
Randomized Composable Coresets for Matching and Vertex
Cover

Sepehr Assadi

Department of Computer and Information Sciences

University of Pennsylvania

Philadelphia, PA, USA

Sanjeev Khanna

Department of Computer and Information Sciences

University of Pennsylvania

Philadelphia, PA, USA

ABSTRACT
A common approach for designing scalable algorithms for mas-

sive data sets is to distribute the computation across, say k , ma-

chines and process the data using limited communication between

them. A particularly appealing framework here is the simultaneous

communication model whereby each machine constructs a small

representative summary of its own data and one obtains an approxi-

mate/exact solution from the union of the representative summaries.

If the representative summaries needed for a problem are small,

then this results in a communication-efficient and round-optimal (re-
quiring essentially no interaction between the machines) protocol.

Some well-known examples of techniques for creating summaries

include sampling, linear sketching, and composable coresets. These

techniques have been successfully used to design communication

efficient solutions for many fundamental graph problems. However,

two prominent problems are notably absent from the list of suc-

cesses, namely, the maximum matching problem and the minimum
vertex cover problem. Indeed, it was shown recently that for both

these problems, even achieving a modest approximation factor of

polylog(n) requires using representative summaries of size Ω̃(n2)
i.e. essentially no better summary exists than each machine simply

sending its entire input graph.

The main insight of our work is that the intractability of match-

ing and vertex cover in the simultaneous communication model is

inherently connected to an adversarial partitioning of the under-

lying graph across machines. We show that when the underlying

graph is randomly partitioned across machines, both these prob-

lems admit randomized composable coresets of size Õ (n) that yield an

Õ (1)-approximate solution
1
. In other words, a small subgraph of the

input graph at each machine can be identified as its representative

summary and the final answer then is obtained by simply running

any maximum matching or minimum vertex cover algorithm on

these combined subgraphs. This results in an Õ (1)-approximation

1
Here and throughout the paper, we use Õ (·) notation to suppress polylog(n) factors,
where n is the number of vertices in the graph.

Supported in part by National Science Foundation grants CCF-1552909, CCF-1617851,

and IIS-1447470.

A full version of this paper is available as an online preprint at [9].

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SPAA ’17, July 24-26, 2017, Washington DC, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-4593-4/17/07. . . $15.00

https://doi.org/10.1145/3087556.3087581

simultaneous protocol for these problems with Õ (nk) total commu-

nication when the input is randomly partitioned across k machines.

We also prove our results are optimal in a very strong sense: we not

only rule out existence of smaller randomized composable coresets

for these problems but in fact show that our Õ (nk) bound for total

communication is optimal for any simultaneous communication

protocol (i.e. not only for randomized coresets) for these two prob-

lems. Finally, by a standard application of composable coresets, our

results also imply MapReduce algorithms with the same approxima-

tion guarantee in one or two rounds of communication, improving

the previous best known round complexity for these problems.

1 INTRODUCTION
Recent years have witnessed tremendous algorithmic advances for

efficient processing of massive data sets. A common approach for

designing scalable algorithms for massive data sets is to distribute

the computation across machines that are interconnected via a com-

munication network. These machines can then jointly compute a

function on the union of their inputs by exchanging messages. Two

main measures of efficiency in this setting are the communication
cost and the round complexity; we shall formally define these terms

in details later in the paper but for the purpose of this section, com-

munication cost measures the total number of bits exchanged by

all machines and round complexity measures the number of rounds

of interaction between them.

An important and widely studied framework here is the simul-
taneous communication model whereby each machine constructs

a small representative summary of its own data and one obtains a

solution for the desired problem from the union of the representa-

tive summary of combined pieces. The appeal of this framework

lies in the simple fact that the simultaneous protocols are inherently
round-optimal; they perform in only one round of interaction. The

only measure that remains to be optimized is the communication

cost – this is now determined by the size of the summary created by

each machine. An understanding of the communication cost for a

problem in the simultaneous model turns out to have value in other

models of computation as well. For instance, a lower bound on the

maximum communication needed by any machine implies a match-

ing lower bound on the space complexity of the same problem in

dynamic streams [7, 45].

Two particularly successful techniques for designing small sum-

maries for simultaneous protocols are linear sketches and compos-
able coresets. Linear sketching technique corresponds to taking a lin-
ear projection of the input data as its representative summary. The

“linearity” of the sketches is then used to obtain a sketch of the com-

bined pieces from which the final solution can be extracted. There

has been a considerable amount of work in designing linear sketches

https://doi.org/10.1145/3087556.3087581

for graph problems in recent years [5, 6, 11, 17, 18, 20, 38, 39, 48].

Coresets are subgraphs (in general, subsets of the input) that suit-

ably preserve properties of a given graph, and they are said to be

composable if the union of coresets for a collection of graphs yields

a coreset for the union of the graphs. Composable coresets have

also been studied extensively recently [12, 13, 15, 34, 50, 51], and

indeed several graph problems admit natural composable coresets;

for instance, connectivity, cut sparsifiers, and spanners (see [47],

Section 2.2; the “merge and reduce” approach). Successful appli-

cations of these two techniques has yielded Õ (n) size summaries

for many graph problems (see further related work in Section 1.3).

However, two prominent problems are notably absent from the

list of successes, namely, the maximum matching problem and the

minimum vertex cover problem. Indeed, it was shown recently [11]

that both matching and vertex cover require summaries of size

n2−o (1) for even computing a polylog(n)-approximate solution
2
.

This state-of-affairs is the starting point for our work, namely,

intractability of matching and vertex cover in the simultaneous

communication model. Our main insight is that a natural data
oblivious partitioning scheme completely alters this landscape: both

problems admit Õ (1)-approximate composable coresets of size Õ (n)
provided the edges of the graph are randomly partitioned across

the machines. The idea that random partitioning of data can help in

distributed computation was nicely illustrated in the recent work

of [50] on maximizing submodular functions. Our work can be seen

as the first illustration of this idea in the domain of graph algorithms.

The applicability of this idea to graph theoretic problems has been

cast as an open problem in [50].

Randomized Composable Coresets. We follow the notation of [50]

with a slight modification to adapt to our application in graphs.

Let E be an edge-set of a graph G (V ,E); we say that a partition{
E (1) , . . . ,E (k)

}
of the edges E is a random k-partitioning iff the

sets are constructed by assigning each edge in E independently to

a set E (i) chosen uniformly at random. A random partitioning of

the edges naturally defines partitioning the graph G (V ,E) into k

graphs G (1) , . . . ,G (k)
whereby G (i)

:= G (V ,E (i)) for any i ∈ [k],
and hence we use random partitioning for both the edge-set and

the input graph interchangeably.

Definition (Randomized Composable Coresets [50]). For a
graph-theoretic problem P , consider an algorithm ALG that given
any graph G (V ,E), outputs a subgraph ALG(G) ⊆ G with at most s
edges. LetG (1) , . . . ,G (k) be a randomk-partitioning of a graphG . We
say that ALG outputs an α-approximation randomized composable

core-set of size s for P if P
(
ALG(G (1)) ∪ . . . ∪ ALG(G (k))

)
is an α -

approximation for P (G) w.h.p., where the probability is taken over the
random choice of the k-partitioning. For brevity, we use randomized
coresets to refer to randomized composable coresets.

We further augment this definition by allowing the coresets

to also contain a fixed solution to be directly added to the final

solution of the composed coresets. In this case, size of the coreset is

measured both in the number of edges in the output subgraph plus

2
The authors in [11] only showed the inapproximability result for the matching

problem. However, a simple modification of their result proves an identical lower

bound for the vertex cover problem as well.

the number of vertices and edges picked by the fixed solution (this

is mostly relevant for our coreset for the vertex cover problem).

1.1 Our Results
We show existence of randomized composable coresets formatching

and vertex cover.

Result 1. There exist randomized coresets of size Õ (n) that
w.h.p. give anO (1)-approximation for maximummatching, and
an O (logn)-approximation for minimum vertex cover.

Result 1 is formalized in Section 3. In contrast to Result 1, when

the graph is adversarially partitioned, the results of [11] show that

the best approximation ratio conceivable for these problems in

Õ (n) space is only Θ(n1/3). We further remark that Result 1 can

also be extended to the weighted version of the problems. Using

the Crouch-Stubbs technique [22] one can extend our result to

achieve a coreset for weighted matching (with a factor 2 loss in

approximation and extra O (logn) term in the space). Similar ideas

of “grouping by weight” of edges can also be used to extend our

coreset for weighted vertex cover with an O (logn) factor loss in
approximation and space.

The Õ (n) space bound achieved by our coresets above is con-

sidered a “sweet spot” for graph streaming algorithms [28, 52] as

many fundamental problems are provably intractable in o(n) space
(sometimes not enough to even store the answer) while admit effi-

cient solutions in Õ (n) space. However, in the simultaneous model,

these considerations imply only that the total size of all k coresets

must be Ω(n), leaving open the possibility that coreset output by

each machine may be as small as Õ (n/k) in size (similar in spirit

to coresets of [50]). Our next result rules out this possibility and

proves the optimality of our coresets size.

Result 2. Any α -approximation randomized coreset for the
maximum matching problem must have size Ω(n/α2), and any
α-approximation randomized coreset for the vertex cover prob-
lem must have size Ω(n/α).

Result 2 is formalized in Section 4. We now elaborate on some

applications of our results.

Distributed Computation. We use the following distributed com-

putation model in this paper, referred to as the coordinator model
(see [59]). The input is distributed across k machines. There is also

an additional party called the coordinator who receives no input.

The machines are allowed to only communicate with the coordi-

nator, not with each other. A protocol in this model is called a

simultaneous protocol iff the machines simultaneously send a mes-

sage to the coordinator and the coordinator then outputs the answer

with no further interaction. Communication cost of a protocol in
this model is the total number of bits communicated by all parties.

Result 1 can also be used to design simultaneous protocols for

matching and vertex cover with Õ (nk) total communication and

the same approximation guarantee stated in Result 1 in the case

the input is partitioned randomly across k machines. Indeed, each

machine only needs to compute a coreset of its input, sends it

to the coordinator, and coordinator computes an exact maximum

matching or a 2-approximate minimum vertex cover on the union

of the coresets. We further prove that the communication cost of

theses protocols are essentially optimal.

Result 3. Any α-approximation simultaneous protocol for
the maximum matching problem, resp. the vertex cover problem,
requires total communication of Ω(nk/α2) bits, resp. Ω(nk/α)
bits, even when the input is partitioned randomly across the
machines.

Proof of Result 3 is deferred to the full version of the paper [9].

We point out that Result 3 is in fact a strengthening of Result 2;

it rules out any representative summary (not necessarily a ran-

domized coreset) of size o(n/α2) (resp. o(n/α)) that can be used for

α-approximation of matching (resp. vertex cover) when the input

is partitioned randomly.

For the matching problem, it was shown previously in [33] that

when the input is adversarially partitioned in the coordinator model,

any protocol (not necessarily simultaneous) requires Ω(nk/α2) bits
of communication to achieve an α-approximation of the maximum

matching. Result 3 extends this to the case of randomly partitioned
inputs albeit only for simultaneous protocols.

MapReduce Framework. We show how to use our randomized

coresets to obtain improved MapReduce algorithms for matching

and vertex cover in the MapReduce computation model formally

introduced in [40, 44]. Let k =
√
n be the number of machines, each

with a memory of Õ (n
√
n); we show that two rounds of MapReduce

suffice to obtain anO (1)-approximation for matching andO (logn)-
approximation for vertex cover. In the first round, each machine

randomly partitions the edges assigned to it across the k machines;

this results in a random k-partitioning of the graph across the

machines. In the second round, each machine sends a randomized

composable coreset of its input to a designated central machine

M ; as there are k =
√
n machines and each machine is sending

Õ (n) size coreset, the input received by M is of size Õ (n
√
n) and

hence can be stored entirely on that machine. Finally,M computes

the answer by combining the coresets (similar to the case in the

coordinator model). Note that if the input was distributed randomly

in the first place, we could have implemented this algorithm in

only one round of MapReduce (see [50] for details on when this

assumption applies).

Our MapReduce algorithm outperforms the previous algorithms

of [44] for matching and vertex cover in terms of the number of

rounds it uses, albeit with a larger approximation guarantee. In

particular, [44] achieved a 2-approximation to both matching and

vertex cover in 6 rounds of MapReduce when using similar space

as ours on each machine (the number of rounds of this algorithm is

always at least 3 even if we allow Õ (n5/3) space per each machine).

The improvement on the number of rounds is significant in this

context; the transition between different rounds in a MapReduce

computation is usually the dominant cost of the computation [44]

and hence, minimizing the number of rounds is an important goal

in the MapReduce framework.

1.2 Our Techniques
Randomized Coreset for Matching. Greedy and Local search algo-

rithms are the typical choices for composable coresets (see, e.g., [34,

50]). It is then natural to consider the greedy algorithm for the

maximum matching problem as a randomized coreset: the one that

computes a maximal matching. However, one can easily show that

this choice of coreset performs poorly in general; there are simple

instances in which choosing arbitrary maximal matching in the

graph G (i)
results only in an Ω(k)-approximation.

Somewhat surprisingly, we show that a simple change in strategy

results in an efficient randomized coreset: any maximum matching
of the graph G (i)

can be used as an O (1)-approximate random-

ized coreset for the maximum matching problem. Unlike the previ-

ous work in [34, 50] that relied on analyzing a specific algorithm

(or a specific family of algorithms) for constructing a coreset, we

prove this result by exploiting structural properties of the max-

imum matching (i.e., the optimal solution) directly, independent

of the algorithm that computes it. As a consequence, our coreset

construction requires no prior coordination (such as consistent tie-

breaking rules used in [50]) between the machines and in fact each

machine can use a different algorithm for computing the maximum

matching required by the coreset.

Randomized Coreset for Vertex Cover. In the light of our coreset

for the matching problem, one might wonder whether a minimum

vertex cover of a graph can also be used as its randomized coreset.

However, it is easy to show that the answer is negative here – there

are simple instances (e.g., a star on k vertices) on which this leads

to an Ω(k) approximation ratio. Indeed, the feasibility constraint
in the vertex cover problem depends heavily on the input graph

as a whole and not only the coreset computed by each machine,

unlike the case for matching and in fact most problems that admit

a composable coreset [13, 34, 50]. This suggests the necessity of

using edges in the coreset to certify the feasibility of the answer. On

the other hand, only sending edges seems too restrictive: a vertex

of degree n − 1 can safely be assumed to be in an optimal vertex

cover, but to certify this, one needs to essentially communicate

Ω(n) edges. This naturally motivates a slightly more general notion

of coresets – the coreset contains both subsets of vertices (to be

always included in the final vertex cover) and edges (to guide the

choice of additional vertices in the vertex cover).

To obtain a randomized coreset for vertex cover, we employ an

iterative “peeling” process where we remove the vertices with the

highest residual degree in each iteration (and add them to the final

vertex cover) and continue until the residual graph is sufficiently

sparse, in which case we can return this subgraph as the coreset.

The process itself is a modification of the algorithm by Parnas and

Ron [57]; we point out that other modifications of this algorithm has

also been used previously for matching and vertex cover [16, 36, 56].

However, to employ this algorithm as a coreset we need to argue

that the set of vertices peeled across different machines is not too

large as these vertices are added directly to the final vertex cover.

The intuition behind this is that random partitioning of edges in

the graph should result in vertices to have essentially the same

degree across the machines and hence each machine should peel

the same set of vertices in each iteration. But this intuition runs into

a technical difficulty: the peeling process is quite sensitive to the

exact degree of vertices and even slight changes in degree results

in moving vertices between different iterations that potentially

leads to a cascading effect. To address this, we design a hypothetical
peeling process (which is aware of the actual minimum vertex

cover in G) and show that the our actual peeling process is in fact

“sandwiched” between two application of this peeling process with

different degree threshold for peeling vertices. We then use this

to argue that the set of all vertices peeled across the machines are

always contained in the solution of the hypothetical peeling process

which in turn can be shown to be a relatively small set.

Lower Bounds for Randomized Coresets. Our lower bound results

for randomized coresets for matching are based on the following

simple distribution: the input graph consists of union of two bi-

partite graphs, one of which is a random k-regular graph G1 with

n/2α vertices on each side while the other graph G2 is a perfect

matching of size n − n/2α . Thus the input graph almost certainly

contains a matching of size n − o(n) and any α-approximate solu-

tion must collect Ω(n/α) edges from G2 overall i.e. Ω(n/αk) edges
fromG2 from each machine on average. After random partitioning,

the input given to each machine is essentially a matching of size

n/2α from G1 and a matching of size roughly n/k from G2. The

local information at each machine is not sufficient to differentiate

between edges of G1 and G2, and thus any coreset that aims to

include Ω(n/αk) edges from G2, can not reduce the input size by

more than a factor of α . Somewhat similar ideas can also be shown

to work for the vertex cover problem.

Communication Complexity Lower Bounds. We briefly highlight

the ideas used in obtaining the lower bounds described in Result 3.

We will focus on the vertex cover problem to describe our tech-

niques. Our lower bound result is based on analyzing (a variant of)

the following distribution: the input graph G (L,R,E) consists of
a bipartite graph G1 plus a single edge e

⋆
. G1 is a graph on n/2α

vertices L1 ⊆ L, each connected to k random neighbors in R, and
e⋆ is an edge chosen uniformly at random between L \ L1 and R.
This wayG admits a minimum vertex cover of size at most n/2α +1.
However, when this graph is randomly partitioned, the input to

each machine is essentially a matching of size n/2α chosen from the

graph G1 with possibly one more edge e⋆ (in exactly one machine

chosen uniformly at random). The local information at the machine

receiving the edge e⋆ is not sufficient to differentiate between the

edges of G1 and e
⋆
and thus if the message sent by this machine

is much smaller than its input size (i.e., o(n/α) bits), it most likely

does not “convey enough information” to the coordinator about the

identity of e⋆. This in turn forces the coordinator to use more than

n/2 vertices in order to cover e⋆, resulting in an approximation

factor larger than α .
Making this intuition precise is complicated by the fact that

the input across the players are highly correlated, and hence the

message sent by one player, can also reveal extra information about

the input of another (e.g. a relatively small communication from

the players is enough for the coordinator to know the identity

of entire L1). To overcome this, we show that by conditioning on

proper parts of the input, we can limit the correlation in the input of

players and then use the symmetrization technique of [59] to reduce
the simultaneous k-player vertex cover problem to a one-way two-

player problem named the hidden vertex problem (HVP). Loosely
speaking, in HVP, Alice and Bob are given two sets S,T ⊆ [n], each
of sizen/α , with the promise that |S \T | = 1 and their goal is to find

a set C of size o(n) which contains the single element in S \T . We

prove a lower bound of Ω(n/α) bits for this problem using a subtle

reduction from the well-known set disjointness problem. In this

reduction, Alice and Bob use the protocol for HVP on “non-legal”

instances (i.e., the ones for whichHVP is not well-defined) to reduce

the original disjointness instance between sets A,B on a universe

[N] to a lopsided disjointness instance (A,B′) whereby ��B′�� = o(N),
and then solve this new instance in o(N) communication (using the

Håstad-Wigderson protocol [32]), contradicting the Ω(N) lower
bound on the communication complexity of disjointness.

The lower bound for the matching problem is also proven along

similar lines (over the hard distribution mentioned earlier for this

problem) using a careful combinatorial argument instead of the

reduction from the disjointness problem.

1.3 Further Related Work
Maximum matching and minimum vertex cover are among the

most studied problems in the context of massive graphs including,

in dynamic graphs [14, 53, 56, 60], sub-linear algorithms [31, 54, 55,

57, 62], streaming algorithms [3–6, 10, 11, 20–22, 24–30, 35, 36, 41,

42, 46, 47, 49, 58], MapReduce computation [5, 44], and different

distributed computation models [8, 23, 30, 33]. Most relevant to

our work are the linear sketches of [20] for computing an exact
minimum vertex cover or maximum matching in O (opt2) space
(opt is the size of the solution), and linear sketches of [11, 20] for

α-approximating maximum matching in Õ (n2/α3) space. These
results are proven to be tight by [21], and [11], respectively. Fi-

nally, [11] also studied the simultaneous communication complex-

ity of bipartite matching in the vertex-partition model and proved

that obtaining better than an O (
√
k)-approximation in this model

requires strictly more than Õ (n) communication from each player.

Coresets, composable coresets, and randomized composable core-

sets are respectively introduced in [2], [34], and [50]. Composable

coresets have been used previously in the context of nearest neigh-

bor search [1], diversity maximization [34], clustering [13, 15],

and submodular maximization [12, 34, 50]. Moreover, while not

particularly termed a composable coreset, the “merge and reduce”

technique in the graph streaming literature (see [47], Section 2.2)

is identical to composable coresets. Similar ideas as randomized

coreset for optimization problems has also been used in random ar-

rival streams [36, 42]. Moreover, communication complexity lower

bounds have also been studied previously under the random parti-

tioning of the input [19, 37].

2 PRELIMINARIES
Notation. For any integerm, [m] := {1, . . . ,m}. LetG (V ,E) be a

graph;MM(G) denotes themaximummatching size inG andVC(G)
denotes the minimum vertex cover size. We assume that these

quantities are ω (k logn)3. For a set S ⊆ V and v ∈ V , NS (v) ⊆ S
denotes the neighbors of v in the set S . For an edge set E ′ ⊆ E, we
use V (E ′) to refer to vertices incident on E ′.

Communication Complexity. We prove our lower bounds for dis-

tributed protocols using the framework of communication com-

plexity, and in particular in the multi-party simultaneous commu-
nication model and the two-player one-way communication model
(see, e.g., [43]).

3
Otherwise, we can use the algorithm of [20] to obtain exact coresets of size Õ (k2) as
mentioned in Section 1.3.

Formally, in the multi-party simultaneous communication model,

the input is partitioned across k players P (1) , . . . , P (k) . All players
have access to an infinite shared string of random bits, referred to

as public randomness (or public coins). The goal is for the players to
compute a specific function of the input by simultaneously sending

a message to a central party called the coordinator (or the referee).

The coordinator then needs to output the answer using the mes-

sages received by the players. We refer to the case when the input

is partitioned randomly as the random partition model.

In the two-player one-way communication model, the input is

partitioned across two players, namely Alice and Bob. The players

again have access to public randomness, and the goal is for Alice to

send a single message to Bob, so that Bob can compute a function

of the joint input. The communication cost of a protocol in both

models is the total length of the messages sent by the players.

3 RANDOMIZED CORESETS FOR MATCHING
AND VERTEX COVER

We present our randomized composable coresets for matching and

vertex cover in this section, formalizing Result 1.

3.1 A Randomized Coreset for Matching
The following theorem formalizes Result 1 for matching.

Theorem 1. Any maximum matching of a graph G (V ,E) is an
O (1)-approximation randomized composable coreset of size O (n) for
the maximum matching problem.

We remark that our main interest in Theorem 1 is to achieve

some constant approximation factor for randomized composable

coresets of the matching problem and as such we did not optimize

the constant in the approximation ratio. Nevertheless, our result

already shows that the approximation ratio of this coreset is at most
9 (with more care, we can reduce this factor down to 8; however, as

this is not the main contribution of this paper, we omit the details).

Let G (V ,E) be any graph and G (1) , . . . ,G (k)
be a random k-

partitioning ofG . To prove Theorem 1, we describe a simple process

for combining the maximum matchings (i.e., the coresets) of G (i)
’s,

and prove that this process results in a constant factor approxima-

tion of the maximum matching ofG; this process is only required

for the analysis, i.e., to show that there exists a large matching in

the union of coresets; in principle, any (approximation) algorithm

for computing a maximum matching can be applied to obtain a

large matching from the coresets.

Consider the following greedy process for computing an approx-

imate matching in G (V ,E):

GreedyMatch(G):
(1) LetM (0)

:= ∅. For i = 1 to k :
(2) Let M (i)

be a maximal matching obtained by adding to

M (i−1)
the edges in an arbitrary maximum matching of

G (i)
that do not violate the matching property.

(3) returnM := M (k)
.

Lemma 3.1. GreedyMatch is an O (1)-approximation algorithm
for the maximum matching problem w.h.p (over the randomness of
the edge partitioning).

Before proving Lemma 3.1, we show that Theorem 1 easily fol-

lows from this lemma.

Proof of Theorem 1. Let ALG be any algorithm that given a

graph G (V ,E), ALG(G) outputs an arbitrary maximum matching

of G. It is immediate to see that to implement GreedyMatch, we
only need to compute a maximal matching on the output of ALG
on each graphG (i)

whereG (i)
’s form a random k-partitioning ofG .

Consequently, since GreedyMatch outputs an O (1)-approximate

matching (by Lemma 3.1), the graph H := G (1) ∪ . . . ∪G (k)
should

contain anO (1)-approximate matching as well. We emphasize here

that the use of GreedyMatch for finding a large matching in H is

only for the purpose of analysis. □

In the rest of this section, we prove Lemma 3.1. Recall that

MM(G) denotes the maximum matching size in the input graph

G. Let c > 0 be a small constant to be determined later. To prove

Lemma 3.1, we will show that
���M

(k) ��� ≥ c · MM(G) w.h.p, where

M (k)
is the output ofGreedyMatch. Notice that the matchingsM (i)

(for i ∈ [k]) constructed by GreedyMatch are random variables

depending on the random k-partitioning.
Our general approach for the proof of Lemma 3.1 is as follows.

Suppose at the beginning of the i-th step of GreedyMatch, the
matchingM (i−1)

is of size o(MM(G)). It is easy to see that in this

case, there is a matching of size Ω(MM(G)) in G that is entirely

incident on vertices of G that are not matched byM (i−1)
. We can

further show that in fact Ω(MM(G)/k) edges of this matching are

appearing in G (i)
, even when we condition on the assignment of

the edges in the first (i − 1) graphs. The next step is then to argue

that the existence of these edges forces any maximum matching of

G (i)
to match Ω(MM(G)/k) edges inG (i)

between the vertices that

are not matched byM (i−1)
; these edges can always be added to the

matchingM (i−1)
to formM (i)

. This ensures that while the maximal

matching in GreedyMatch is of size o(MM(G)), we can increase

its size by Ω(MM(G)/k) edges in each of the first k/3 steps, hence
obtaining a matching of size Ω(MM(G)) at the end. The following
key lemma formalizes this argument.

Lemma 3.2. For any i ∈ [k/3], if ���M
(i−1) ��� ≤ c ·MM(G), then, w.p.

1 −O (1/n),

���M
(i) ��� ≥

���M
(i−1) ��� +

(
1 − 6c − o(1)

k

)
·MM(G)

To continue we define some notation. Let M⋆
be an arbitrary

maximum matching of G. For any i ∈ [k], we define M⋆<i
as

the part of M⋆
assigned to the first i − 1 graphs in the random

k-partitioning, i.e., the graphsG (1) , . . . ,G (i−1)
. We have the follow-

ing simple concentration result (the proof is deferred to the full

version [9]).

Claim 3.3. W.p. 1 −O (1/n), for any i ∈ [k],

���M
⋆<i ��� ≤

(
i − 1 + o(i)

k

)
·MM(G).

We now prove Lemma 3.2.

Proof of Lemma 3.2. Fix an i ∈ [k/3] and the set of edges for

E (1) , . . . ,E (i−1) ; this also fixes the matching M (i−1)
while the set

of edges in E (i) , . . . ,E (k) together with the matchingM (i)
are still

random variables. We further assume that after fixing the edges in

E (1) , . . . ,E (i−1) , ���M
⋆<i ��� ≤

i−1+o (i)
k · MM(G) which happens w.p.

1 −O (1/n) by Claim 3.3.

We first define some notation. Let Vold be the set of vertices

incident onM (i−1)
and Vnew be the remaining vertices. Let E≥i be

the set of edges in E \
(
E (1) ∪ . . . ∪ E (i−1)

)
. We partition E≥i into

two parts: (i) Eold: the set of edges with at least one endpoint in
Vold, and (ii) Enew: the set of edges incident entirely on Vnew. Our

goal is to show that w.h.p. any maximum matching ofG (i)
matches

Ω(MM(G)/k) vertices in Vnew to each other by using the edges in

Enew; the lemma then follows easily from this.

Notice that the edges in the graph G (i)
are chosen by indepen-

dently assigning each edge in E≥i to G (i)
w.p. 1/(k − i + 1)4. This

independence allows us to treat the edges in Eold and Enew sepa-

rately; we can fix the set of sampled edges ofG (i)
in Eold denoted

by Eiold without changing the distribution of edges inG (i)
chosen

from Enew. Let µold := MM(G (V ,Eiold)), i.e., the maximum num-

ber of edges that can be matched in G (i)
using only the edges in

Eiold. In the following, we show that w.h.p., there exists a matching

of size µold + Ω(MM(G)/k) in G (i)
; by the definition of µold, this

implies that any maximum matching of G (i)
has to use at least

Ω(MM(G)/k) edges in Enew, proving the lemma.

Let Mold be any arbitrary maximum matching of size µold in

G (V ,Eiold). LetVnew (Mold) be the set of vertices inVnew that are inci-

dent onMold. We show that there is a large matching inG (V ,Enew)
that avoids Vnew (Mold).

Claim 3.4. There exists a matching in G (V ,Enew) of size(
k − i + 1 − o(i)

k
− 4c

)
·MM(G)

that avoids the vertices of Vnew (Mold).

Proof. We first bound the size of Vnew (Mold). Since any edge

inMold has at least one endpoint in Vold, we have |Vnew (Mold) | ≤

|Mold | ≤ |Vold |. By the assertion of the lemma,
���M

(i−1) ��� < c ·MM(G),

and hence |Vnew (Mold) | ≤ |Vold | < 2c ·MM(G).

Moreover, by the assumption that
���M

⋆<i ��� ≤
i−1+o (i)

k ·MM(G),

there is a matching M of size
k−i+1−o (i)

k · MM(G) in the graph

G (V ,E≥i). By removing the edges inM that are either incident on

Vold or Vnew (Mold), at most 4c ·MM(G) edges are removed from

M . Now the remaining matching is entirely contained in Enew and

also avoids Vnew (Mold), hence proving the claim. □

We are now ready to finalize the proof. LetMnew be the matching

guaranteed by Claim 3.4. Each edge in this matching is chosen in

G (i)
w.p. 1/(k − i + 1) independent of the other edges; hence, by

Chernoff bound (and the assumption that MM(G) = ω (k logn)),
there is a matching of size

(1 − o(1)) ·

(
1

k
−

o(i)

k (k − i + 1)
−

4c

k − i + 1

)
·MM(G)

4
This is true even when we condition on the size of

���M
⋆<i ��� since this event does not

depend on the choice of edges in E≥i .

≥

(
1 − 6c − o(1)

k

)
·MM(G) (i ≤ k/3)

in the edges of Mnew that appear in G (i)
. This matching can be

directly added to the matching Mold, implying the existence of a

matching of size µold +
(
1−6c−o (1)

k

)
· MM(G) in G (i)

. As argued

before, this ensures that any maximummatching ofG (i)
contains at

least

(
1−6c−o (1)

k

)
·MM(G) edges in Enew. These edges can always

be added toM (i−1)
to formM (i)

, hence proving the lemma. □

Proof of Lemma 3.1. Recall thatM := M (k)
is the outputmatch-

ing of GreedyMatch. For the first k/3 steps of GreedyMatch, if at
any step we obtained a matching of size c ·MM(G), then we are al-

ready done. Otherwise, at each step, by Lemma 3.2, w.p. 1−O (1/n),

we increase the size of the maximal matching by

(
1−6c−o (1)

k

)
·

MM(G) edges; consequently, by taking a union bound on the k/3
steps, w.p. 1 − o(1), the size of the maximal matching would be(
1−6c−o (1)

3

)
·MM(G). By picking c = 1/9, we ensure that in either

case, the matching computed by GreedyMatch is of size at least

MM(G)/9 − o(MM(G)), proving the lemma. □

3.2 A Randomized Coreset for Vertex Cover
The following theorem formalizes Result 1 for vertex cover.

Theorem 2. There exists an O (logn)-approximation randomized
composable coreset of size O (n logn) for the vertex cover problem.

LetG (V ,E) be a graph andG (1) , . . . ,G (k)
be a randomk-partitioning

of G; we propose the following coreset for computing an approxi-

mate vertex cover of G. This coreset construction is a modification

of the algorithm for vertex cover first proposed by [57].

VC-Coreset(G (i)). An algorithm for computing a composable

coreset of each G (i)
.

(1) Let ∆ be the smallest integer such that n/(k · 2∆) ≤ 4 logn

and define G
(i)
1

:= G (i)
.

(2) For j = 1 to ∆ − 1, let:

V
(i)
j :=

{
vertices of degree ≥ n/(k · 2j+1) in G

(i)
j

}
G
(i)
j+1 := G

(i)
j \V

(i)
j .

(3) ReturnV
(i)
cs :=

⋃∆−1
j=1 V

(i)
j as a fixed solution plus the graph

G
(i)
∆ as the coreset.

In VC-Coreset we allow the coreset to, in addition to returning

a subgraph, identify a set of vertices (i.e., V
(i)
cs) to be added directly

to the final vertex cover. In other words, to compute a vertex cover

of the graph G, we compute a vertex cover of the graph

⋃k
i=1G

(i)
∆

and return it together with the vertices

⋃k
i=1V

(i)
cs . It is easy to see

that this set of vertices indeed forms a vertex cover ofG: any edge

inG that belongs toG (i)
is either incident on someV

(i)
j , and hence

is covered byV
(i)
j , or is present inG

(i)
∆ , and hence is covered by the

vertex cover of G
(i)
∆ .

In the rest of this section, we bound the approximation ratio

of this coreset. To do this, we need to prove that

����
⋃k
i=1V

(i)
cs

���� =
O (logn) ·VC(G). The bound on the ratio then follows as the vertex

cover of

⋃k
i=1G

(i)
∆ can be computed to within a factor of 2.

It is easy to prove (and follows from [57]) that the set of vertices

V
(i)
cs is of size O (logn) · VC(G); however, using this fact directly to

bound the size of

⋃k
i=1V

(i)
cs only implies an approximation ratio of

O (k logn) which is far worse than our goal of achieving anO (logn)-
approximation. In order to obtain the O (logn) bound, we need to

argue that not only each set V
(i)
cs is relatively small, but also that

these sets are all intersecting in many vertices. In order to do so, we

introduce a hypothetical algorithm (similar to VC-Coreset) on the

graph G and argue that the set V
(i)
cs output by VC-Coreset(G (i)) is,

with high probability, a subset of the output of this hypothetical

algorithm. This allows us to then bound the size of the union of the

sets V
(i)
cs for i ∈ [k].

LetO⋆
denote the set of vertices in an arbitrary optimum vertex

cover of G and O⋆
:= V \O⋆

. Consider the following process on

the original graph G (defined only for analysis):

(1) LetG1 be the bipartite graph obtained fromG by removing

edges between vertices in O⋆
.

(2) For j = 1 to t :=
⌈
logn

⌉
, let:

O j :=
{
vertices in O⋆

of degree ≥ n/2j in G j
}

O j :=
{
vertices in O⋆

of degree ≥ n/2j+2 in G j
}

G j+1 := G j \ (O j ∪O j).

We first prove that the sets O j ’s and O j ’s in this process form

an O (logn) approximation of the minimum vertex cover of G and

then show that VC-Coreset(G (i)) (for any i ∈ [k]) is mimicking
this hypothetical process in a sense that the set V

(i)
cs is essentially

contained in the union of the sets O j ’s and O j ’s.

Lemma 3.5.
���
⋃t
j=1O j ∪O j

��� = O (logn) · VC(G).

Proof. Fix any j ∈ [t]; we prove thatO j ≤ 8 ·VC(G). The lemma

follows from this since there are at most O (logn) different sets O j
and the union of the sets O j ’s is a subset of O

⋆
(with size VC(G)).

Consider the graph G j . The maximum degree in this graph

is at most n/2j−1 by the definition of the process. Since all the

edges in the graph are incident on at least one vertex of O⋆
, there

can be at most
���O

⋆��� · n/2
j−1

edges between the remaining ver-

tices in O⋆
and O⋆

in G j . Moreover, any vertex in O j has de-

gree at least n/2j+2 by definition and hence there can be at most(���O⋆��� · n/2
j−1

)
/
(
n/2j+2

)
≤ 8

���O
⋆��� = 8 · VC(G) vertices in O j ,

proving the claim. □

We now prove the main relation between the sets O j ’s and

O j ’s defined above and the intermediate sets V
(i)
j ’s computed by

VC-Coreset(G (i)). The following lemma is the heart of the proof.

Lemma 3.6. Fix an i ∈ [k], and let Aj = V
(i)
j ∩ O⋆ and Bj =

V
(i)
j ∩O

⋆. With probability 1 −O (1/n), for any t ∈ [∆]:

(1)
⋃t
j=1Aj ⊇

⋃t
j=1O j .

(2)
⋃t
j=1 Bj ⊆

⋃t
j=1O j .

Proof. To simplify the notation, for any t ∈ [∆], we let A<t =⋃t−1
j=1 Aj andA≥t =

⋃∆
j=t Aj (and similarly for Bj ’s,O j ’s, andO j ’s).

We also use NS (v) to denote the neighbor-set of the vertex v in the

set S ⊆ V .

Note that the vertex-sets of the graphs G and G (i)
are the same

and we can “project” the setsO j ’s andO j ’s on graphG (i)
as well. In

other words, we can say a vertex v in G (i)
belongs to O j iff v ∈ O j

in the original graphG . In the following claim, we crucially use the

fact that the graph G (i)
is obtained from G by sampling each edge

w.p. 1/k to prove that the degree of vertices across different sets

O j ’s (and O j ’s) in G (i)
are essentially the same as in G (up to the

scaling factor of 1/k).

Claim 3.7. For any j ∈ [∆]:

• For any vertex v ∈ O j ,
����NO≥j

(v)
���� ≥ n/(k · 2j+1) in the graph

G (i) w.p. 1 −O (1/n2).
• For any vertex v ∈ O≥j+1,

���NO≥j (v)
��� < n/(k · 2j+1) in the

graph G (i) w.p. 1 −O (1/n2).

We defer the proof of Claim 3.7 to the full version of the paper [9].

By a union bound on the n vertices inG , the statements in Claim 3.7

hold for all vertices of G w.p. 1 − O (1/n); in the following we

condition on this event. We now prove Lemma 3.6 by induction.

Let v be a vertex that belongs to O1; we prove that v belongs to

the setV
(i)
1

of VC-Coreset, i.e., v ∈ A1. By Claim 3.7 (for j = 1), the

degree of v in G
(i)
1

is at least n/4k . Note that in G
(i)
1
, v may also

have edges to other vertices in O⋆
but this can only increase the

degree of v . This implies that v also belongs to A1 by the threshold

chosen in VC-Coreset. Similarly, let u be a vertex in O≥2 (i.e., not
in O1); we show that u is not chosen in V

(i)
1

, implying that B1 can

only contain vertices inO1. By Claim 3.7, degree of u inG
(i)
1

is less

than n/4k . This implies that u does not belong to B1. In summary,

we have O1 ⊆ A1 and B1 ⊆ O1.

Now consider some t > 1 and letv be a vertex inOt . By induction,

B<t ⊆ O<t . This implies that the degree of v to B≥t is at least as
large as its degree to O≥t . Consequently, by Claim 3.7 (for j = t),

degree of v in the graph G
(i)
t is at least n/(k · 2t+1) and hence v

also belongs to At . Similarly, fix a vertex u in O≥t+1. By induction,

A<t ⊇ O<t and hence the degree of u to A≥t is at most as large

as its degree to O≥t ; note that since O
⋆
is a vertex cover, u does

not have any other edge inG
(i)
t except for the ones to A≥t . We can

now argue as before that u does not belong to Bt . □

Proof of Theorem 2. The bound on the coreset size follows

immediately from the fact that the graph G
(i)
∆ contains at most

O (n logn) edges and size of V
(i)
cs is at most n. As argued before, to

prove the bound on the approximation ratio, we only need to show

that

⋃k
i=1V

(i)
cs is of size O (logn) · VC(G). Let A(i) = V

(i)
cs ∩ O⋆

and B (i) = V
(i)
cs ∩ O⋆

; clearly, each A(i) ⊆ O⋆
and moreover,

by Lemma 3.6 (for t = ∆), each B (i) ⊆ ∪∆j=1O j . Consequently,
����
⋃k
i=1V

(i)
cs

���� ≤
���O

⋆��� +
���
⋃∆
j=1O j

��� ≤ O (logn) · VC(G), where the last

inequality is by Lemma 3.5. □

4 LOWER BOUNDS
We formalize Result 2 in this section. As argued earlier, Result 2

is a special case of Result 3 and hence follows directly from that

result; however, as the proof of Result 3 is rather technical and

complicated, we instead provide a self-contained proof of Result 2

that is easier to present and conveys some of the main ideas behind

Result 3, and postpone the proof of Result 3 to the full version [9].

4.1 A Lower Bound for Randomized
Composable Coresets of Matching

The following theorem formalizes Result 2 for matching.

Theorem 3. For anyk = o(n/ logn) andα = o(min {n/k,k }), any
α-approximation randomized composable coreset of the maximum
matching problem is of size Ω(n/α2).

By Yao’s minimax principle [61], to prove the lower bound in

Theorem 3, it suffices to analyze the performance of deterministic

algorithms over a fixed (hard) distribution. We propose the fol-

lowing distribution for this task. For simplicity of exposition, in

the following, we prove a lower bound for (α/4)-approximation

algorithms; a straightforward scaling of the parameters proves the

lower bound for α-approximation.

Distribution DMatching.
• Let G (L,R,E) (with |L| = |R | = n) be constructed as fol-

lows:

(1) Pick A ⊆ L and B ⊆ R, each of size n/α , uniformly at

random.

(2) Define EAB as a set of edges between A and B, chosen
by picking each edge in A × B w.p. k · α/n.

(3) Define EAB as a random perfect matching between A

and B.
(4) Let E := EAB ∪ EAB .

• Let E (1) , . . . ,E (k) be a random k-partitioning of E and let

the input to player P (i) be the graph G (i) (L,R,E (i)).

LetG be a graph sampled from the distributionDMatching. Notice

first that the graphG always has amatching of size at leastn−n/α ≥
n/2, i.e., the matching EAB . Additionally, it is easy to see that any

matching of size more than 2n/α in G uses at least n/α edges from

EAB : the edges in EAB can only form a matching of size n/α by

construction. This implies that any (α/4)-approximate solution

requires recovering at least n/α edges from EAB . In the following,

we prove that this is only possible if the coresets of the players are

sufficiently large.

For any i ∈ [k], define the induced matching M (i)
as the unique

matching inG (i)
that is incident on vertices of degree exactly one, i.e.,

both end-points of each edge inM (i)
have degree one in G (i)

. We

emphasize that the notion of induced matching is with respect to

the entire graph and not only with respect to the vertices included

in the induced matching. We have the following crucial lemma

on the size of M (i)
. The proof appears in the full version of the

paper [9].

Lemma 4.1. W.p. 1 −O (1/n), for all i ∈ [k], ���M
(i) ��� = Θ(n/α).

Proof of Theorem 3. Fix any randomized composable coreset

for the matching problem that has size o(n/α2). We show that such

a coreset cannot achieve a better than (α/4)-approximation over

the distributionDMatching. As argued earlier, to prove this, we need

to show that this coreset only contains o(n/α) edges from EAB in

expectation.

Fix any player i ∈ [k], and letM⋆(i)
be the subset of thematching

EAB assigned to P (i) . It is clear thatM⋆(i) ⊆ M (i)
by the definition

ofM (i)
. Moreover, define Xi as the random variable denoting the

number of edges from M⋆(i)
that belong to the coreset sent by

player P (i) . Notice that Xi is clearly an upper bound on the number

of edges of EAB that are in the final matching of coordinator and

also belong to the input graph of player P (i) . In the following, we

show that E [Xi] = o
(

n
k ·α

)
. Having proved this, we have that the

expected size of the output matching by the coordinator is at most

n/α+
∑k
i=1 E [Xi] = n/α+o(n/α) < (α/4) ·MM(G), a contradiction.

We now prove E [Xi] = o
(

n
k ·α

)
. In the following, we condition

on the event that
���M

⋆(i) ��� = Θ(n/k) and ���M
(i) ��� = Θ(n/α); by Cher-

noff bound (for the first part, since n/k = ω (logn)) and Lemma 4.1

(for the second part), this event happens with probability 1−O (1/n).
As such, this conditioning can only change E [Xi] by an additive

factor of O (1) which we ignore in the following.

A crucial property of the distributionDMatching is that the edges

inM⋆(i)
and the remaining edges inM (i)

are indistinguishable in

G (i)
. More formally, for any edge e ∈ G (i)

,

Pr

(
e ∈ M⋆(i) | e ∈ M (i)

)
=

���M
⋆(i) ���

���M
(i) ���
= Θ(α/k)

On the other hand, for a fixed inputM (i)
to player P (i) , the com-

puted coresetCi is always the same (as the coreset is a deterministic

function of the player input). Hence,

E [Xi] =
∑
e ∈Ci

Pr

(
e ∈ M⋆

i | e ∈ M
(i)

)
= |Ci | · Θ(α/k) = o(n/α

2) · Θ(α/k) = o (n/(α · k))

where the second last equality is by the assumption that the size of

the coreset, i.e., |Ci |, is o(n/α
2). This finalizes the proof. □

4.2 A Lower Bound for Randomized
Composable Coresets of Vertex Cover

The following is a formal statement of Result 2 for vertex cover.

Theorem 4. For anyk = o(n/ logn) andα = o(min {n/k,k }), any
α-approximation randomized composable coreset of the minimum
vertex cover problem is of size Ω(n/α).

By Yao’s minimax principle [61], to prove the lower bound in

Theorem 4, it suffices to analyze the performance of deterministic

algorithms over a fixed (hard) distribution. We propose the fol-

lowing distribution for this task. For simplicity of exposition, in

the following, we prove a lower bound for (c · α)-approximation

algorithms (for some constant c > 0); a straightforward scaling of

the parameters proves the lower bound for α-approximation.

Distribution DVC.
• Construct G (L,R,E) (with |L| = |R | = n) as follows:
(1) Pick A ⊆ L of size n/α uniformly at random.

(2) Let EA be a set of edges chosen by picking each edge

in A × R w.p. k/2n.

(3) Pick a single vertex v⋆ uniformly at random from A
and let e⋆ be an edge incident on v⋆ chosen uniformly

at random.

(4) Let E := EA ∪
{
e⋆

}
.

• Let E (1) , . . . ,E (k) be a random k-partitioning of E and let

the input to player P (i) be the graph G (i) (L,R,E (i)).

For any i ∈ [k], we define L1i as the set of vertices in Lwith degree

exactly one in G (i)
. We further define R1i as the set of neighbors

of vertices in L1i (note that vertices in R1i do not not necessarily
have degree exactly one). We have (the proof is deferred to the full

version of the paper [9]),

Lemma 4.2. For any i ∈ [k], ���L
1

i
��� = Θ(n/α) and ���R

1

i
��� = Θ(n/α)

w.p. 1 − o(1).

Proof of Theorem 4. Let i be the index of the player P (i) that
the edge e⋆ is given to. We argue that if the coreset sent by player

P (i) is of size o(n/α), then the coordinator cannot obtain a vertex

cover of size o(n). As the graph G admits a vertex cover of size

(n/α + 1) (pick A and v⋆), this proves the theorem.

By Lemma 4.2, the set of vertices in L with degree exactly one

in G (i)
and the set of their neighbors in R, i.e., the sets L1i and R

1

i ,

are of size Θ(n/α) w.p. 1 − o(1). In the following, we condition

on this event. As the algorithm used by P (i) to create the coreset

is deterministic, given a fixed input, it always creates the same

coreset. However, a crucial property of the distributionDVC is that,

conditioned on a fixed assignment to L1i , the vertex v
⋆
is chosen

uniformly at random from L1i . This implies that if the coreset of

player P (i) contains o(n/α) edges, then w.p. 1 − o(1), e⋆ is not part

of the coreset (e⋆ is chosen uniformly at random from the set of all

edges incident on L1i). Similarly, if the coreset fixes o(n/α) vertices
to be added to the final solution, w.p. 1 − o(1), no end point of

e⋆ is added to this fixed set (v⋆ is chosen uniformly at random

from L1i of size Θ(n/α), and the other end point of e⋆ is chosen

uniformly at random from R1i of size Θ(n/α)). Finally, the coresets

of other players are all independent of the edge e⋆ and hence as

long as the total number of fixed vertices sent by the players is o(n),
w.p. 1 − o(1), no end points of e⋆ are present in the fixed solution.

Conditioned on these three events, w.p. 1 − o(1), the output of the
algorithm does not cover the edge e⋆ and hence is not a feasible

vertex cover.

We remark that this argument holds even if we are allowed to

add extra vertices to the final vertex cover (other than the ones

fixed by the players or computed as a vertex cover of the edges

in the coresets), since conditioned on e⋆ not being present in any

coreset, the end point of this edge are chosen uniformly at random

from all vertices in L \ A and R and hence a solution of size o(n)
would not contain either of them w.p. 1 − o(1). □

Acknowledgements
The first author would like to thank Sepideh Mahabadi and Ali

Vakilian for many helpful discussions in the earlier stages of this

work. The authors are grateful to the anonymous reviewers of SPAA

2017 for many insightful comments and suggestions.

REFERENCES
[1] S. Abbar, S. Amer-Yahia, P. Indyk, S. Mahabadi, and K. R. Varadarajan. Diverse

near neighbor problem. In Symposuim on Computational Geometry 2013, SoCG
’13, Rio de Janeiro, Brazil, June 17-20, 2013, pages 207–214, 2013.

[2] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Approximating extent mea-

sures of points. J. ACM, 51(4):606–635, 2004.

[3] K. J. Ahn and S. Guha. Linear programming in the semi-streaming model with

application to the maximum matching problem. Inf. Comput., 222:59–79, 2013.
[4] K. J. Ahn and S. Guha. Access to data and number of iterations: Dual primal

algorithms for maximum matching under resource constraints. In Proceedings
of the 27th ACM on Symposium on Parallelism in Algorithms and Architectures,
SPAA 2015, Portland, OR, USA, June 13-15, 2015, pages 202–211, 2015.

[5] K. J. Ahn, S. Guha, and A. McGregor. Analyzing graph structure via linear

measurements. In Proceedings of the Twenty-third Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’12, pages 459–467. SIAM, 2012.

[6] K. J. Ahn, S. Guha, and A.McGregor. Graph sketches: sparsification, spanners, and

subgraphs. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, PODS 2012, Scottsdale, AZ, USA, May 20-24,
2012, pages 5–14, 2012.

[7] Y. Ai, W. Hu, Y. Li, and D. P. Woodruff. New characterizations in turnstile streams

with applications. In 31st Conference on Computational Complexity, CCC 2016,
May 29 to June 1, 2016, Tokyo, Japan, pages 20:1–20:22, 2016.

[8] N. Alon, N. Nisan, R. Raz, and O. Weinstein. Welfare maximization with limited

interaction. In IEEE 56th Annual Symposium on Foundations of Computer Science,
FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 1499–1512, 2015.

[9] S. Assadi and S. Khanna. Randomized composable coresets for matching and

vertex cover. CoRR, abs/1705.08242, 2017.
[10] S. Assadi, S. Khanna, and Y. Li. On estimating maximum matching size in graph

streams. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19,
pages 1723–1742, 2017.

[11] S. Assadi, S. Khanna, Y. Li, and G. Yaroslavtsev. Maximum matchings in dynamic

graph streams and the simultaneous communication model. In Proceedings of
the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2016, Arlington, VA, USA, January 10-12, 2016, pages 1345–1364, 2016.

[12] A. Badanidiyuru, B. Mirzasoleiman, A. Karbasi, and A. Krause. Streaming sub-

modular maximization: massive data summarization on the fly. In The 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’14, New York, NY, USA - August 24 - 27, 2014, pages 671–680, 2014.

[13] M. Balcan, S. Ehrlich, and Y. Liang. Distributed k-means and k-median clustering

on general communication topologies. In Advances in Neural Information Process-
ing Systems 26: 27th Annual Conference on Neural Information Processing Systems
2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United
States., pages 1995–2003, 2013.

[14] S. Baswana, M. Gupta, and S. Sen. Fully dynamic maximal matching in o(log n)

update time. SIAM J. Comput., 44(1):88–113, 2015.
[15] M. Bateni, A. Bhaskara, S. Lattanzi, and V. S. Mirrokni. Distributed balanced

clustering via mapping coresets. In Advances in Neural Information Processing
Systems 27: Annual Conference on Neural Information Processing Systems 2014,
December 8-13 2014, Montreal, Quebec, Canada, pages 2591–2599, 2014.

[16] S. Bhattacharya, M. Henzinger, and G. F. Italiano. Deterministic fully dynamic

data structures for vertex cover and matching. In Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego,
CA, USA, January 4-6, 2015, pages 785–804, 2015.

[17] S. Bhattacharya, M. Henzinger, D. Nanongkai, and C. E. Tsourakakis. Space- and

time-efficient algorithm for maintaining dense subgraphs on one-pass dynamic

streams. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory
of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 173–182,
2015.

[18] L. Bulteau, V. Froese, K. Kutzkov, and R. Pagh. Triangle counting in dynamic

graph streams. Algorithmica, 76(1):259–278, 2016.

[19] A. Chakrabarti, G. Cormode, and A. McGregor. Robust lower bounds for com-

munication and stream computation. In Proceedings of the 40th Annual ACM
Symposium on Theory of Computing, Victoria, British Columbia, Canada, May
17-20, 2008, pages 641–650, 2008.

[20] R. Chitnis, G. Cormode, H. Esfandiari, M. Hajiaghayi, A. McGregor, M. Mone-

mizadeh, and S. Vorotnikova. Kernelization via sampling with applications to

finding matchings and related problems in dynamic graph streams. In Proceed-
ings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1326–1344, 2016.

[21] R. H. Chitnis, G. Cormode, M. T. Hajiaghayi, andM.Monemizadeh. Parameterized

streaming: Maximal matching and vertex cover. In Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego,
CA, USA, January 4-6, 2015, pages 1234–1251, 2015.

[22] M. Crouch and D. S. Stubbs. Improved streaming algorithms for weighted match-

ing, via unweighted matching. In Approximation, Randomization, and Combinato-
rial Optimization. Algorithms and Techniques, APPROX/RANDOM 2014, September
4-6, 2014, Barcelona, Spain, pages 96–104, 2014.

[23] S. Dobzinski, N. Nisan, and S. Oren. Economic efficiency requires interaction.

In Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 -
June 03, 2014, pages 233–242, 2014.

[24] S. Eggert, L. Kliemann, and A. Srivastav. Bipartite graph matchings in the semi-

streaming model. In Algorithms - ESA 2009, 17th Annual European Symposium,
Copenhagen, Denmark, September 7-9, 2009. Proceedings, pages 492–503, 2009.

[25] L. Epstein, A. Levin, J. Mestre, and D. Segev. Improved approximation guarantees

for weighted matching in the semi-streaming model. SIAM J. Discrete Math.,
25(3):1251–1265, 2011.

[26] H. Esfandiari, M. Hajiaghayi, and M. Monemizadeh. Finding large matchings

in semi-streaming. In IEEE International Conference on Data Mining Workshops,
ICDM Workshops 2016, December 12-15, 2016, Barcelona, Spain., pages 608–614,
2016.

[27] H. Esfandiari, M. T. Hajiaghayi, V. Liaghat, M. Monemizadeh, and K. Onak.

Streaming algorithms for estimating the matching size in planar graphs and

beyond. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages
1217–1233, 2015.

[28] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. On graph problems

in a semi-streaming model. Theor. Comput. Sci., 348(2-3):207–216, 2005.
[29] A. Goel, M. Kapralov, and S. Khanna. On the communication and streaming

complexity of maximum bipartite matching. In Proceedings of the Twenty-third
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’12, pages 468–485.

SIAM, 2012.

[30] V. Guruswami and K. Onak. Superlinear lower bounds for multipass graph

processing. In Proceedings of the 28th Conference on Computational Complexity,
CCC 2013, K.lo Alto, California, USA, 5-7 June, 2013, pages 287–298, 2013.

[31] A. Hassidim, J. A. Kelner, H. N. Nguyen, and K. Onak. Local graph partitions for

approximation and testing. In 50th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2009, October 25-27, 2009, Atlanta, Georgia, USA, pages
22–31, 2009.

[32] J. Håstad and A. Wigderson. The randomized communication complexity of set

disjointness. Theory of Computing, 3(1):211–219, 2007.
[33] Z. Huang, B. Radunovic, M. Vojnovic, and Q. Zhang. Communication complexity

of approximate matching in distributed graphs. In 32nd International Symposium
on Theoretical Aspects of Computer Science, STACS 2015, March 4-7, 2015, Garching,
Germany, pages 460–473, 2015.

[34] P. Indyk, S. Mahabadi, M. Mahdian, and V. S. Mirrokni. Composable core-sets for

diversity and coverage maximization. In Proceedings of the 33rd ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS’14, Snowbird,
UT, USA, June 22-27, 2014, pages 100–108, 2014.

[35] M. Kapralov. Better bounds for matchings in the streaming model. In Proceedings
of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 1679–1697, 2013.

[36] M. Kapralov, S. Khanna, and M. Sudan. Approximating matching size from

random streams. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages
734–751, 2014.

[37] M. Kapralov, S. Khanna, andM. Sudan. Streaming lower bounds for approximating

MAX-CUT. In SODA, 2015.
[38] M. Kapralov, Y. T. Lee, C. Musco, C. Musco, and A. Sidford. Single pass spectral

sparsification in dynamic streams. In 55th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages
561–570, 2014.

[39] M. Kapralov and D. Woodruff. Spanners and sparsifiers in dynamic streams.

PODC, 2014.
[40] H. J. Karloff, S. Suri, and S. Vassilvitskii. A model of computation for mapreduce.

In Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2010, Austin, Texas, USA, January 17-19, 2010, pages 938–948,
2010.

[41] C. Konrad. Maximum matching in turnstile streams. In Algorithms - ESA 2015 -
23rd Annual European Symposium, Patras, Greece, September 14-16, 2015, Proceed-
ings, pages 840–852, 2015.

[42] C. Konrad, F. Magniez, and C. Mathieu. Maximum matching in semi-streaming

with few passes. In Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques - 15th International Workshop, APPROX 2012, and
16th International Workshop, RANDOM 2012, Cambridge, MA, USA, August 15-17,
2012. Proceedings, pages 231–242, 2012.

[43] E. Kushilevitz and N. Nisan. Communication complexity. Cambridge University

Press, 1997.

[44] S. Lattanzi, B. Moseley, S. Suri, and S. Vassilvitskii. Filtering: a method for solving

graph problems in mapreduce. In SPAA 2011: Proceedings of the 23rd Annual ACM
Symposium on Parallelism in Algorithms and Architectures, San Jose, CA, USA,
June 4-6, 2011 (Co-located with FCRC 2011), pages 85–94, 2011.

[45] Y. Li, H. L. Nguyen, and D. P. Woodruff. Turnstile streaming algorithms might as

well be linear sketches. In Symposium on Theory of Computing, STOC 2014, New
York, NY, USA, May 31 - June 03, 2014, pages 174–183, 2014.

[46] A. McGregor. Finding graph matchings in data streams. In Approximation,
Randomization and Combinatorial Optimization, Algorithms and Techniques, 8th
International Workshop on Approximation Algorithms for Combinatorial Optimiza-
tion Problems, APPROX 2005 and 9th InternationalWorkshop on Randomization and
Computation, RANDOM 2005, Berkeley, CA, USA, August 22-24, 2005, Proceedings,
pages 170–181, 2005.

[47] A. McGregor. Graph stream algorithms: a survey. SIGMOD Record, 43(1):9–20,
2014.

[48] A. McGregor, D. Tench, S. Vorotnikova, and H. T. Vu. Densest subgraph in dy-

namic graph streams. InMathematical Foundations of Computer Science 2015 - 40th
International Symposium, MFCS 2015, Milan, Italy, August 24-28, 2015, Proceedings,
Part II, pages 472–482, 2015.

[49] A. McGregor and S. Vorotnikova. Planar matching in streams revisited. In

Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2016, September 7-9, 2016, Paris, France, pages
17:1–17:12, 2016.

[50] V. S. Mirrokni and M. Zadimoghaddam. Randomized composable core-sets for

distributed submodular maximization. In Proceedings of the Forty-Seventh Annual
ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June
14-17, 2015, pages 153–162, 2015.

[51] B. Mirzasoleiman, A. Karbasi, R. Sarkar, and A. Krause. Distributed submodular

maximization: Identifying representative elements in massive data. In Advances
in Neural Information Processing Systems 26: 27th Annual Conference on Neural
Information Processing Systems 2013. Proceedings of a meeting held December 5-8,
2013, Lake Tahoe, Nevada, United States., pages 2049–2057, 2013.

[52] S. Muthukrishnan. Data streams: Algorithms and applications. Now Publishers

Inc, 2005.

[53] O. Neiman and S. Solomon. Simple deterministic algorithms for fully dynamic

maximal matching. In Symposium on Theory of Computing Conference, STOC’13,
Palo Alto, CA, USA, June 1-4, 2013, pages 745–754, 2013.

[54] H. N. Nguyen and K. Onak. Constant-time approximation algorithms via local

improvements. In 49th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, pages 327–336,
2008.

[55] K. Onak, D. Ron, M. Rosen, and R. Rubinfeld. A near-optimal sublinear-time

algorithm for approximating the minimum vertex cover size. In Proceedings of
the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2012, Kyoto, Japan, January 17-19, 2012, pages 1123–1131, 2012.

[56] K. Onak and R. Rubinfeld. Maintaining a large matching and a small vertex cover.

In Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010,
Cambridge, Massachusetts, USA, 5-8 June 2010, pages 457–464, 2010.

[57] M. Parnas and D. Ron. Approximating the minimum vertex cover in sublinear

time and a connection to distributed algorithms. Theor. Comput. Sci., 381(1-3):183–
196, 2007.

[58] A. Paz and G. Schwartzman. A (2 + ε)-approximation for maximum weight

matching in the semi-streaming model. In Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona,
Spain, Hotel Porta Fira, January 16-19, pages 2153–2161, 2017.

[59] J. M. Phillips, E. Verbin, and Q. Zhang. Lower bounds for number-in-hand

multiparty communication complexity, made easy. In Proceedings of the Twenty-
Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto,
Japan, January 17-19, 2012, pages 486–501, 2012.

[60] S. Solomon. Fully dynamic maximal matching in constant update time. In IEEE
57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11
October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 325–334,
2016.

[61] A. C. Yao. Lower bounds to randomized algorithms for graph properties (extended

abstract). In 28th Annual Symposium on Foundations of Computer Science, Los
Angeles, California, USA, 27-29 October 1987, pages 393–400, 1987.

[62] Y. Yoshida, M. Yamamoto, and H. Ito. Improved constant-time approximation

algorithms for maximum matchings and other optimization problems. SIAM J.
Comput., 41(4):1074–1093, 2012.

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Further Related Work

	2 Preliminaries
	3 Randomized Coresets for Matching and Vertex Cover
	3.1 A Randomized Coreset for Matching
	3.2 A Randomized Coreset for Vertex Cover

	4 Lower Bounds
	4.1 A Lower Bound for Randomized Composable Coresets of Matching
	4.2 A Lower Bound for Randomized Composable Coresets of Vertex Cover

	References

