances (M,ω, k, d) and (M̃, ω, k, d) of Weighted Diverse Bases are
equivalent.

Recall the sets L = B̂ ⊆ S∗ and L∗ = (S∗ \ L) from the construction. (L,L∗) is thus
a partition of E(M̃) = S∗. From the construction we get L = B̂ ⊆ B and L∗ ⊆ B. Now
since rank(B) ≤ dd2ek and corank(B) ≤ dd2ek in M , we have that for every basis B′ of M̃ ,
|B′ ∩ L| ≤ dd2ek and |L∗ \B′| ≤ dd2ek hold.
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This completes the description of the algorithm that returns the instance (M̃, ω, k, d)
and the partition (L,L∗) of E(M̃). Since |L| ≤ dd2e

2k3 and |L∗| ≤ dd2e
2k3, we have that

|E(M̃)| ≤ 2dd2e
2k3. It is straightforward to verify that given an independence oracle for M

we can construct the following in polynomial time: (i) the set E(M̃), (ii) an independence
oracle for M̃ that in time polynomial in |E(M)| answers queries for M̃ , and (iii) the sets L
and L∗. To see this, note that A ⊆ E(M̃) is independent in M̃ if and only if A′ = A∪(B \S∗)
is independent in M .

To show the second claim of the lemma, assume that we are given representation A of M
over a finite field F. It is well-known that M∗ also is representable over F and, given A, the
representation of M∗ over F can be computed in polynomial time by linear algebra tools
(see, e.g., [17]). Taking into account that contraction of a set is equivalent to the deletion of
the same set in the dual matroid and vice versa, we obtain that the representation Ã of M̃
can be constructed in polynomial time from A. This concludes the proof of the lemma. J

Using Lemma 11 we can prove that Weighted Diverse Bases is FPT when parameter-
ized by k and d.

I Theorem 2. Weighted Diverse Bases can be solved in 2O(dk2(log k+log d)) · |E(M)|O(1)

time.

Proof. Let (M,ω, k, d) be an instance of Weighted Diverse Bases. We run the algorithm
from Lemma 11. If the algorithm solves the problem, then we are done. Otherwise, the
algorithm outputs an equivalent instance (M̃, ω, k, d) of Weighted Diverse Bases such
that E(M̃) ⊆ E(M) and |E(M̃)| ≤ 2dd2e

2k3. Moreover, the algorithm computes the partition
(L,L∗) of E(M̃) with the property that for every basis B of M̃ , |B ∩ L| ≤ dd2ek and
|L∗ \ B| ≤ dd2ek. Then we check all possible k-tuples of bases by brute force and verify
whether there are k bases forming a solution. By the properties of L and L∗, M̃ has
(d2k3)O(dk) distinct bases. Therefore, we check at most (d2k3)O(dk2) k-tuples of bases. We
conclude that this checking can be done in 2O(dk2(log k+log d)) · |E(M)|O(1) time, and the claim
follows. J

If the input matroid is given by a representation over a finite field, then Weighted
Diverse Bases admits a polynomial kernel when parameterized by k and d.

I Theorem 3. Given a representation of the matroid M over a finite field GF(q) as input,
we can compute a kernel of Weighted Diverse Bases of size O(k6d4 log q).

Proof. Let (M,ω, k, d) be an instance of Weighted Diverse Bases. Let also A be its
representation over GF(q). We run the algorithm from Lemma 11. If the algorithm solves
the problem and reports that (M,ω, k, d) is a yes-instance, we return a trivial yes-instance
of the problem. Otherwise, the algorithm outputs an equivalent instance (M̃, ω, k, d) of
Weighted Diverse Bases such that E(M̃) ⊆ E(M) and |E(M̃)| ≤ 2dd2e

2k3. Moreover,
the algorithm computes a representation Ã of M̃ over GF(q). Clearly, it can be assumed
that the number of rows of the matrix Ã equals rank(M̃). Since rank(M̃) ≤ |E(M̃)|, the
matrix Ã has O(k6d4) elements. Because Ã is a matrix over GF(q), it can be encoded by
O(k6d4 log q) bits. Finally, note that the weights of the elements can be truncated by d, that
is, we can set ω(e) := min{ω(e), d} for every e ∈ E(M̃). Then the weights can be encoded
using O(d2k3 log d) bits. This concludes the construction of our kernel. J
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5 An FPT algorithm for Weighted Diverse Common Independent Sets

In this section we show that Weighted Diverse Common Independent Sets is FPT
when parameterized by k and d.

We use a similar win-win approach as for Weighted Diverse Bases and observe that
if the two matroids from an instance of Weighted Diverse Common Independent Sets
have a sufficiently big common independent set, then we have a yes-instance of Weighted
Diverse Common Independent Sets.

I Lemma 16. Let M1 and M2 be matroids with a common ground set E, and let k ≥ 1
and d ≥ 0 be integers. If there is an X ⊆ E of size at least kdd2e such that X is a
common independent set ofM1 andM2, then (M1,M2, ω, k, d) is a yes-instance of Weighted
Diverse Common Independent Sets for any weight function ω : E → N.

Proof. Let X ⊆ E be a set of size at least kdd2e such that X is a common independent
set of M1 and M2. Then there is a partition I1, . . . , Ik of X such that |Ii| ≥ dd2e for every
i ∈ {1, . . . , k}. Clearly, I1, . . . , Ik are common independent sets of M1 and M2. Also we
have that ω(Ii 4 Ij) = ω(Ii) + ω(Ij) ≥ d for all distinct i, j ∈ {1, . . . , k} and every weight
function ω which assigns positive integral weights. This means that I1, . . . , Ik is a solution
for (M1,M2, ω, k, d); that is, (M1,M2, ω, k, d) is a yes-instance. J

Lemma 16 implies that we can assume that the maximum size of a common independent
set of the input matroids is bounded. We prove the following crucial lemma.

I Lemma 17. Let (M1,M2, ω, k, d) be an instance of Weighted Diverse Common In-
dependent Sets such that the maximum size of a common independent set of M1 and
M2 is at most s. Then there is a set F of common independent sets of M1 and M2, of size
|F| = 2O(s2 log(ks)) · d, such that if (M1,M2, ω, k, d) is a yes-instance of Weighted Diverse
Common Independent Sets then the instance has a solution I1, . . . , Ik with Ii ∈ F for
i ∈ {1, . . . , k}. Moreover, F can be constructed in 2O(s2 log(ks)) · d · |E|O(1) time where E is
the (common) ground set of M1 and M2.

Proof. Consider (M1,M2, ω, k, d). Let E = E(M1) = E(M2). It is convenient to assume
that the weights of the elements are bounded by d. For this, we set ω(e) := min{d, ω(e)}
for every e ∈ E. It is straightforward to see that by this operation we obtain an equivalent
instance of Weighted Diverse Common Independent Sets. Notice that for every
common independent set I of M1,M2, we now have ω(I) ≤ ds.

For every w ∈ {0, . . . , ds}, we use a recursive branching algorithm to construct a family
Fw of size 2O(s2 log(ks)) of common independent sets of M1 and M2 with the following
properties: (i) each set in Fw has weight at least w, and (ii) if S = {I1, . . . , Ik} is a solution
to the instance (M1,M2, ω, k, d) such that ω(Ii) = w for some i ∈ {1, . . . , k}, then there is
an I ′i ∈ Fw such that (S \ Ii) ∪ I ′i is also a solution to (M1,M2, ω, k, d).

The algorithm, denoted by A, takes as its input a common independent set X of M1 and
M2, and two matroids M ′1 and M ′2 such that M ′i = (Mi −W )/X for i = 1, 2 for some subset
W ⊆ E \X. For the very first call to A we set X := ∅ and M ′i = Mi for i = 1, 2 (thus we
implicitly set W := ∅). Algorithm A outputs at most ks common independent sets of M1
and M2 of the form X ∪ Y , where Y ⊆ E′ = E(M ′1) = E(M ′2) is a common independent set
of M ′1 and M ′2. Note that E′ = E \ (X ∪W ). Algorithm A performs the following steps.

Step 1. If ω(X) ≥ w, then output X and return.
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Step 2. Greedily compute at most ks disjoint common independent sets Y1, . . . , Y` of M ′1
and M ′2, each of weight at least w′ = w − ω(X), as follows.

(a) Set i = 1,Ys = {}.
(b) If |Ys| = (i− 1) = ks then set ` = (i− 1) and go to Step 3.
(c) Set M ′′h = M ′h − (

⋃
Yj∈Ys

Yj), for h = 1, 2.

(d) Find a common independent set Z of M ′′1 and M ′′2 of the maximum weight.
(e) If ω(Z) < w′, then set ` = (i − 1) and go to Step 3. Otherwise, set Yi = Z,Ys =

(Ys ∪ {Yi}) and i = i+ 1, and go to Step 2(b).
Step 3. At this point we have Ys = {Y1, . . . , Y`}.

If ` = 0 then return.
If ` = ks then output the sets X ∪ Y1, . . . , X ∪ Y` and return.
If neither of the above holds then:

Set R =
⋃

Yj∈Ys
Yj .

For each nonempty common independent set Z ⊆ R of M ′1 and M ′2, set W = R \ Z
and recursively invoke A(X ∪ Z, (M ′1 −W )/Z, (M ′2 −W )/Z).

This completes the description of A. To construct Fw, we call A(∅,M1,M2). Then
the set Fw includes all the sets output by A. Note that in every recursive step we call
A(X ∪Z, (M ′1−W )/Z, (M ′2−W )/Z) only if Z 6= ∅. So the size of the first argument (X ∪Z)
to a recursive call of A is strictly larger than the size of the first argument X of the parent
call to A. Moreover, since Z is a common independent set ofM ′1 andM ′2, we have that X ∪Z
is a common independent set of M1 and M2. Because the maximum size of the common
independent set of M1 and M2 is at most s, we obtain that the depth of the recursion is
bounded by s, that is, the algorithm is finite. We show the crucial property of Fw mentioned
above.

B Claim 18. If S = {I1, . . . , Ik} is a solution to the instance (M1,M2, ω, k, d) such that
ω(Ii) = w for some i ∈ {1, . . . , k}, then there is an I ′i ∈ Fw such that (S \ Ii) ∪ I ′i is also a
solution to (M1,M2, ω, k, d).

Proof. Fix a set Ii ∈ S ; ω(Ii) = w. Recall that an arbitrary invocation of A has the form
A(X, (M1 −W )/X, (M2 −W )/X) where X is a common independent set of M1,M2 and
W ⊆ (E \X). For the very first invocation of A these sets are X = ∅,W = ∅, and these sets
trivially satisfy the viability condition (X ∪W ) ∩ Ii = X; that is: Ii contains all of X,
and none of W . We show that any invocation of A whose arguments satisfy the viability
condition either outputs a set I ′i that can be used to replace Ii in S, or makes at least
one recursive call to A such that the arguments to this recursive call satisfy the viability
condition. Since the size of the first argument (X ∪ Z) to a recursive call of A is strictly
larger than the size of the first argument X of the parent call to A, we get that some call to
A will output a set I ′i with the desired property.

Assume inductively that A(X,M ′1 = (M1 −W )/X,M ′2 = (M2 −W )/X) is an invocation
of A whose arguments satisfy the viability condition. If ω(X) ≥ w, then X = Ii, because
ω(Ii) = w. In this case, the algorithm outputs X = Ii in Step 1. Clearly, we can set I ′i = Ii,
and we are done. So let us assume that this is not the case, and that ω(X) < w. In this case
X ( Ii holds and the algorithm goes to Step 2.

Let E′ = E \ (X ∪W ) be the common ground set of M ′1 and M ′2. Let Y = (Ii \X) and
w′ = ω(Y ) = w − ω(X). Then since Y is a common independent set of M ′1 and M ′2, the
greedy computation of Step 2 produces a nonempty family Y1, . . . , Y` of disjoint common
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independent sets of M ′1 and M ′2 of weight at least w′ each. Note that X ∪ Y1, . . . , X ∪ Y` are
common independent sets of M1 and M2. We consider two cases depending on the value of `
in Step 3. Note that by the above reasoning the case ` = 0 does not arise here.

Case 1. ` = ks. In this case the algorithm outputs the sets X ∪ Y1, . . . , X ∪ Y` where
(X ∩ Yi) = ∅ holds for all i ∈ {1, . . . , `}. Recall that every common independent set of
M1 and M2 has size at most s. Therefore, the set J =

⋃
j∈{1,...,k}, j 6=i Ij has size at most

(k − 1)s < `. Hence, by the pigeonhole principle, there is an h ∈ {1, . . . , `} such that
Yh ∩ Ij = ∅ holds for all j ∈ {1, . . . , k} ; j 6= i.
Let I ′i := X ∪ Yh. Then I ′i is a common independent set of M1 and M2 and ω(I ′i) =
ω(X) + ω(Yh) ≥ ω(X) + w′ = ω(X) + ω(Ii \ X) = ω(Ii), where the last equation
follows from the fact that X ⊆ Ii holds. From this chain of relations we also get that
ω(Ii \ X) ≤ ω(Yh) holds. Consider an arbitrary index j ∈ {1, . . . , k} ; j 6= i. Then
ω(Ii 4 Ij) = ω(Ij \ Ii) + ω(Ii \ Ij) ≤ ω(Ij \X) + ω(Ii \ Ij) = ω(Ij \X) + ω(X \ Ij) +
ω((Ii \X) \ Ij) ≤ ω(Ij 4X) + ω(Ii \X) ≤ ω(Ij 4X) + ω(Yh). But since I ′i = X ∪ Yh,
(X ∩ Yh) = ∅ and (Ij ∩ Yh) = ∅ we get that ω(Ij 4 Ii′) = ω(Ij 4X) + ω(Yh) holds. Thus
ω(Ij 4 Ii′) ≥ ω(Ii 4 Ij), and so replacing Ii by I ′i in the solution S indeed gives us a
solution to the instance (M1,M2, ω, k, d).

Case 2. 0 < ` < ks. In this case we set R :=
⋃`
i=1 Yi. From the construction we get that the

matroidsM ′1−R andM ′2−R have no common independent set of weight at least w′. Since
(I1 \X)\R is such a common independent set we have that ω((I1 \X)\R) < w′, and since
ω(Ii \X) = w′ we get that Z = (Ii \X) ∩R 6= ∅. Clearly, Z is a common independent
set of M ′1 and M ′2. Our algorithm considers all such sets. Hence there is a recursive call
A(X ′, (M ′1 −W )/Z, (M ′2 −W )/Z) where Z = ((Ii \X) ∩ R), X ′ = X ∪ Z,W = R \ Z.
By the choice of Z and W we get that (X ′ ∪W ) ∩ Ii = X ′, so that this recursive call
satisfies the viability condition. Moreover, we have that |X ′| > |X|. This completes the
second case and the proof of the claim. J

We already observed that the algorithm A is finite. Now we evaluate its running time
and the size of Fw.

B Claim 19. The set Fw has size 2O(s2 log(ks)) and can be constructed in 2O(s2 log(ks)) · |E|O(1)

time.

Proof. To give an upper bound on the size of Fw, observe that in each recursive call, the
algorithm A either outputs some sets, or performs some recursive calls, or simply returns
without outputting anything. Notice that in Step 1, A can output at most one set, and
A may output ks sets in Step 3. The number of recursive calls is upper bounded by the
number of nonempty common independent sets Z ⊆ R of M ′1 and M ′2. Since ` < ks and
|Yi| ≤ s for i ∈ {1, . . . , `}, |R| ≤ ks2. Because for each Z, |Z| ≤ s, the branching factor is at
most (ks2)s = 2O(s log(ks)). Since the depth of the recursion is at most s, the search tree has
2O(s2 log(ks)) leaves. This implies that the size of Fw is 2O(s2 log(ks)).

To evaluate the running time, note that in Step 2, the algorithm greedily constructs the
sets Y1, . . . , Y` that are common independent sets of M ′1 and M ′2. By Proposition 8, this can
be done in polynomial time, because in each iteration we find a common independent set of
maximum weight. Because the search tree has 2O(s2 log(ks)) leaves, the total running time is
2O(s2 log(ks)) · |E|O(1). C

We construct F =
⋃ds
w=0 Fw. By Claim 19, |F| ≤ (ds + 1) maxw∈{0,...,ds} |Fw| =

2O(s2 log(ks))·d and F can be constructed in total 2O(s2 log(ks))·d·|E|O(1) time. Claim 18 implies
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that if (M1,M2, ω, k, d) is a yes-instance of Weighted Diverse Common Independent
Sets, then the instance has a solution I1, . . . , Ik with Ii ∈ F for i ∈ {1, . . . , n}. J

Combining Lemma 16 and Lemma 17, we obtain the main result of the section.

I Theorem 4. Weighted Diverse Common Independent Sets can be solved in
2O(k3d2 log(kd)) · |E|O(1) time.

Proof. Let (M1,M2, ω, k, d) be an instance of Weighted Diverse Common Independent
Sets. First, we use Proposition 8 to solve Matroid Intersection for M1 and M2 and
find a common independent set X of maximum size. If |X| ≥ kdd2e, then by Lemma 16, we
conclude that (M1,M2, ω, k, d) is a yes-instance. Assume that this is not the case. Then
the maximum size of a common independent set of M1 and M2 is s < kdd2e. We apply
Lemma 17 and construct the set F of size 2O((kd)2 log(kd)) in 2O((kd)2 log(kd)) · |E|O(1) time.
By this lemma, if (M1,M2, ω, k, d) is a yes-instance, it has a solution I1, . . . , Ik such that
Ii ∈ F for i ∈ {1, . . . , k}. Hence, to solve the problem we go over all k-tuples of the elements
of F , and for each k-tuple, we verify whether these common independent sets of M1 and M2
give a solution. Clearly, we have to consider 2O(k3d2 log(kd)) tuples. Hence, the total running
time is 2O(k3d2 log(kd)) · |E|O(1). J

6 Perfect Matchings

In this section we prove that Diverse Perfect Matchings is fixed parameter tractable
when parameterized by k and d. We need the following simple observations later in this
section.

I Observation 3. The cardinality of symmetric differences of perfect matchings in a graph
obeys the triangle inequality. That is, for a graph G and perfect matchings M1,M2,M3 in G,
|M1 4M2|+ |M2 4M3| ≥ |M1 4M3|.

Observation 3 follows from the fact that Hamming distance is a metric and hence obeys
triangular inequality.

I Observation 4. Let G be a graph and M1 and M2 be two perfect matchings in G. Then
|M1 4M2| = 2 · |M1 \M2| = 2 · |M2 \M1|.

For an undirected graph G, the Tutte matrix A of G over the field F2[X] is defined as
follows, where F2 is the Galois field on {0, 1} and X = {xe : e ∈ E(G)}. The rows and
columns of A are labeled with V (G) and for each e = {u, v} ∈ E(G), A[u, v] = A[v, u] = xe.
All other entries in the matrix are zeros. That is, for any pair of vertices u, v ∈ V (G), if
there is no edge between u and v, A[u, v] = 0. It is well known that det(A) 6= 0 if and only if
G has a perfect matching. As the characterstic of F2 is a 2, the determinant of A coincides
with the permanent of A. That is,

det(A) = perm(A) =
∑

σ∈SV (G)

Πv∈V (G)A[v, σ(v)]. (1)

Here, SV (G) is the set of all permutations of V (G). Let PM(G) be the set of perfect matchings
on G. Then, one can show that det(A) =

∑
M∈PM(G) Πe∈Mx

2
e.

Let Y be a set of variables disjoint from X. For each edge e, let L(e) ⊆ Y be a subset
of variables. Let A′ be the matrix obtained from A by replacing each entry of the form xe
with xe ·Πy∈L(e)y. Then,
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det(A′) = perm(A′) =
∑

σ∈SV (G)

Πv∈V (G)A′[v, σ(v)]

=
∑

σ∈SV (G)

Πv∈V (G)
(
A[v, σ(v)] ·Πy∈L({v,σ(v)})y

)
, (2)

where Πy∈L({v,σ(v)})y = 1 if {v, σ(v)} /∈ E(G) or L(e) = ∅.

I Lemma 20. Let G be an undirected graph and let X = {xe : e ∈ E(G)} and Y =
{y1, . . . , y`} be two sets of variables such that X ∩ Y = ∅. For each edge e ∈ E(G), we
are also given a subset L(e) ⊆ Y . Let A′ be the matrix defined as above. For any perfect
matching M , Πe∈Mx

2
eΠy∈L(e)y

2 is a monomial in det(A′). Moreover, for any monomial
m in det(A′), M ′ = {e : xe is a variable in m} is perfect a matching in G and for each
e ∈M ′, L(e) is a subset of variables in the monomial m.

Proof. A cycle-matching cover of G is a subset of edges F ⊆ E(G) such that V (F ) = V (G)
and each connected component of G[F ] is either a cycle or an edge. Each non-zero term in
the summation of (2), there is a cycle-matching cover defined as follows. Let σ ∈ SV (G) such
that Πv∈V (G)A[v, σ(v)] · Πy∈L({v,σ(v)})y is non-zero. Then, Πv∈V (G)A[v, σ(v)] is non-zero.
As G is a simple graph, A[v, v] = 0. Therefore, since Πv∈V (G)A[v, σ(v)] 6= 0, there is no
1-cycle in σ. Moreover any `-cycle in σ corresponds to a cycle in G and any 2-cycle in σ
corresponds to an edge in G, where the vertices covered in the cycle are the vertices present
the cycle of the permutation. That is, for each cycle (u1, u2, . . . , u` in σ, u1, u2, . . . , u`, u1 is a
cycle in G if ` > 1 and u1u2 is a matching edge if ` = 2. Therefore, there is a cycle-matching
cover corresponding to the non-zero term Πv∈V (G)A[v, σ(v)] ·Πy∈L({v,σ(v)})y.

Let F be a cycle-matching cover. Let {C1, . . . , Cr} be the set of cycles in G[F ] and
{e1, . . . , es} be the set of the edges in F \ (

⋃
iE(Ci)). Let F ′ =

⋃
i∈[r] E(Ci). For each cycle

C = u1, u2, . . . , u`, u1 in G[F ], where ` > 2 one can define two permutations σ1 and σ2 on
V (C) as follows: (u1, u2, . . . , u`) and (u1, u`, u`−1, . . . , u2). That is,

Πv∈V (C)A[v, σ1(v)] = Πv∈V (C)A[v, σ2(v)] = Πe∈E(C)
(
xe ·Πy∈L(e)y

)
.

This implies that there are 2r terms in (2) which are equal to
∑
e∈F\F ′

(
xe ·Πy∈L(e)y

)2 +∑
e∈F ′ Πe∈F ′

(
xe ·Πy∈L(e)y

)
(which we call the terms corresponding to F ). In other words

if F is a perfect matching then Πe∈F
(
xe ·Πy∈L(e)y

)2 is a unique term in (2), and if F is has
cycle then the terms corresponding to F will cancel each other, because the characteristic of
the F2[X ∪ Y ] is 2. Therefore, for any perfect matching M , Πe∈Mx

2
eΠy∈L(e)y

2 is a monomial
in det(A′).

As any non-zero term in (2) corresponds to a cycle-matching cover, and for any cycle match-
ing cover that contains at least one cycle all the terms corresponding to it cancels each other
we have the following. For any monomial m in det(A′), M ′ = {e : xe is a variable in m} is
perfect a matching in G. Also, from the construction of A′, it follows that for each e ∈M ′,
L(e) is subset of variables in m. J

We use the following two known results.

I Proposition 21 (Schwartz-Zippel Lemma [19, 23]). Let P (x1, . . . , xn) be a multivariate
polynomial of total degree at most d over a field F, and P is not identically zero. Let r1, . . . , rn
be the elements in F choses uniformly at random with repetition. Then Pr(P (r1, ..., rn) =
0) ≤ d

|F| .
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For a multivariate polynomial P and a monomial m, we let P (m) denote the coefficient
of m in P .

I Proposition 22 ([22]). Let P (x1, . . . , xn) be a polynomial over a field of characteristic
two, and T ⊆ [n] be a set of target indices. For a set I ⊆ [n], define P−I(x1, . . . , xn) =
P (y1, . . . , yn) where yi = 0 for i ∈ I and yi = xi otherwise. Define

Q(x1, . . . , xn) =
∑
I⊆T

P−I(x1, . . . , xn).

Then, for any monomial m such that t := Πi∈Txi divides m we have Q(m) = P (m), and for
every other monomial we have Q(m) = 0.

I Lemma 23. There is an algorithm that given an undirected graph G, perfect matchings
M1, . . . ,Mr, and a non-negative integer s, runs in time 2O(rs)nO(1), and outputs a perfect
matching M such that |M \Mi| ≥ s for all i ∈ {1, . . . , r} (if such a matching exists) with
probability at least 2

3e
−rs.

Proof. For each i ∈ {1, . . . , r}, we color each edge in E(G) \ Mi uniformly at random
using colors {ci,1, . . . , ci,s}. Now we label each edge with a subset of the variable set
Y = {yi,j : i ∈ [r], j ∈ [s]}. For each edge e, we label it with

L(e) = {yi,j : i ∈ [r] and e is colored with ci,j in the random coloring for i}.

Let A be the Tutte matrix of G over the field F2[X], where X = {xe : e ∈ E(G)}. Let A′ be
the matrix obtained from A by replacing each entry of the form xe with xe ·Πy∈L(e)y.

Suppose there is a matching M such that |M \Mi| ≥ s for all i ∈ {1, . . . , r}. Then, for
each i ∈ [r], let {ei,1, . . . , ei,s} ⊆ (M \Mi) be an arbitrary subset. We say that {ei,1, . . . , ei,s}
is colorful if the edges in {ei,1, . . . , ei,s} gets distinct colors from {ci,1, . . . , ci,s} in the random
coloring for i. Then for each i ∈ [r], the probability that {ei,1, . . . , ei,s} is colorful is
s!
ss ≥ e−s. For each q ∈ [r], let Eq be the even that {eq,1, . . . , eq,s} is colorful. As the
random coloring for i ∈ [r] is different from the random coloring for j ∈ [r] \ {i}, the
events Ei and Ej are independent. That is, E1, . . . , Er are independent events and hence
Pr[
⋂r
i=1 Ei] ≥ e−rs. Therefore, there is a monomial m in det(A′) with probability at least

e−rs such that M = {e ∈ E(G) : xe is a variable in m} and Y is a subset of variables in m.
Now, suppose there is a monomial m in det(A′) such that Y is a subset of variables in m.

Therefore, since for each i ∈ [r] only the edges in E(G)\Mi are colored and {yi,j : j ∈ [s]} ⊆
Y , we have that |M \Mi| ≥ s. Moreover, by Lemma 20, {e ∈ E(G) : xe is a variable in m}
is a perfect matching in G.

Thus, it is enough to check whether there exists a monomial m in det(A′) such that all
the variables in Y are present in m.

B Claim 24. There is an algorithm, that runs in time 2O(|Y |)nO(1) and it outputs the
following. If there is no monomial in det(A′) that contains Y , then the algorithm outputs
No. If there is a monomial in det(A′) that contains Y , then the algorithm outputs Z ⊆ X
with probability at least 2/3 such that there is a monomial m in det(A′) with variables in m
is exactly equal to Z ∪ Y .

Proof. Let {e1, . . . , em} = E(G). Let P (xe1 , . . . , xem
, y1,1, . . . , yr,s) = det(A′). For each

I ⊆ Y , we define P−I(xe1 , . . . , xem , y1,1, . . . , yr,s) = P (xe1 , . . . , xem , z1,1, . . . , zr,s), where for
all i ∈ [r] and j ∈ [s], zi,j = 0 if yi,j ∈ I and zi,j = yi,j otherwise. Let

Q = Q(xe1 , . . . , xem , y1,1, . . . , yr,s) =
∑
I⊆Y

P−I(xe1 , . . . , xem , y1,1, . . . , yr,s).
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By Proposition 22, the set of monomials in Q are the set of monomial is det(A′) that
contains Y . Our objective is to find out the variables in such a monomial if it exists. Towards
that we consider Q be a polynomial in a field extension F′ of F2 such that the number of
elements in the field F′ is at least t, which we fix later. From the construction of det(A′),
we know that the degree of det(A′) and Q is at most d = n+ 2rs. By Proposition 21, the
existence of a required monomial can be tested in polynomial time with failure probability
at most d

t . But, recall that we need to find out the variables in such a monomial. Towards
that we do the following. Notice that if Q is a polynomial identically zero, then our answer
is No. This can be checked using Proposition 21. Assume that Q is not identically zero.
Let Q1 = Q(0, xe2 , . . . , xem

, y1,1, . . . , yr,s). If Q1 is not identically equal to zero, then there
is a monomial satisfying the property mentioned in the statement of the claim is present
in Q1. Otherwise we know that every monomial with the required property contains the
variable xe1 . Again this can be checked using Proposition 21. So if Q1 is not identically zero,
then set Q = Q1. Next, we let Q2 = Q(xe1 , 0, xe2 , . . . , xem

, y1,1, . . . , yr,s). Again, Q2 is not
identically equal to zero, then there is a monomial satisfying the property mentioned in the
statement of the claim, is present in Q2. Otherwise we know that every monomial with the
required property contains the variable xe2 . By repeating this process at most m times, we
will be able to obtain all the variables present in the required monomial. Our algorithm will
succeed if all the m + 1 application of Proposition 21 do not fail. Thus, by union bound
the failure probability of is at most (m+ 1)dt . We set (m+ 1)dt = 1

3 and this implies that
t = (m+ 1)(n+ rs). Hence the success probability of our algorithm is at least 2

3 .
Towards the running time analysis, notice that the construction of the polynomial Q

takes time 2|Y |nO(1) and each application of Proposition 21 takes time polynomial in the
size of Q. This implies that the total running time is bounded by 2O(|Y |)nO(1). C

Now we run the algorithm in Claim 24, and get a subset Z ⊆ {xe : e ∈ E(G)} (if it
exists) such that there is a monomial m in det(A′) and the variables in m is exactly equal to
Z ∪ Y with probability at least 2/3. As the initial random coloring of edges succeeds with
probability at least e−rs, the success probability of out algorithm is at least 2

3e
−rs. If no

such monomial exists then the algorithm outputs No. By Lemma 20, M = {e : xe ∈ Z} is a
perfect matching and it is the required output. The running time of the algorithm follows
from Claim 24. This completes the proof of the lemma. J

I Lemma 25. There is an algorithm that given an undirected graph G, a perfect matching M ,
and non-negative integers r, d, s, runs in time 2O(r2s)nO(1), and outputs r perfect matchings
M?

1 , . . . ,M
?
r such that |M 4M?

i | ≤ s for all i ∈ {1, . . . , r} and |M?
i 4M?

j | ≥ d for all
distinct i, j ∈ [r] (if such matchings exist) with probability at least e−rs. If no such perfect
matchings exist, then the algorithm outputs No

Proof. Suppose there exist perfect matchings M1, . . . ,Mr such that |M 4 Mi| ≤ s for
all i ∈ {1, . . . , r} and |Mi 4 Mj | ≥ d for all distinct i, j ∈ [r]. Then we know that∑r
i=1 |M 4Mi| ≤ rs. Let Si = M 4Mi for all i ∈ [r]. Notice that, as M and Mi are

perfect matchings Si forms a collection of alternating cycles (i.e., edges in the cycles alternate
between M and Mi). Let S =

⋃r
i=1 Si.

We do a random coloring on the edges of G using rs colors. That is, we color each edge
of G uniformly at random with a color from {1, . . . , rs}. We say that the random coloring is
good if all the edges in S gets distinct colors. The probability that the random coloring is
good is e−rs.

Now on assume that the random coloring is good. For each i ∈ [r], let Ci be the set of
colors on the edges Si. Notice that |Ci| = |Si|.
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B Claim 26. For any two distinct integers i, j ∈ [r], |Ci 4 Cj | ≥ d.

Proof. We know that |Mi 4Mj | ≥ d. Let Ei = Mi \Mj and Ej = Mj \Mi. Notice that
|Ei|+ |Ej | ≥ d and Ei ∩ Ej = ∅.

Let Ei,1 = Ei ∩ M , Ei,2 = Ei \ Ej,1, Ej,1 = Ej ∩ M , and Ej,2 = Ej \ Ej,1. As
Ei,1 ⊆M \Mj and Ei,1 ⊆M ∩Mi, we have that Ei,1 ⊆ Sj \Si. Similarly Ej,1 ⊆ Si \Sj . As
Ei,2 ⊆Mi \ (Mj ∪M), we have that Ei,2 ⊆ Si \ Sj . Similarly, we have Ej,2 ⊆ Sj \ Si. That
is, we prove that Ei,1 ∪ Ej,2 ⊆ Sj \ Si and Ej,1 ∪ Ei,2 ⊆ Si \ Sj . Also, since all the edges in
S gets distinct colors and the colors on the edges in Si and Sj are Ci and Cj , respectively,
we have that |Ci 4 Cj | ≥ |Ei ∪ Ej | ≥ d. This completes the proof of the claim. C

Next we prove the reverse direction of the above claim.

B Claim 27. Let Q1 and Q2 be two collections of alternating cycles in G (i.e., the edges in
Qi are alternating between M and E(G) \M for each i ∈ {1, 2}) such that following hold:
|E(Q1)| = |C1|, |E(Q2)| = |C2|, the edges in E(Q1) uses distinct colors from C1, and the
edges in E(Q2) uses distinct colors from C2. Let P1 = E(Q1)4M and P2 = E(Q2)4M .
Then, P1 and P2 are perfect matchings and |P1 4 P2| ≥ d.

Proof. As M is a perfect matching and Q1 is a collection of alternating cycles, we have
that P1 = E(Q1)4M is a perfect matching. By similar arguments, we have that P2 is
a perfect matching. Now we prove that E(Q1) 4 E(Q2) ⊆ P1 4 P2. Consider an edge
e ∈ E(Q1) \ E(Q2). We have two cases based on whether e ∈ M or not. In the first case,
assume that e ∈ M . Since e ∈ E(Q1), e ∈ M , and P1 = E(Q1)4M , we have that e /∈ P1.
Also since e /∈ E(Q2), e ∈ M , and P2 = E(Q2) 4M , we have that e ∈ P2. Therefore,
e ∈ P1 4 P2.

For the second case, we have that e /∈M . Since e ∈ E(Q1), e /∈M , and P1 = E(Q1)4M ,
we have that e ∈ P1. Also, since e /∈ E(Q2) and e /∈ M , we have that e /∈ P2. Therefore,
e ∈ P1 4 P2.

By arguments, similar to above, one can prove that an edge e′ ∈ E(Q2) \ E(Q1) also
belongs to P14 P2. Thus, we proved that E(Q1)4E(Q2) ⊆ P14 P2. Since |E(Q1)| = |C1|,
|E(Q2)| = |C2|, the edges in E(Q1) uses distinct colors from C1, and the edges in E(Q2)
uses distinct colors from C2, we have that |E(Q1)4 E(Q2)| ≥ |C1 4 C2| ≥ d. Therefore,
|P1 4 P2| ≥ |E(Q1)4 E(Q2)| ≥ d. C

Thus, to prove the lemma, it is enough to find a collection Qi of alternating cycles such
that |E(Qi)| = |Ci|, the edges in E(Qi) uses distinct colors from Ci, for each i ∈ [r]. That is,
our algorithm guesses C1, . . . Cr and computes Q1, . . . , Qr. The cost of guessing C1, . . . , Cr
is 2r2s. Now, given Ci, to compute Qi with desired property (|E(Qi)| = |Ci|, the edges in
E(Qi) are colored with distinct colors from Ci), we design a simple dynamic programming
(DP) algorithm. We give a brief outline of this algorithm below. For each subset L ⊆ Ci
and pair of vertices u, v we have table entries D[L, u, v] and D[L,⊥,⊥] which stores the
following. If there is a collection Q of alternating cycles and an alternating path with u

and v as endpoints such that |E(Q)| = |L| and the edges in E(Q) are colored with distinct
colors from L, then we store one such collection in D[L, u, v]. Otherwise, we store ⊥ in
D[L, u, v]. If there is a collection Q′ of alternating cycles such that |E(Q′)| = |L| and the
edges in E(Q′) are colored with distinct colors from L, then we store one such collection
in D[L,⊥,⊥]. Otherwise, we store ⊥ in D[L,⊥,⊥]. We compute the DP table entries in
the increasing order of the size of L. The base case is when L = ∅. That is, D[∅,⊥,⊥] = ∅
and D[∅, u, v] = ⊥ for any two vertices u and v. Now, for any ∅ 6= L ⊆ Ci, and two distinct
vertices u, v ∈ V (G), we compute D[L, u, v] and D[L,⊥,⊥] as follows. If there is an edge
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(x, y) ∈ E(G) such that the color c of (x, y) belongs to L, and D[L \ {c}, x, y] = Q1 6= ⊥,
then we store the graph induced on E(Q1) ∪ {(x, y)} in D[L,⊥,⊥]. Otherwise we store ⊥ in
D[L,⊥,⊥]. Also, if there a vertex w adjacent to v such that the color c of (w, v) belongs to
L, and D[L \ {c}, u, w] = Q′1 6= ⊥, then we store the graph induced on E(Q′1) ∪ {(w, v)} in
D[L, u, v]. Otherwise we store ⊥ in D[L, u, v]. At the end we output D[Ci,⊥,⊥].

By using standard induction, one can prove that the computation of D[Ci,⊥,⊥] is correct
and the details is omitted here. As the number of table entries for D[., ., .] is upper bounded
by 2rs+1n2, the running time to compute Qi is 2rsnO(1). We have already mentioned that
the cost of guessing C1, . . . , Cr is 2r2s. Therefore, the total running time to compute the
required r perfect matchings is 2O(r2s)nO(1). J

Finally, we put together both the lemmas and prove the main theorem of the section.

I Theorem 6. There is an algorithm that given an instance of Diverse Perfect Match-
ings, runs in time 22O(kd)

nO(1) and outputs the following: If the input is a No-instance then
the algorithm outputs No. Otherwise the algorithm outputs Yes with probability at least
1− 1

e .

Proof. Let (G, k, d) be the input instance. Our algorithm A has two steps. In the first
step of A we compute a collection of matchings greedily such that they are far apart using
Lemma 23. Towards that first we run an algorithm to compute a maximum matching in G
and let M1 be the output. If M1 is not a perfect matching we output No and stop. Next
we iteratively apply Lemma 23 to compute a collection of perfect matchings that are far
apart. Formally, at the beginning of step i, where ≤ 1 ≤ i < k, we have perfect matchings
M1, . . . ,Mi such that |Mj \Mj′ | ≥ 2k−id for any two distinct j, j′ ∈ {1, . . . , i}. Now, we
apply Lemma 23 with r = i and s = 2k−i−1d and it will either output a matching Mi+1 such
that |Mi+1 \Mj | ≥ 2k−i−1d for all j ∈ {1, . . . , i}, or not. If no such matching exists, then
the first step of the algorithm A is complete. So at the end of the first step of the algorithm
A, we have perfect matchings M1, . . . ,Mq, where q ∈ {1, . . . , k} such that
(i) for any two distinct integers i, j ∈ {1, . . . , q}, |Mi \Mj | ≥ 2k−qd, and
(ii) if q 6= k, then for any other perfect matching M /∈ {M1, . . . ,Mq}, |M \Mj | ≤ 2k−q−1d.

If q = k, then {M1, . . . ,Mk} is a solution to the instance (G, k, d), and hence our algorithm
A outputs Yes. Now on, we assume that q ∈ {1, . . . , k − 1}. Statements (i) and (ii), and
Observation 4 imply that

(iii) for any two distinct integers i, j ∈ {1, . . . , q}, |Mi 4Mj | ≥ 2k−q+1d, and
(iv) for any perfect matching M /∈ {M1, . . . ,Mq}, |M 4Mj | < 2k−qd.

Statements (ii) and (iv), and Observation 3 imply the following claim.

B Claim 28. For any perfect matching M , there exists a unique i ∈ {1, . . . , q} such that
|M 4Mi| < 2k−qd.

LetM = {M?
1 , . . . ,M

?
k} is a solution to the instance (G, k, d). Then, by Claim 28, there

is a partition ofM intoM1 ] . . . ]Mq (with some blocks possibly being empty) such that
for each i ∈ {1, . . . , q}, and each M ∈ Mi, |M 4Mi| ≤ 2k−qd. Thus, in the second step
of our algorithm A, we guess r1 = |M1|, . . . , rq = |Mq| and apply Lemma 25. That is,
for each i ∈ {1, . . . , q} such that ri 6= 0, we apply Lemma 25 with M = Mi, r = ri, and
s = 2k−qd. Then for each i ∈ 1, . . . , q, let the output of Lemma 25 be Ni,1, . . . , Nri . Clearly
|Ni,j 4Ni,j′ | ≥ d for any two distinct j, j′ ∈ {1, . . . , ri}. Observation 3 and statement (iii)
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implies that for any two distinct i, j ∈ {1, . . . , q}, the cardinality of the symmetric difference
between a matching in {Ni,1, . . . , Ni,ri

} and a matching in {Nj,1,...,Nj,rj
} is at least d.

If algorithm A computes a solution in any of the guesses for r1, . . . , rd, then we output
Yes. Otherwise we output No. As the number of choices for r1, . . . rk is upper bounded
by kO(k), from Lemmas 23 and 25 we get that the running time of A is 22O(kd)

nO(1) and
the success probability is at least 2−2ckd for some constant c. To get success probability
1 − 1/e, we do 22ckd many executions of A and output Yes if we succeed in at least one
of the iterations and output No otherwise. Thus, running time of the overall algorithm is
22O(kd)

nO(1). J

7 Conclusion

We took up weighted diverse variants of two classical matroid problems and the unweighted
diverse variant of a classical graph problem. We showed that the two diverse matroid
problems are NP-hard, and that the diverse graph problem cannot be solved in polynomial
time even for the smallest sensible measure of diversity. We then showed that all three
problems are FPT with the combined parameter (k, d) where k is the number of solutions
and d is the diversity measure.

We conclude with a list of open questions:
We showed that the unweighted, counting variant of Weighted Diverse Bases does
not have a polynomial-time algorithm unless P = NP (Theorem 7). This is the case when
all the weights are 1 and d = 1 or d = 2. Both the weighted and unweighted variants can
be solved in polynomial time when k = 1 (the greedy algorithm) and k = 2 ((weighted)
matroid intersection). What happens for larger, constant values of d and/or k? Till what
values of d, k does the problem remain solvable in polynomial time? These questions are
interesting also for special types of matroids. For instance, is there a polynomial-time
algorithm that checks if an input graph has three spanning trees whose edge sets have
pairwise symmetric difference at least d, or is this already NP-hard?
A potentially easier question along the same vein would be: we know from Theorem 7
that Weighted Diverse Bases is unlikely to have an FPT algorithm parameterized by
d alone. Is Weighted Diverse Bases FPT parameterized by k alone?
Unlike for the other two problems, we don’t have hardness results for Weighted Diverse
Common Independent Sets for small values of k or d. Is Weighted Diverse Common
Independent Sets FPT when parameterized by either d or k? Is this problem in P
when all the weights are 1?
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