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Abstract

We revisit the minimum dominating set problem on graphs with arboricity bounded by α. In the

(standard) centralized setting, Bansal and Umboh [BU17] gave an O(α)-approximation LP rounding

algorithm. Moreover, [BU17] showed that it is NP-hard to achieve an asymptotic improvement. On the

other hand, the previous two non-LP-based algorithms, by Lenzen and Wattenhofer [LW10], and Jones

et al. [JLR+13], achieve an approximation factor of O(α2) in linear time.

There is a similar situation in the distributed setting: While there are poly logn-round LP-based

O(α)-approximation algorithms [KMW06, DKM19], the best non-LP-based algorithm by Lenzen and

Wattenhofer [LW10] is an implementation of their centralized algorithm, providing anO(α2)-approximation

within O(log n) rounds with high probability; they also gave a faster deterministic algorithm but with a

worse approximation guarantee.

We address the question of whether one can achieve a simple, elementary O(α)-approximation algo-

rithm not based on any LP-based methods, either in the centralized setting or in the distributed setting.

We resolve these questions in the affirmative. More specifically, our contribution is two-fold:

1. In the centralized setting, we provide a surprisingly simple combinatorial algorithm that is asymp-

totically optimal in terms of both approximation factor and running time: an O(α)-approximation

in linear time.

2. Based on our centralized algorithm, we design a distributed combinatorial O(α)-approximation

algorithm in the CONGEST model that runs in O(α logn) rounds with high probability. Our round

complexity outperforms the best LP-based distributed algorithm for a wide range of parameters.
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1 Introduction

1.1 Background

The minimum dominating set (MDS) problem is a classic problem in computer science. Given a graph

G we want to find a minimums cardinality set D of vertices, such that every vertex of the graph is either

in D or has a neighbor in D. Besides its theoretical implications, solving this basic problem efficiently

has many practical applications in domains ranging from wireless networks to text summarizing (see, e.g.,

[WAF02, NA16, SL10]).

The MDS problem was one of the first problems recognized as NP-complete [Gar79]. It was also one of

the first problems for which an approximation algorithm was analyzed: a simple greedy algorithm achieves

a ln(∆ + 1)-approximation [Joh74]. This approximation factor is optimal up to lower order terms unless

P = NP [DS14].

Distributed MDS The first efficient distributed approximation algorithm for MDS was given by Jia, Ra-

jaraman, and Suel [JRS02], who gave a randomized O(log∆)-approximation in O(log2 n) rounds in the

CONGEST model. This was improved by Kuhn, Moscibroda and Wattenhofer [KMW16], who gave a ran-

domized (1 + ε)(1 + ln(∆ + 1))-approximation in O(log2∆/ε4) rounds in the CONGEST model and in

O(log n/ε2) rounds in the LOCAL model. Ghaffari, Kuhn, and Maus [GKM17] showed that by allowing

exponential-time local computation, one can get a randomized (1 + o(1))-approximation in a polylogarith-

mic number of rounds in the LOCAL model.

For deterministic distributed algorithms, Deurer, Kuhn, and Maus [DKM19] recently gave two algo-

rithms in the CONGEST model with approximation factor (1 + ε) ln(∆ + 1) for ε > 1/polylog∆, running

in 2O(
√
logn log logn) and O(∆ ·polylog∆+polylog∆ log∗ n) rounds, respectively; the runtime of the former

algorithm is dominated by the time needed for deterministically computing a network decomposition in the

CONGEST model, which, due to [GGR21], is thus reduced to O(poly log n).

Graphs of bounded arboricity MDS has been studied on a variety of restricted classes of graphs such

as graphs with bounded degree (e.g., [CC08]), planar and bounded genus graphs (e.g., [Bak94, CHW08,

ASS19]), and graphs of bounded arboricity, which is the focus of this paper. The class of bounded arboricity

graphs is a wide family of uniformly sparse graphs, defined as follows:

Definition 1.1. The graph G has arboricity bounded by α if for every S ⊆ V , it holds that ms

ns−1 ≤ α where

ms and ns are the number of edges and vertices in the graph induced by S, respectively.

Thus the arboricity is close to the maximum density |E(S)|/|S| over all induced subgraphs of G. The

class of bounded arboricity graphs contains the other graph classes mentioned above as well as bounded

treewidth graphs, and in general all graphs excluding a fixed minor. Moreover, many natural and real world

graphs, such as the world wide web graph, social networks and transaction networks, are believed to have

bounded arboricity. Consequently, this class of graphs has been subject to extensive research, which led to

many algorithms for bounded arboricity graphs in both the centralized setting (e.g. [Epp94, GG06, CN85])

and in the distributed setting (e.g. [CHS09, BE10, GS17, SV20]); there are also many algorithms in other

settings, such as dynamic graph algorithms, sublinear algorithms and streaming algorithms (see [BF99,

HTZ14, PS16, OSSW18, ELR18, ERR19, ERS20, BPS20, MV18, BS20], and the references therein).
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Combinatorial algorithms Many problems in theoretical computer science have been efficiently solved

using the powerful machinery of algebraic algorithms, and an area of research has emerged where the

goal is to find combinatorial algorithms that are nearly as fast as their algebraic counterparts. Often such

algorithms are simpler and easier to implement, and they typically have smaller constants hidden in their

running time expressions. Moreover, in the context of distributed computing, combinatorial algorithms

could give rise to much more efficient implementation in terms of local computation power as well as local

memory constraints. Combinatorial algorithms can also provide a deeper understanding of the problem

studied. This line of work includes, for example, a combinatorial proof of the PCP theorem [DR06, Mei09],

a combinaotiral construction of expanders [RVW00], and combinatorial algorithms for distributed graph

coloring [BE14].

While the prior works that we compare our work to do use combinatorial techniques, these techniques

are general-purpose LP-based primal/dual methods. Our algorithms are not only combinatorial, but also

simple and elementary. We believe that these attributes provide similar benefits over LP-based methods as

combinatorial algorithms provide compared to algebraic algorithms.

1.2 Approximating MDS on graphs of arboricity α

Centralized setting In the centralized setting, there are two combinatorial non-LP-based algorithms for

MDS for graphs of arboricity (at most) α (for brevity, in what follows we may write graphs of “arboricity

α” instead of arboricity at most α). One is by Lenzen and Wattenhofer [LW10], the other is by Jones,

Lokshtanov, Ramanujan, Saurabh, and Suchỳ [JLR+13], and both achieve an O(α2)-approximation in de-

terministic linear time1. There is also an LP rounding algorithm by Bansal and Umboh that gives a 3α-

approximation [BU17]. The algorithm of [BU17] also translates into a near-linear time algorithm using

a general-purpose approximation result for explicit packing and covering LPs [You14, AZO19, Qua20];

specifically, one can get a deterministic O(α)-approximation LP-based algorithm within O(m log n) time.

Bansal and Umboh [BU17] also proved that achieving asymptotically better approximation is NP-hard.2

Perhaps one can get a linear time O(α)-approximation algorithm for MDS using LP-based approaches, but

such a result has not been stated in the literature.

Distributed setting In the distributed setting, there are two combinatorial non-LP-based algorithms for

MDS for graphs of arboricity α, both by Lenzen and Wattenhofer [LW10]. The first is a randomized O(α2)-
approximation algorithm in the CONGEST model that runs in O(log n) rounds with high probability. This

algorithm is deterministic except for a subroutine for maximal independent set (MIS), so one can apply the

recent network decomposition based MIS algorithm by Ghaffari, Grunau, and Rozhoň [GGR21] to get a

deterministic MIS algorithm. This yields an O(α2)-approximation algorithm for MDS in the CONGEST

model that runs in O(log5 n) rounds. The second algorithm of Lenzen and Wattenhofer is a deterministic

O(α log∆)-approximation algorithm in the CONGEST model that runs in O(log∆) rounds, where ∆ is the

maximum degree.

Regarding LP-based algorithms, Kuhn, Moscibroda, and Wattenhofer [KMW06] developed a general-

purpose method for solving LPs of a particular structure in the distributed setting. It seems that by applying

1Note that the theorem statement of [LW10] has a typo suggesting that the approximation factor is O(α).
2More specifically, achieving an (α−1−ε)-approximation is NP-hard for any ε > 0 and any fixed α; achieving an (⌊α/2⌋−ε)-

approximation is NP-hard for any ε > 0 and any α = 1, . . . , logδ n, for some constant δ [BU17, DGKR05]. These hardness of

approximation results are achieved by applying a reduction by [BU17] from the k-hypergraph vertex cover (k-HVC) problem

(where we need to find a minimum vertex cover of a k-uniform hypergraph) to the MDS problem in arboricity-k graphs, in

conjunction with NP-hardness results by [DGKR05] for the k-HVC problem.

2



their method (specifically, Corollary 4.1 of [KMW06]) to the LP approximation result of Bansal and Umboh

in bounded arboricity graphs [BU17], one can get a deterministic O(α)-approximation algorithm for MDS

in the CONGEST model that runs in O(log2 ∆) rounds, but such a result has not been explicitly claimed in

the literature.

A natural question The aforementioned results demonstrate a significant gap for MDS algorithms in

bounded arboricity graphs when comparing LP-based methods to elementary combinatorial approaches. It

is natural to ask whether this gap can be bridged:

• In the centralized setting, is there any efficient non-LP-based O(α)-approximation algorithm for MDS

(even one that is slower than the O(m log n)-time LP-based algorithm)? Further, can one achieve an

O(α)-approximation in linear time using any (even LP-based) algorithm?

• In the distributed setting, is there any efficient non-LP-based distributed O(α)-approximation algo-

rithm for MDS? Further, can one achieve an O(α)-approximation in the CONGEST model within

o(log2 ∆) rounds using any (even LP-based) algorithm?

1.3 Our Contributions

We answer the above question in the affirmative. In particular, we give simple combinatorial algorithms that

achieve the asymptotically optimal approximation factor of O(α), and run faster than all known algorithms,

including LP-based algorithms.3

Our core contribution is a non-LP-based asymptotically optimal algorithm in the centralized setting.

Theorem 1.2. For graphs of arboricity α, there is an O(m) time O(α)-approximation algorithm for MDS.

Our algorithm is asymptotically optimal in both running time and approximation factor: it runs in lin-

ear time, and asymptotically improving the approximation factor it gets is proved to be NP-hard [BU17].

Furthermore, our algorithm is combinatorial and elementary, in contrast to the only other known O(α)-
approximation, which is LP-based; the improvement in running time over the LP-based algorithm is ad-

mittedly minor (only a logarithmic factor), but still getting a truly linear time algorithm seems qualitatively

different than an almost-linear time.

We demonstrate the applicability of our simple centralized algorithm, by using its core ideas to develop

a distributed algorithm.

Theorem 1.3. For graphs of arboricity α, there is a randomized distributed algorithm in the CONGEST

model that gives an O(α)-approximation for MDS and runs in O(α log n) rounds. The bound on the number

of rounds holds with high probability (and in expectation).

This is the first non-LP-based distributed O(α)-approximation algorithm. For the “interesting” parame-

ter regime where ∆ is polynomial in n, and α = o(log n), the number of rounds in our algorithm beats even

the LP-based algorithm obtained by combining [KMW06] and [BU17] which appears to run in O(log2 ∆)
rounds; as noted already, such an algorithm has not been claimed explicitly before. We note the caveat that

our algorithm is randomized while their algorithm appears to be deterministic.

In the process of obtaining our distributed algorithm, we also obtain a deterministic non-LP-based al-

gorithm in the LOCAL model (with polynomial message sizes) in a polylogarithmic number of rounds, via

reduction to the maximal independent set (MIS) problem:

3O(α) is the asymptotically optimal approximation factor for polynomial time algorithms in the centralized and distributed

settings i.e. assuming processors have polynomially-bounded processing power.
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Theorem 1.4. Suppose there is a deterministic (resp., randomized) distributed algorithm in the LOCAL

model for computing an MIS on a general graph in R rounds. Then, for graphs of arboricity α, there

is a deterministic (resp., randomized) distributed algorithm in the LOCAL model that gives an O(α)-
approximation for MDS in O(Rα2 log n) rounds.

While Theorem 1.4 is the first deterministic non-LP-based algorithm to achieve an O(α)-approximation,

we note that the LP-based approach obtained by combining [KMW06] and [BU17] appears to achieve fewer

rounds and work in the CONGEST model. Theorem 1.4 is not our main result and is used as a stepping stone

towards our O(α log n) round algorithm in the CONGEST model.

Wider applicability We demonstrated the applicability of our centralized combinatorial algorithm to the

distributed setting. We anticipate that the core idea behind our centralized algorithm could be applied more

broadly, to other settings that involve locality. Perhaps the prime example in this context is the standard

setting of dynamic graph algorithms, where the graph undergoes a sequence of edge updates (a single edge

update per step), and the algorithm should maintain the graph structure of interest (O(α)-approximate MDS

in our case) with a small update time — preferably poly log(n) and ideally O(1).

1.4 Technical overview

Centralized algorithm As a starting point, we consider the algorithm of Jones, Lokshtanov, Ramanujan,

Saurabh, and Suchỳ [JLR+13], which achieves an O(α2)-approximation in linear time. Their algorithm

is as follows. They iteratively build a dominating set D and maintain a partition of the remaining vertices

into the dominated vertices B (the vertices that have a neighbor in D), and the undominated vertices W .

The basic property of arboricity α graphs used by their algorithm is that every induced subgraph contains a

vertex of degree O(α). They begin by choosing a vertex v with degree O(α) and adding v along with v’s

entire neighborhood N(v) to D. The intuition behind this is that at least one vertex in {v} ∪N(v) must be

in OPT (an optimal dominating set), since OPT must dominate v. Hence, they add at least one vertex in

OPT and use that to pay for adding O(α) vertices not in OPT . We say that a vertex w witnesses v and the

vertices in N(v) that are added to D, if w ∈ OPT ∩ ({v} ∪ N(v)). Now, the goal of the algorithm is to

iteratively choose vertices v to add to D along with O(α) many of v’s neighbors so that each vertex in OPT
witnesses O(α) vertices v along with O(α) neighbors for each such vertex v. That is, each vertex in OPT
witnesses O(α2) vertices in D, which yields an O(α2)-approximation.

To choose which vertices v and which O(α) of v’s neighbors to add to D, they partition the set B into

two subsets Blow and Bhigh, which are the sets of vertices in B with low and high degree to W , respectively,

where the degree threshold is δα for some constant δ. Then, they choose a vertex v with degree O(α) in the

graph induced by W ∪Bhigh, and add v to D along with v’s O(α) neighbors that are in W ∪Bhigh. In the

interest of brevity, we will not motivate why this scheme achieves the desired outcome that each vertex in

OPT witnesses O(α2) vertices in D.

The key innovation in our algorithm that allows us to reduce the approximation factor from O(α2) to

O(α) is a simple but powerful idea. After choosing a vertex v to add to D, we do not immediately add O(α)
of v’s neighbors to D. Instead v casts a “vote” for these O(α) neighbors, and only once a vertex gets δα
many votes (for a constant δ) is it added to D. With this modification, we can argue that each vertex in OPT
still witnesses O(α) such vertices v as in the previous approach, but the catch here is that each such vertex

v contributes only O(1) neighbors to D on average, so each vertex in OPT only witnesses a total of O(α)
vertices in D, rather than O(α2). Moreover, it is straightforward to implement this algorithm in linear time.
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Distributed algorithms using MIS This section concerns the proof of Theorem 1.4: our reduction from

MDS to MIS in the LOCAL model. This section also concerns a modification of this reduction that gives an

O(α2 log2 n) round algorithm in the CONGEST model. We use this algorithm as a stepping stone towards

obtaining our main distributed algorithm (Theorem 1.3) which runs in O(α log n) rounds in the CONGEST

model.

We adapt our centralized algorithm to the distributed setting as follows. Recall that in our centralized

algorithm, we repeatedly choose a vertex v that has low degree with respect to the graph induced by W ∪
Bhigh, add v to D, and cast a vote for each vertex in N(v) ∩ (W ∪ Bhigh). For our distributed algorithms,

we would like to choose many such vertices v and process them in parallel. In fact, a constant fraction of

the vertices in W ∪ Bhigh could be chosen as our vertex v since a constant fraction of vertices in a graph

of arboricity α have degree O(α). However, we cannot simply process all of these vertices in parallel. In

particular, if a vertex u has many neighbors being processed in parallel, u might accumulate many votes

during a single round. This would invalidate the analysis of the algorithm, which relies on the fact that once

a vertex u receives δα votes, u enters D.

To overcome this issue, we compute an MIS with respect to a 2-hop graph built from a carefully chosen

subgraph of “candidate” vertices, and only process the vertices in this MIS in parallel. This MIS has two

useful properties: 1. Its maximality implies that in any 2-hop neighborhood of a candidate vertex there

is a vertex in the MIS; this helps to bound the number of rounds, and 2. Its independence implies that

every vertex has at most one neighbor in the MIS, which ensures that any vertex can only receive one vote

per round. To conclude, this approach gives a reduction from distributed MDS to distributed MIS in the

LOCAL model. This approach can be made to work in the CONGEST model by replacing the black-box

MIS algorithm with a 2-hop version of Luby’s algorithm.

Faster randomized distributed algorithm In the CONGEST model, our distributed algorithm using MIS

runs in O(α2 log2 n) rounds with high probability. We devise a new, more nuanced algorithm that decreases

the number of rounds to O(α log n) with high probability. Our new algorithm is based on our previous

algorithm, but with two key modifications, which save factors of log n and α, respectively.

Our first key modification, which shaves a log n factor from the number of rounds, is that we do not run

an MIS algorithm as a black box. Instead, we run only a single phase of a Luby-like MIS algorithm before

updating the data structures. Intuitively, this saves a log n factor because we are running just one phase

of a O(log n)-phase algorithm, but it is not clear a priori whether we achieve the same progress as Luby’s

algorithm in a single phase. We demonstrate that this is indeed the case via more refined treatment of the

behavior of each edge.

Our second key modification, which shaves an α factor from the number of rounds, concerns the Luby-

like algorithm. Recall that in Luby’s algorithm, each vertex v picks a random value p(v) and then joins the

MIS if p(v) is the local minimum. In our algorithm, a vertex v instead joins the dominating set if p(v) is

an α-minimum, which roughly means that p(v) is among the α smallest values that it is compared to. We

show that with this relaxed definition, we still have the desired property that no vertex receives more than

δα votes in a single round.

The main technical challenge is the analysis of the number of rounds. It is tempting to use an analysis

similar to that of Luby’s algorithm, where we count the expected number of “removed edges” over time.

However, our above modifications introduce several complications that preclude such an analysis. Instead,

we use a carefully chosen function to measure our progress. Throughout the algorithm, we add “weight”

to particular edges, and our function measures the “total available weight”. Specifically, whenever a vertex

v is added to the dominating set, v adds weight to a particular set of edges in its 2-hop neighborhood. We
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show that the total amount of weight added in a single iteration of the algorithm decreases the total available

weight substantially, which allows us to bound the total number of iterations.

1.5 Organization

Section 2 is for preliminaries. In Section 3, we present our centralized algorithm (Theorem 1.2). In Section 4,

we present our distributed algorithms using MIS: in the LOCAL model we prove Theorem 1.4, and in the

CONGEST model we give a randomized algorithm with O(α2 log2 n) rounds that serves as a warm-up for

the faster algorithm of Theorem 1.3. In Section 5, we prove Theorem 1.3.

2 Preliminaries

Let G = (V,E) be an unweighted undirected graph. For any S ⊆ V , let G[S] be denote the graph induced

by S. For any v ∈ V , NG(v) denotes the neighborhood of v, and degG(v) = |NG(v)| denotes the degree of

v. When the graph G is clear from context, we omit the subscript.

We define the LOCAL and CONGEST models (cf. [Lin87, Lin92, Pel00]):

Definition 2.1. The LOCAL model: given a graph G on n vertices, every vertex is a separate processor

running one process. Every vertex starts knowing only n and it’s own unique identifier. The algorithm

works in synchronous rounds, and in every round each vertex performs some computation based on its own

current information, then it sends a message to its neighbors, and finally it receives the messages sent to it

by its neighbors in that round.

Definition 2.2. The CONGEST model: given a graph G on n vertices, every vertex is a separate processor

running one process. Every vertex starts knowing only n and it’s own unique identifier. The algorithm works

in synchronous rounds, and in every round each vertex performs some computation based on its own current

information, then it sends a message to its neighbors, of at most B = O(log n) bits on each of its edges, and

finally it receives the messages sent to it by its neighbors in that round.

The following two claims about graphs of bounded arboricity will be useful. A simple proof of both can

be found in [AMZ97].

Claim 2.3. In a graph of arboricity α, every induced subgraph contains a vertex of degree at most 2α.

Claim 2.4. In a graph G with arboricity α, at least half of the vertices in any induced subgraph have degree

at most 4α.

3 Linear time O(α)-approximation for MDS

In this section we will prove Theorem 1.2, which we recall:

Theorem 1.2. For graphs of arboricity α, there is an O(m) time O(α)-approximation algorithm for MDS.
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3.1 Algorithm

A description of our algorithm is as follows. See Algorithm 1 for the pseudocode.

We first introduce some notation. We define a constant δ and let δα be our degree threshold. We will set

δ = 2, but we use the variable δ so that our analysis also applies to our distributed algorithms, where δ is a

different constant. Following the terminology of [JLR+13], we maintain a partition of the vertices into three

sets: D, B, and W , where initially D = ∅, B = ∅, and W = V . The set D is our current dominating set,

the set B is the vertices not in D with at least one neighbor in D, and the set W is the remaining vertices,

i.e. the undominated vertices. The set B is further partitioned into two sets based on the degree of each

vertex to W . Let Blow = {v ∈ B : |N(v) ∩W | ≤ δα} and let Bhigh = B \Blow. Also, each vertex v has

a counter cv initialized to 0. (The counter cv counts the number of “votes” that v receives, for the notion of

“votes” introduced in the technical overview.)

The algorithm proceeds as follows. While there still exists an undominated vertex (i.e. while W 6= ∅),
we do the following. First, we find a vertex w ∈ W such that |N(w) ∩ (W ∪Bhigh)| ≤ δα. Such a vertex

w exists since δ = 2: by Claim 2.3, G[W ∪ Bhigh] contains a vertex of degree at most δα, and this vertex

cannot be in Bhigh by the definition of Bhigh, so it must be in W . Then, for all v ∈ N(w) ∩ (W ∪Bhigh),
we increment cv, and if cv = δα, then we add v to D. Lastly, we add w to D. This concludes the description

of the algorithm.

Algorithm 1 Linear time O(α)-approximation for MDS

1: Initialize partition: D ← ∅, B = ∅, Bhigh ← ∅, Blow ← ∅, W ← V
2: Initialize counters: ∀v ∈ V : cv ← 0
3: while W 6= φ do

4: w ← a vertex in W with |N(w) ∩ (W ∪Bhigh)| ≤ δα
5: for each v ∈ N(w) ∩ (W ∪Bhigh) do

6: cv ← cv + 1
7: if cv = δα then

8: D ← D ∪ v

9: Update partition:

10: D ← D ∪ w
11: B = {v : N(v) ∩D 6= ∅}
12: Blow = {v ∈ B : |N(v) ∩W | ≤ δα}
13: Bhigh = B \Blow

14: W = V \ (D ∪B)

15: Return D

3.2 Analysis

First, we note that D is indeed a dominating set because the algorithm only terminates once the set W of

vertices that are not dominated, is empty.

3.2.1 Approximation ratio analysis

Let OPT be an optimal MDS. We will prove that the set D returned by Algorithm 1 is of size at most

4δα · |OPT |.
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We first make the following simple claim about the behavior of the partition of vertices over time.

Claim 3.1.

1. No vertex can ever leave D.

2. No vertex can ever enter W from another set.

3. No vertex can ever leave Blow.

Proof. Item 1 is by definition. Item 2 follows from item 1 combined with the fact that W is defined as the

set of vertices with no neighbors in D. Now we prove item 3. A vertex from Blow cannot enter W by item

2. A vertex from Blow cannot enter Bhigh since the degree partition of B is based on degree to W , and

by item 2 the degree of any vertex to W can only decrease over time. A vertex from Blow cannot enter D
because there are two ways a vertex can enter D: on Line 8 a vertex can only enter D from W ∪Bhigh, and

on Line 10 a vertex can only enter D from W .

We partition D into two sets, Dactive and Dpassive. The set Dactive consists of the vertices added to D
due to being chosen as the vertex w; that is, the vertices added to D in Line 10 of Algorithm 1. The set

Dpassive consists of the vertices added to D as a result of their counters reaching δα; that is, the vertices

added to D in Line 8 of Algorithm 1. To bound |D|, we will individually bound |Dactive| and |Dpassive|.
We first bound |Dactive|.

Claim 3.2. |Dactive| ≤ 2δα · |OPT |.

Proof. For each vertex v ∈ Dactive, we assign v to an arbitrary vertex u ∈ N(v) ∩ OPT . Such a vertex u
exists since OPT is a dominating set. For each vertex u ∈ OPT , let Du ⊆ Dactive be the set of vertices

assigned to u. Our goal is to show that for each u ∈ OPT , |Du| ≤ 2δα.

Fix a vertex u ∈ OPT . We partition the vertices v ∈ Du into two sets Du[Blow] and Du[Bhigh ∪W ].
Let Du[Blow] ⊆ Du be the vertices that enter D while u is in Blow. Let Du[Bhigh ∪ W ] ⊆ Du be

vertices that enter D while u is in Bhigh ∪ W . We note that no vertex in Du can enter D while u is in

D, because by definition, every vertex in Dactive ⊇ Du moves directly from W to D. Therefore, Du =
Du[Blow] ∪Du[Bhigh ∪W ].

We first bound
∣

∣Du[Blow]
∣

∣. By definition, while u is in Blow, u has at most δα neighbors in W . Since

no vertex can ever enter W by Claim 3.1, no vertex can ever enter N(u) ∩W . Therefore, starting from the

time that u first enters Blow, the total number of vertices ever in N(u) ∩W is at most δα. Every vertex

v ∈ Du[Blow] is in N(u) ∩W right before moving to D, so
∣

∣Du[Blow]
∣

∣ ≤ δα.

Now, we bound Du[Bhigh∪W ]. By the specification of the algorithm, whenever a vertex v ∈ Du[Bhigh∪
W ] enters D, the counter xu is incremented. Once xu reaches δα, u is added to D. Therefore,

∣

∣Du[Bhigh ∪
W ]

∣

∣ ≤ δα.

Putting everything together, we have |Du| =
∣

∣Du[Blow]
∣

∣+
∣

∣Du[Bhigh ∪W ]
∣

∣ ≤ 2δα.

Now we bound Dpassive.

Claim 3.3. |Dpassive| ≤ |Dactive|.

Proof. We will show that every vertex in Dpassive has at least δα neighbors in Dactive, while every vertex in

Dactive has at most δα neighbors in Dpassive. Then, by the pigeonhole principle, it follows that |Dpassive| ≤
|Dactive|.

First, we will show that every vertex in Dpassive has at least δα neighbors in Dactive. By definition,

every vertex v ∈ Dpassive has had its counter cv incremented δα times. Every time cv is incremented, one
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of v’s neighbors (the vertex w from Algorithm 1) is added to D, joining Dactive. Each such neighbor of v
that joins Dactive is distinct since every vertex can be added to D at most once by Claim 3.1. Therefore,

every vertex in Dpassive has at least δα neighbors in Dactive.

Now we will show that every vertex in Dactive has at most δα neighbors in Dpassive. Fix a vertex

w ∈ Dactive. By definition, when w enters D, w is moved straight from W to D. Thus, by Claim 3.1,

w is never in B. Therefore, w is added to D before any of its neighbors are added to D, as otherwise w
would enter B. Therefore, when w enters D, all of w’s neighbors that will enter Dpassive are in B ∪W . By

Claim 3.1, no vertex in Blow can ever enter D, so actually, when w enters D all of w’s neighbors that will

enter Dpassive are in Bhigh∪W . By definition, when w enters D, w has at most δα neighbors in Bhigh∪W .

Therefore, w has at most δα neighbors in Dpassive.

Combining Claim 3.2 and Claim 3.3, we have that |D| = |Dactive|+ |Dpassive| ≤ 4δα · |OPT |.

3.2.2 Running time analysis

Our goal is to prove that Algorithm 1 runs in O(m) time.

Throughout the execution of the algorithm, we maintain a data structure that consists of the following:

• The partition of V into D, Blow, Bhigh, W

• The induced graph G[W ∪Bhigh] represented as an adjacency list

• For each vertex v ∈W ∪Bhigh, the quantities |N(v) ∩W | and |N(v) ∩ (W ∪Bhigh)|

• A set Wlow = {v ∈W : |N(v) ∩ (W ∪Bhigh)| ≤ δα}

First, we show that the data structure can be initialized in O(m) time. Initially D ∪ Bhigh ∪ Blow = ∅,
W = V , and the induced graph G[W ∪ Bhigh] = G. For every vertex v ∈ V , initially |N(v) ∩W | =
|N(v) ∩ (W ∪Bhigh)| = deg(v). Initially Wlow = {v ∈ V : deg(v) ≤ δα}.

Now, we show that the data structure can be maintained in O(m) time. In particular, we will show that

to maintain this data structure, it suffices to scan the neighborhood of a vertex every time it either leaves

W ∪ Bhigh (and enters Blow ∪ D), enters D, or leaves W . Note that by Claim 3.1, each of these events

only happens once per vertex. As a consequence, the total amount of time spent scanning neighborhoods is

O(m).
We assume inductively that we have maintained the data structure so far, and we consider the next

iteration of the for each loop. First, we consider maintenance of the partition of V into D, Blow, Bhigh, and

W . During an iteration, the only changes made to the partition are the addition of at least one vertex to D
(on Line 8 and/or Line 10), and the resulting update of the rest of the partition. To maintain the partition we

do the following. When we add a vertex v to D, we remove v from whichever set it was previously in. Then,

we update B by scanning N(v) and adding every vertex u ∈ N(v) \D to B, removing u from whichever

set it was previously in. Updating D and B automatically updates W since W = V \ (D ∪ B). Before

updating Blow and Bhigh, we first need to update |N(v) ∩W |. To do this, whenever a vertex v leaves W ,

we scan N(v) and for each u ∈ N(v), we decrement |N(u) ∩W |. Whenever we decrement |N(u) ∩W |
down to δα for a vertex u ∈ Bhigh, we move u to Blow. This concludes the maintenance of the partition of

V into D, Blow, Bhigh, and W .

It remains to update G[W ∪Bhigh], |N(v) ∩ (W ∪Bhigh)|, and Wlow. Whenever we remove a vertex v
from W∪Bhigh, we scan N(v) and for each vertex u ∈ N(v), we remove the edge (u, v) from G[W∪Bhigh]
and decrement |N(u) ∩ (W ∪ Bhigh)|. Whenever we decrement |N(u) ∩ (W ∪ Bhigh)| down to δα for

u ∈W , we add u to Wlow. This concludes the running time analysis for maintaining the data structure.
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Now we will show that maintaining the data structure allows the algorithm to run in time O(m). First,

each iteration of the while loop adds at least one vertex to D (on Line 10), and by Claim 3.1, each vertex is

added to D at most once, so the total number of iterations of the while loop is at most n. Now we will go

line by line through the body of the while loop. On Line 4, we let w be a vertex in W with |N(w) ∩ (W ∪
Bhigh)| ≤ δα. Such a vertex w can be found in constant time since we maintain a set Wlow of precisely the

vertices that satisfy this condition. On Line 5, we loop through every vertex in |N(w) ∩ (W ∪Bhigh)|. The

number of iterations of this loop is at most δα by choice of w. Furthermore, identifying all of the vertices

to loop through takes time O(α) since our data structure explicitly maintains G[W ∪ Bhigh]. In Line 6

through Line 10, we update counters and then add vertices to D, which takes constant time per iteration of

the loop. In Line 11 through Line 14 we update B, Blow, Bhigh, and W , which takes constant time since

we store these sets in our data structure. Thus, given access to the data structure, the algorithm runs in time

O(nα) = O(m).
Previously we showed that maintaining the data structure takes time O(m), so we have that the entire

algorithm takes time O(m).

4 Distributed O(α)-approximation for MDS using MIS

In this section we will prove Theorem 1.4, which we recall:

Theorem 1.4. Suppose there is a deterministic (resp., randomized) distributed algorithm in the LOCAL

model for computing an MIS on a general graph in R rounds. Then, for graphs of arboricity α, there

is a deterministic (resp., randomized) distributed algorithm in the LOCAL model that gives an O(α)-
approximation for MDS in O(Rα2 log n) rounds.

In this section we also show how to modify of the proof of Theorem 1.4 to get a bound in the CONGEST

model:

Theorem 4.1. For graphs of arboricity α, there is a randomized distributed algorithm in the CONGEST

model that gives an O(α)-approximation for MDS that runs in O(α2 log2 n) rounds with high probability.

In the next section, we will use the algorithm of Theorem 4.1 as a starting point to get an improved

algorithm with O(α log n) rounds.

4.1 Algorithm

Overview Our algorithm is an adaptation of our centralized algorithm from Theorem 1.2 to the distributed

setting. Recall that in our centralized algorithm, we repeatedly choose a vertex w that has low degree with

respect to the graph induced by W ∪ Bhigh, add w to the dominating set, and increment the counter of w’s

neighbors that are in W ∪Bhigh. For our distributed algorithms, we would like to choose many such vertices

w and process them in parallel. There are in fact many vertices that we could choose as our vertex w since

Claim 2.4 implies that at least half of the vertices in any induced subgraph has degree at most 4α. However,

we cannot simply process all of these vertices at once. In particular, if a vertex v has many neighbors

being processed in parallel, v might have its counter incremented once for each of these neighbors. This

is undesirable because the analysis of our centralized algorithm relies on the fact that once a vertex has its

counter incremented to δα, it is added to the dominating set. Therefore, we would like to guarantee that

only a limited number of v’s neighbors are processed in parallel.
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This is where the MIS problem becomes relevant: we ensure that no vertex has more than one neighbor

being processed in parallel by taking an MIS I with respect to the graph Glow defined as follows: the vertex

set of Glow is the set of candidates for w, that is, the set of vertices v in W with |N(v)∩(W ∪Bhigh)| ≤ 4α.

There is an edge (u, v) in Glow if there is a path of length 2 between u and v in G[W ∪ Bhigh]. Note that

because no vertex has more than one neighbor in I , we can process all vertices in I in parallel and only

increase the counter of each vertex by at most one.

The algorithms for Theorem 1.4 and Theorem 4.1 are identical except for the MIS subroutine. Theorem 1.4

is for the LOCAL model so we can simply run any distributed MIS algorithm that works in the LOCAL model

on Glow as a black box. On the other hand, Theorem 4.1 is for the CONGEST model and because Glow can

have higher degree than G, running an MIS algorithm directly on Glow could result in messages that become

too large after translating the algorithm to run on G. To bypass this issue, we use a simple modification of

Luby’s algorithm that computes I using only small messages, without increasing the number of rounds.

Algorithm description We provide a description of the algorithms here, and include the pseudocode in

Algorithm 2. The only difference between the algorithms for Theorem 1.4 and Theorem 4.1 is the MIS

subroutine, which we will handle separately later.

The sets D, B, W , Bhigh, Blow, and Wlow are defined exactly the same as in our centralized algorithm,

except we set δ = 4 instead of δ = 2 so that we can apply Claim 2.4 instead of Claim 2.3. We repeat the

definitions here for completeness. The set D is our current dominating set, the set B is the vertices not in D
with at least one neighbor in D, and the set W is the remaining vertices, i.e. the undominated vertices. The

set B is further partitioned into two sets based on the degree of each vertex to W . Let Blow = {v ∈ B :
|N(v) ∩W | ≤ δα} and let Bhigh = B \Blow. Also, let Wlow = {v ∈ W : |N(v) ∩ (W ∪Bhigh)| ≤ δα}.
Lastly, each vertex v has a counter cv.

Each vertex v maintains the following information:

• The set(s) among D, B, W , Bhigh, Blow, and Wlow that v is a member of.

• The quantity |N(v) ∩W |.

• The quantity |N(v) ∩ (W ∪Bhigh)|.

• The counter cv.

At initialization, every vertex v is in W (so D and B are empty). Consequently, the quantities |N(v)∩W |
and |N(v) ∩ (W ∪ Bhigh)| are both equal to deg(v). For each vertex v, if deg(v) ≤ δα, then v ∈ Wlow.

Each counter cv is initialized to 0.

It will be useful to define the graph Glow, which changes over the execution of the algorithm:

Definition 4.2. Let Glow be the graph with vertex set Wlow such that there is an edge (u, v) in Glow if there

is a path of length 2 between u and v in G[W ∪Bhigh].

The algorithm proceeds as follows. Repeat the following until W is empty. Compute an MIS I with

respect to Glow. This step is implemented differently for Theorem 1.4 and Theorem 4.1, and we describe

the details of this step later.

Then, each vertex in I adds itself to D and tells its neighbors to increment their counters. Whenever the

counter of a vertex reaches δα, it enters D. (Note that if a vertex u enters D as a result of cu reaching δα,

cu does not tell its neighbors to increment their counters.)

Whenever a vertex moves from one set of the partition to another, it notifies each of its neighbors v so

that v can update the quantities |N(v) ∩W | and |N(v) ∩ (W ∪ Bhigh)|, and move to the appropriate set.
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When no more vertices are left in W , Bhigh is also empty, and all processors terminate. This concludes the

description of the algorithm. See Algorithm 2 for the precise ways that vertices react to the messages that

they receive.

MIS subroutine Theorem 1.4 is a reduction from MDS to MIS, while Theorem 4.1 is not, so we need to

describe the MIS subroutine (in the CONGEST model) only for Theorem 4.1. Recall that we cannot use a

reduction to MIS in the CONGEST model because running an MIS algorithm directly on Glow could result

in messages that become too large after translating the algorithm to run on G.

Our goal is to compute an MIS with respect to Glow, using small messages sent over G. We use a

simple adaptation of Luby’s algorithm. Recall that Luby’s algorithm builds an MIS I as follows. While the

graph is non-empty, do the following: Add all singletons to I . Then, each vertex v picks a random value

p(v) ∈ [0, 1]. Then, all vertices whose value is less than that of all of their neighbors are added to I . Then,

all vertices that are in I or have a neighbor in I are removed from the graph for the next iteration of the loop.

We use the following adaptation of Luby’s algorithm. See Algorithm 3 for the pseudocode. Initially,

the set L of live vertices is the set Wlow. While L 6= ∅, do the following: Each vertex v ∈ L picks a

random value p(v) ∈ [0, 1]. In the first round each v ∈ L sends p(v) to its neighbors. In the second

round, each vertex that receives one or more values p(v), forwards to its neighbors the minimum value that

it received. Then, for each vertex v ∈ Wlow, if p(v) is equal to the minimum value that v receives in the

second round, v is added to I . When v is added to I , v notifies its neighbors, and each neighbor of v that is

in W ∪Bhigh forwards this notification to their neighbors. Note that each vertex has at most one neighbor in

I , so forwarding this notification only takes one round. Now, every vertex knows whether it has a neighbor

with respect to Glow that is in I , and every vertex that does is removed from L for the next iteration of the

loop.

The proof that this algorithm runs in O(log n) rounds with high probability and produces an MIS with

respect to Glow is the same as the analysis of Luby’s algorithm and we will not include it here.

4.2 Analysis

The proof that Algorithm 2 achieves an O(α)-approximation is precisely the same as that of the centralized

algorithm (see Section 3.2.1) given that no counter cv ever exceeds δα. This is true because in a single

iteration of the while loop each vertex can only have its counter incremented once since only vertices in the

MIS I send INCREMENT COUNTER messages, and each vertex in W ∪Bhigh only has at most one neighbor

in I . This bound on the number of neighbors in I holds, since otherwise there is a path of length 2 between

two vertices in G[W ∪ Bhigh], making I not an independent set in Glow. Once cv reaches δα, the vertex v
enters D, which prevents cv from increasing in the future.

Our goal in this section is to prove that if the MIS subroutine takes R rounds, then Algorithm 2 takes

O(Rα2 log n) rounds. First, we note that the body of the while loop besides the MIS subroutine takes a

constant number of rounds. Thus, our goal is to show that the number of iterations of the while loop is

O(α2 log n).
We begin with a simple claim about the behavior of the partition of vertices over time:

Claim 4.3.

1. No vertex can ever enter W from another set.

2. No vertex can ever enter Wlow from another set.
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Algorithm 2 Distributed O(α)-approximation for MDS using MIS

1: Initialize partition: D ← ∅, Bhigh ← ∅, Blow ← ∅, W ← V , Wlow ← {v ∈ W : |N(v) ∩ (W ∪
Bhigh)| ≤ δα}

2: Initialize counters: ∀v ∈ V : cv ← 0
3: Initialize degrees: ∀v ∈ V : |N(v) ∩W | = deg(v), |N(v) ∩ (W ∪Bhigh)| = deg(v)
4: while W 6= ∅ do

5: Find an MIS I with respect to the graph Glow

6: Each vertex v runs the following procedure:

7: if v ∈ I then

8: Move v to D
9: Send INCREMENT COUNTER message to neighbors

10: Send MOVED FROM W TO D message to neighbors

11: if v ∈W ∪Bhigh and v receives INCREMENT COUNTER then

12: Increment cv
13: if cv = δα then

14: if v ∈W then

15: Send MOVED FROM W TO D message to neighbors

16: if v ∈ Bhigh then

17: Send MOVED FROM Bhigh TO D message to neighbors

18: Move v to D

// The rest of the algorithm is bookkeeping

19: if v receives MOVED FROM W TO D then

20: Decrement |N(v) ∩W |
21: if v ∈ Bhigh and |N(v) ∩W | = δα then

22: Move v to Blow

23: if v receives MOVED FROM W TO D or MOVED FROM Bhigh TO D then

24: Decrement |N(v) ∩ (W ∪Bhigh)|
25: if v ∈W and |N(v) ∩W | ≤ δα then

26: Move v to Blow

27: Send MOVED FROM W TO Blow message to neighbors

28: else if v ∈W and |N(v) ∩W | > δα then

29: Move v to Bhigh

30: Send MOVED FROM W TO Bhigh message to neighbors

31: if v receives MOVED FROM W TO Blow or MOVED FROM W TO Bhigh then

32: Decrement |N(v) ∩W |
33: if v ∈ Bhigh and |N(v) ∩W | = δα then

34: Move v to Blow

35: if v receives MOVED FROM W TO Blow then

36: Decrement |N(v) ∩ (W ∪Bhigh)|
37: if v ∈W and |N(v) ∩ (W ∪Bhigh)| = δα then

38: Add v to Wlow

13



Algorithm 3 Distributed MIS with respect to Glow in the CONGEST model

1: L = Wlow

2: while L 6= ∅ do

3: Each vertex v runs the following procedure:

4: if v ∈ L then

5: p(v)← a value in [0, 1] chosen uniformly at random

6: Send p(v) message to neighbors

7: Send mv = miny∈N(v)∩L p(y) message to neighbors

8: if p(v) = miny∈N(v) my then

9: Add v to I
10: Send ADDED message to neighbors

11: if v ∈W ∪Bhigh and v receives ADDED then

12: Send NEIGHBOR ADDED message to neighbors

13: if v receives NEIGHBOR ADDED and v ∈ L then

14: Remove v from L

Proof. The proof of item 1 is the same as in the proof of Claim 3.1. For item 2, we have that by item 1, no

vertex can ever enter Wlow from any set other than Whigh. However, it is impossible for a vertex to move

from Whigh to Wlow since the quantity N(v) ∩ (W ∪ Bhigh) can only decrease over time (in Algorithm 2,

this quantity is only decremented).

We begin with the following claim, which when combined with Claim 4.3, implies that each vertex only

spends a limited number of rounds in Wlow.

Claim 4.4. For every vertex v that is ever in Wlow, within (δα)2 iterations of the while loop after v joins

Wlow, v leaves W .

Proof. First we note that by Claim 4.3 no vertex can ever enter Wlow from another set. Suppose v is in Wlow

at the beginning of an iteration of the while loop. Because I is an MIS with respect to Glow, if v does not

join I during this iteration, then v has a neighbor y ∈ W ∪ Bhigh such that a neighbor z of y joins I . As a

result, z immediately joins D and cy is incremented. Thus, during every iteration that v remains in Wlow,

a vertex in N(v) ∩ (W ∪ Bhigh) has its counter incremented. Recall that whenever a vertex has its counter

incremented δα times, it joins D. Because v ∈Wlow, we have that |N(v)∩ (W ∪Bhigh)| ≤ δα. Therefore,

the event that a vertex in N(v) ∩ (W ∪ Bhigh) has its counter incremented can only happen at most (δα)2

times. Thus, v can only remain in Wlow for (δα)2 iterations of the while loop.

We will complete the analysis using the fact that many vertices are in Wlow at any given point in time.

In particular, Claim 2.4 implies that at least half of the vertices in W ∪Bhigh are in Wlow. This implies that

at least half of the vertices in W are in Wlow. Formally, we divide the execution of the algorithm into phases

where each phase consists of (δα)2 iterations of the while loop. At the beginning of any phase, at least half

of the vertices in W are in Wlow. By the end of the phase, all of these vertices have left W by Claim 4.4.

Therefore, each phase witnesses at least half of the vertices in W leaving W . By Claim 4.3, no vertex can

re-enter W , so there can only be O(log n) phases.

Putting everything together, there are O(log n) phases, each consisting of (δα)2 iterations of the while

loop, and one iteration of the while loop takes O(R) rounds. Therefore, the total number of rounds is

O(Rα2 log n).
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For Theorem 4.1, R = O(log n), so the number of rounds is O(α2 log2 n).

5 Faster Randomized Distributed O(α)-approximation for MDS

In this section we will prove Theorem 1.3, which we recall:

Theorem 1.3. For graphs of arboricity α, there is a randomized distributed algorithm in the CONGEST

model that gives an O(α)-approximation for MDS and runs in O(α log n) rounds. The bound on the number

of rounds holds with high probability (and in expectation).

5.1 Algorithm

Overview We use our O(α2 log2 n) round algorithm from Theorem 4.1 as a starting point (though the

algorithm description and analysis are self-contained). Our goal is to shave both a log n factor and an

α factor from the number of rounds. To do so, we use a combination of two key modifications, which

respectively address the two factors that we wish to shave.

Our first key modification, which shaves a log n factor from the number of rounds, is that instead of using

a Luby-style algorithm as a black box, we open the box and run only one phase of a Luby-style algorithm at

a time. Here, one phase means that each participating vertex v picks a single random value p(v) and enters

D if p(v) is a local minimum. Between each such phase, we update the dominating set D as well as the

information stored by each vertex. This way, we can embed the analysis of the Luby-style algorithm into

our analysis instead of repeatedly paying for for all log n phases of a black-box algorithm.

Our second key modification, which shaves an α factor from the number of rounds, is that instead of

adding v to D only when p(v) is the single local minimum, we allow v to be added to D when p(v) is an

α-minimum. The definition of an α-minimum is slightly nuanced due to the fact that we need to be able

to compute it using small messages, but it roughly means that p(v) is among the α smallest values that

it is compared to. Using this modification we can ensure that during each iteration of our algorithm each

vertex only has its counter incremented by O(α). Even though each vertex in our previous O(α2 log2 n)-
round algorithm only had its counter incremented by at most 1 during each iteration, this change does not

asymptotically increase the approximation factor.

The main technical part of the argument is the probabilistic analysis of the number of rounds. We would

like to use an analysis similar to that of Luby’s algorithm, however there are a few obstacles. Recall that

to analyze Luby’s algorithm, one can argue that after a single phase, a constant fraction of the edges in the

graph are removed in expectation. Our first obstacle is that we are running a phase of a Luby-style algorithm

on an auxiliary graph that is different from our original graph; in particular, an edge in the auxiliary graph

can represent a 2-hop path in the original graph, and it is not clear how removing an edge from the auxiliary

graph translates to the original graph. That is, if a constant fraction of edges are removed in the auxiliary

graph, this doesn’t necessarily mean that a constant fraction of edges in the original graph are removed. A

second obstacle is that we need a more nuanced notion than “removing an edge” as in Luby’s algorithm since

due to our second modification, up to α vertices could all affect the same edge simultaneously. To address

these obstacles, we use a carefully chosen function to measure our progress. Throughout the algorithm,

we add “weight” to particular edges, and our function measures the “total available weight”. Specifically,

whenever a vertex v is added to the dominating set, v adds weight to a particular set of edges in its 2-hop

neighborhood. We show that the total amount of weight added in a single iteration of the algorithm decreases

the expected total available weight substantially, which allows us to bound the total number of iterations.
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Algorithm Description We include a description of the algorithm here, and include the pseudocode in

Algorithm 4.

The partition of the vertices is exactly the same as in Algorithm 2, with the addition of the set Whigh.

We repeat all of the definitions for completeness. The set D is our current dominating set, the set B is

the vertices not in D with at least one neighbor in D, and the set W is the remaining vertices, i.e. the

undominated vertices. The set B is further partitioned into two sets based on the degree of each vertex to

W . Let Blow = {v ∈ B : |N(v) ∩ W | ≤ δα}, where δ = 4, and let Bhigh = B \ Blow. Also, let

Wlow = {v ∈W : |N(v) ∩ (W ∪Bhigh)| ≤ δα}. We additionally define Whigh = W \Wlow. Lastly, each

vertex v has a counter cv.

Each vertex v maintains the following information:

• The set(s) among D, B, W , Bhigh, Blow, Whigh, and Wlow that v is a member of.

• The quantity |N(v) ∩W |.

• The quantity |N(v) ∩ (W ∪Bhigh)|.

• The counter cv.

At initialization, every vertex v is in W (so D and B are empty). Consequently, the quantities |N(v)∩W |
and |N(v) ∩ (W ∪ Bhigh)| are both equal to deg(v). For each vertex v, if deg(v) ≤ δα, then v ∈ Wlow.

Each counter cv is initialized to 0.

It will be useful to define the graph Gbi ⊆ G that changes over the course of the execution of the

algorithm:

Definition 5.1. Gbi is a bipartite graph on the vertex set Bhigh ∪W . One side of the bipartition is Bhigh ∪
Whigh and the other side is Wlow. The edge set of Gbi is the set of edges in G with one endpoint in each

side of the bipartition.

The algorithm proceeds as follows. Repeat the following until W is empty. In the first round, each

vertex v ∈ Wlow picks a value p(v) ∈ [0, 1] uniformly at random and sends p(v) to its neighbors. The

next step is for v to determine whether p(v) is an α-minimum. p(v) is said to be an α-minimum if for every

u ∈ NGbi
(v), p(v) is among the α smallest values of vertices in NGbi

(u). To determine which values are

α-minima, in the second round each vertex u ∈ Bhigh ∪Whigh sends ACK to each vertex v ∈ NGbi
(u) such

that p(v) is among the α smallest values that u received. If v ∈ Wlow receives ACK from all u ∈ NGbi
(v),

then v is added to D (if NGbi
(v) is empty then v is added to D) and v tells its neighbors to increment their

counters (in the third round). Whenever the counter cu of a vertex u reaches δα, u enters D. (Note that if u
enters D as a result of cu reaching δα, cu does not tell its neighbors to increment their counters.)

Whenever a vertex v moves from one set of the partition to another, v notifies each vertex u ∈ N(v) so

that u can update the quantities |N(u)∩W | and |N(u)∩(W ∪Bhigh)|, and move to the appropriate set. The

bookkeeping for updating this information is identical to that of Algorithm 2. When no more vertices are

left in W , Bhigh is also empty, and all processors terminate. This concludes the description of the algorithm.

5.2 Analysis

We begin with a simple claim about the behavior of the partition of vertices over time:

Claim 5.2.

1. No vertex can ever leave D.
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Algorithm 4 Faster Randomized Distributed O(α)-approximation for MDS

1: Initialize partition: D ← ∅, Bhigh ← ∅, Blow ← ∅, W ← V , Wlow ← {v ∈ W : |N(v) ∩ (W ∪
Bhigh)| ≤ δα}, Whigh ←W \Wlow

2: Initialize counters: ∀v ∈ V : cv ← 0
3: Initialize degrees: ∀v ∈ V : |N(v) ∩W | = deg(v), |N(v) ∩ (W ∪Bhigh)| = deg(v)
4: while W 6= ∅ do

5: Each vertex v runs the following procedure:

6: if v ∈Wlow then

7: p(v)← a value in [0, 1] chosen uniformly at random

8: Send p(v) message to neighbors

9: if v ∈ Bhigh ∪Whigh then

10: Send ACK to each u ∈ NGbi
(v) such that p(u) is among the α smallest values v received

11: if v ∈Wlow and v receives ACK from all u ∈ NGbi
(u) then

12: Move v to D
13: Send INCREMENT COUNTER message to neighbors

14: Send MOVED FROM W TO D message to neighbors

15: Run Algorithm 2 starting from Line 11

2. No vertex can ever enter W ∪Bhigh from another set.

3. No vertex in Wlow can ever at a later point be in Bhigh ∪Whigh.

Proof. The proofs of items 1 and 2 follow from the proof of Claim 3.1. Item 3 holds because if a vertex v
is in Bhigh then |N(v) ∩W | > δα and if v is in Whigh then |N(v) ∩ (W ∪ Bhigh)| > δα. For any v, the

quantities |N(v) ∩W | and |N(v) ∩ (W ∪Bhigh)| can only decrease over time (they are only decremented

in Algorithm 4).

Next, we prove a simple claim that upper bounds the counter of each vertex:

Claim 5.3. For all v ∈ V , at all times cv < 2δα.

Proof. If for any v ∈ V , it happens that cv ≥ δα, then during the same iteration of the while loop, v enters

D (on Line 18), after which point v never leaves D (by Claim 5.2) so cv cannot ever change again. Thus,

it suffices to show that for all vertices v ∈ V \ D, during a single iteration of the while loop, cv can be

incremented at most δα times, leading to a maximum value of at most 2δα − 1. This is true for v ∈ Wlow

because |N(v) ∩ (W ∪ Bhigh)| ≤ δα, and only vertices in |N(v) ∩ (W ∪ Bhigh)| can tell v to increment

cv. On the other hand, if v ∈ W ∪ Bhigh, then a neighbor u of v only sends INCREMENT COUNTER if

p(u) is among the α smallest values in v’s neighborhood, so cv is only incremented α times during a single

iteration.

The analysis of correctness is the same as that of our centralized algorithm (see Section 3.2.1), with one

technicality: By Claim 5.3, the counter of each vertex has maximum value 2δα instead of δα, causing an

increase in the leading constant in the O(α) approximation factor.

Our goal in the rest of this section is to prove that Algorithm 4 runs in O(α log n) rounds with high

probability. Note that one iteration of the while loop takes a constant number of rounds. Thus, our goal is

to show that there are O(α log n) total iterations of the loop.
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For any vertex v ∈ V (Gbi), let N2(v) be the set of vertices in the 2-hop neighborhood of v with respect

to Gbi, and let E2(v) be the set of edges within 2 hops of v with respect to Gbi; that is, E2(v) contains the

edge (v, u) for all u ∈ NGbi
(v), and the edge (u, y) for all y ∈ NGbi

(u).
We divide the iterations of the while loop into two types. We say that an iteration is of type low degree

if at least half of the vertices v ∈ Wlow have |N2(v)| ≤ α. Otherwise, we say that an iteration is of type

high degree.

It is simple to deterministically bound the number of iterations of type low degree:

Claim 5.4. The total number of iterations of type low degree is O(log n).

Proof. By the specification of the algorithm, all vertices v with |N2(v)| ≤ α are added to D (on Line 12).

Thus, during an iteration of type low degree, at least half of the vertices in Wlow enter D. By Claim 2.4, at

least half of the vertices in W ∪ Bhigh are in Wlow. Thus, during an iteration of type low degree, at least

1/4 of the vertices in W ∪Bhigh enter D. By Claim 5.2, no vertex can ever enter W ∪Bhigh from another

set. Therefore, during every iteration of type low degree, W ∪Bhigh shrinks by a factor of at least 4. Thus,

there are only O(log n) iterations of type low degree.

It remains to bound the number of iterations of type high degree. Fix an iteration I of type high degree.

For the purpose of analysis, we assign each edge e ∈ E a weight w(e) that increases over the execution

of the algorithm. The rule for updating the weight of edges is as follows. Whenever a vertex v ∈ Wlow is

moved to D on Line 12 (as a result of p(v) being an α-minimum), v increments the weight of every edge in

E2(v).
We will define the available weight at iteration I as a function that will capture the total amount of

weight that could ever be added over all iterations starting from iteration I . Our goal is to provide:

1. an upper bound of α · |V (Gbi)|/4 for the available weight at iteration I , and

2. a lower bound of 2δα2 · |V (Gbi)| for the expected total weight added to edges during iteration I .

Combining these upper and lower bounds yields the result that in each iteration the expected total amount

of weight added is a 1/O(α) fraction of the total available weight. This allows us to bound the number of

iterations by O(α log n) with high probability.

Definition 5.5. The available weight at iteration I , denoted A(I) is given by

A(I) =
∑

e∈E(G[W∪Bhigh])

2δα − w(e)

where the parameters in the expression are taken to be their values at the beginning of iteration I .

Giving an upper bound on A(I), which is item 1 of our above goal, is simple:

Claim 5.6. A(I) ≤ 2δα2 · |V (Gbi)|.

Proof. By definition all edge weights are non-negative, so A(I) ≤
∑

e∈E(G[W∪Bhigh])
2δα. Since G[W ∪

Bhigh] has arboricity at most α, |E(G[W ∪Bhigh])| ≤ α · |W ∪Bhigh| = α · |V (Gbi)|. This completes the

proof.

Now, we consider item 2 of our above goal. Let w(I) be a random variable denoting the aggregate

total weight added to edges during iteration I . The randomness is over the choice of p(v) for each vertex

v ∈ Wlow. Towards lower bounding w(I), for every vertex v ∈ Wlow we define the random variable Rv as

the number of edges whose weight is incremented by v during iteration I . That is, w(I) =
∑

v∈Wlow
Rv.

We now calculate E[Rv].
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Claim 5.7. For all v ∈Wlow with |N2(v)| ≥ α, it holds that E[Rv] ≥ α.

Proof. Note that E2(v) and N2(v) are taken to mean these value at the beginning of iteration I . A vertex

v ∈ Wlow increments the weight of each edge in E2(v) if v is an α-minimum, and otherwise v does not

increment the weight of any edges. A sufficient condition for v to be an α-minimum is that p(v) is among

the α smallest values in N2(v). Since |N2(v)| ≥ α, the probability that p(v) is among the α smallest values

in N2(v) is α/|N2(v)| ≥ α/|E2(v)| since each vertex chooses its value uniformly at random. Therefore,

P[Rv = |E2(v)|] ≥ α/|E2(v)|. Thus, E[Rv] ≥ α.

We now give a lower bound on the expected aggregate weight E[w(I)]:

Claim 5.8. E[w(I)] ≥ α · |V (Gbi)|/4

Proof. Recall that w(I) =
∑

v∈Wlow
Rv. Thus,

E[w(I)] = E

[

∑

v∈Wlow

Rv

]

=
∑

v∈Wlow

E[Rv]

≥
∑

v∈Wlow,|N2(v)|≥α

E[Rv]

≥
∑

v∈Wlow,|N2(v)|≥α

α (by Claim 5.7)

≥ α · |Wlow|/2 (since iteration I is of type high degree)

≥ α · |Bhigh ∪W |/4 (by Claim 2.4)

= α · |V (Gbi)|/4.

Before combining the above upper and lower bounds, we need to show that our function A(I) accurately

measures the progress of our algorithm by proving the following properties:

Claim 5.9.

1. If I ′ is the iteration right after I , then A(I ′) ≤ A(I)− w(I).

2. A(I) > 0.

Proof. For item 1, it suffices to observe that the weight of an edge can only increase and the set of edges we

sum over in the definition of A(I) can only decrease. This is true because by Claim 5.2, no vertex can ever

enter W ∪Bhigh from another set.

For item 2, it suffices to show that 2δα−w(e) is always positive. Suppose for contradiction that there is

an edge (u, v) with w(u, v) ≥ 2δα. Consider the point at which w(u, v) was incremented to δα. Consider

Gbi at this point in time. Only the weight of edges in Gbi can be incremented, so (u, v) ∈ E(Gbi). Without

loss of generality, u ∈ Bhigh ∪Whigh and v ∈ Wlow. Ever since the edge (u, v) entered Gbi, u has been in

Bhigh ∪Whigh and v has been in Wlow, since no vertex in Wlow can later be in Bhigh ∪Whigh by Claim 5.2.

Each time w(u, v) is incremented, it is caused by an INCREMENT COUNTER message sent by some vertex

y that moved from Wlow to D, for which (u, v) ∈ E2(y). Then since y was in Wlow, u ∈ Bhigh ∪Whigh,
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and (u, v) ∈ E2(y), we have y ∈ N(u). Thus y sends INCREMENT COUNTER to u. Therefore, every

time w(u, v) is incremented, cu is also incremented. Since w(u, v) = 2δα, we have cu = 2δα, which is a

contradiction by Claim 5.3.

We are now ready to put everything together to complete the analysis. For all j, let Ij denote the jth

iteration of type high degree. Then, by Claim 5.6 we have that for all j, A(Ij) ≤ 2δα2 · |V (Gbi)|, and

by Claim 5.8 we have that for all j, E[w(Ij)] ≥ α · |V (Gbi)|/4 (where Gbi is taken to be its value at the

beginning of iteration Ij). Thus, E[w(Ij)] ≥ A(Ij)/(8δα).
Thus, by item 1 of Claim 5.9, we have that if for all j, A(Ij+1) ≤ A(Ij)− w(Ij), so for all j, we have

E[A(Ij+1)] ≤ E[A(Ij)− w(Ij)]

≤ (1−
1

8δα
)E[A(Ij)]

≤ (1−
1

8δα
)j ·A(I1)

= (1−
1

8δα
)j ·m(2δα)

= (1−
1

32α
)j · 8α2n.

Let j = 50cα log n. For any constant positive integer c, we have E[A(Ij+1)] < 1/nc. By Markov’s

inequality and the fact that the available weight is always integral and non-negative, we have that A(Ij) = 0
with high probability. By item 2 of Claim 5.9, the algorithm terminates before it reaches an iteration I∗ with

A(I∗) = 0. Thus, the number of iterations of type high degree is O(α log n) with high probability.
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tion algorithm for the maximum matching problem in bounded arboricity graphs. In Interna-

tional Symposium on Algorithms and Computation, pages 668–678. Springer, 2009.

[CHW08] Andrzej Czygrinow, Michal Hańćkowiak, and Wojciech Wawrzyniak. Fast distributed approxi-

mations in planar graphs. In International Symposium on Distributed Computing, pages 78–92.

Springer, 2008.

[CN85] Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing algorithms. SIAM Jour-

nal on computing, 14(1):210–223, 1985.

[DGKR05] Irit Dinur, Venkatesan Guruswami, Subhash Khot, and Oded Regev. A new multilayered PCP

and the hardness of hypergraph vertex cover. SIAM J. Comput., 34(5):1129–1146, 2005.

[DKM19] Janosch Deurer, Fabian Kuhn, and Yannic Maus. Deterministic distributed dominating set

approximation in the congest model. In Proceedings of the 2019 ACM Symposium on Principles

of Distributed Computing, pages 94–103, 2019.

[DR06] Irit Dinur and Omer Reingold. Assignment testers: Towards a combinatorial proof of the pcp

theorem. SIAM Journal on Computing, 36(4):975–1024, 2006.

[DS14] Irit Dinur and David Steurer. Analytical approach to parallel repetition. In Proceedings of the

forty-sixth annual ACM symposium on Theory of computing, pages 624–633, 2014.

[ELR18] Talya Eden, Reut Levi, and Dana Ron. Testing bounded arboricity. In Artur Czumaj, edi-

tor, Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,

SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 2081–2092. SIAM, 2018.

21



[Epp94] David Eppstein. Arboricity and bipartite subgraph listing algorithms. Information processing

letters, 51(4):207–211, 1994.

[ERR19] Talya Eden, Dana Ron, and Will Rosenbaum. The arboricity captures the complexity of sam-

pling edges. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi,

editors, 46th International Colloquium on Automata, Languages, and Programming, ICALP

2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 52:1–52:14. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[ERS20] Talya Eden, Dana Ron, and C. Seshadhri. Faster sublinear approximation of the number of k-

cliques in low-arboricity graphs. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM

Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020,

pages 1467–1478. SIAM, 2020.

[Gar79] Michael R Garey. A guide to the theory of np-completeness. Computers and intractability,

1979.

[GG06] Gaurav Goel and Jens Gustedt. Bounded arboricity to determine the local structure of sparse

graphs. In International Workshop on Graph-Theoretic Concepts in Computer Science, pages

159–167. Springer, 2006.

[GGR21] Mohsen Ghaffari, Christoph Grunau, and Václav Rozhoň. Improved deterministic network
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