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Abstract
In recent years several compressed indexes based on variants of the Burrows-Wheeler transform-
ation have been introduced. Some of these are used to index structures far more complex than
a single string, as was originally done with the FM-index [Ferragina and Manzini, J. ACM 2005].
As such, there has been an increasing effort to better understand under which conditions such
an indexing scheme is possible. This has led to the introduction of Wheeler graphs [Gagie et al.,
Theor. Comput. Sci., 2017]. A Wheeler graph is a directed graph with edge labels which satisfies
two simple axioms. Importantly, Wheeler graphs can be indexed in a way which is space efficient
and allows for the fast traversal of edges. Gagie et al. showed that de Bruijn graphs, general-
ized compressed suffix arrays, and several other BWT related structures can be represented as
Wheeler graphs. However, one may also wish to know if a given graph is a Wheeler graph. Here
we answer the open question of whether or not there exists an efficient algorithm for recognizing
if a graph is a Wheeler graph. We present the following results.

The problem of recognizing whether a given graph G = (V,E) is a Wheeler graph is NP-
complete for any edge label alphabet of size σ ≥ 2, even when G is a DAG. We also highlight
the relationship between queue number and Wheeler graphs, which reveals that the recogni-
tion problem can be solved in linear time for σ = 1;
We demonstrate that even on a restricted, but useful, subset of graphs called d-NFA’s the
problem of Wheeler graph recognition is NP-complete for d ≥ 5. This is in contrast to recent
results demonstrating the problem can be solved in polynomial time for d ≤ 2;
We define an optimization variant of the problem calledWheeler Graph Violation, abbreviated
WGV, where the aim is to remove the minimum number of edges required to obtain a Wheeler
graph. We show WGV is APX-hard, even when G is a DAG. Implying there exists a constant
C > 1 for which there is no C-approximation algorithm (unless P = NP). Also, conditioned
on the Unique Games Conjecture, for all C ≥ 1, it is NP-hard to find a C-approximation;
We define the Wheeler Subgraph problem, abbreviated WS, where the aim is to find the
largest subgraph which is a Wheeler Graph (the dual of the WGV). In contrast to WGV, we
prove that the WS problem is in APX for σ = O(1);
For all of the above problems we present efficient exponential time exact algorithms, relying
on graph isomorphism being computable in strictly sub-exponential time;

The above findings suggest that most problems under this theme are computationally difficult.
However, we identify a class of graphs for which the recognition problem is polynomial time
solvable, raising the open question of which parameters determine this problem’s difficulty.
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1 Introduction

Within the last two decades, there has been the development of Burrows Wheeler Transform
(BWT) [8] based indices for compressing a diverse collection of data structures. This list
includes labeled trees [30], certain classes of graphs [14, 28], and sets of multiple strings [16, 25].
This has motivated the search for a set of general conditions under which a structure can
be indexed by a BWT based index, and consequently the introduction of Wheeler graphs.
A Wheeler graph is a directed graph with edge labels which satisfies two simple axioms
related to the ordering of its vertices. They were introduced by Gagie et al. [17] (also
see [2]). Although not general enough to encompass all BWT-based structures (e.g., [18]),
the authors demonstrated that Wheeler graphs offer a unified way of modeling several
BWT based data structures such as de Bruijn graphs [7, 12], generalized compressed suffix
arrays [30], multistring BWTs [26], XBWTs [14], wavelet matrices [11], and certain types of
finite automaton [1, 5, 23]. They also showed that there exists an encoding of a Wheeler
graph G = (V,E) which requires only 2(e+ n) + e log σ + σ log e+ o(n+ e log σ) bits where
σ is the size of the edge label alphabet, e = |E|, and n = |V |. This encoding allows for the
efficient traversal of multiple edges while processing characters in a string, using an algorithm
similar to the backward search in the FM-index [15]. Unfortunately, not all directed edge
labeled graphs are Wheeler graphs, and thus not all directed edge labeled graphs allow for
this encoding. The authors of [17] posed the question of how to reasonably recognize whether
a given graph is a Wheeler graph.

The question is of both theoretical and practical value, as it might be the first step before
attempting to apply some compression scheme. For example, one could use the existence
of a Wheeler subgraph to encode a graph. To do so, you could maintain an encoding of the
subgraph using the framework in [17] in addition to an adjacency list of the edges not included
in the encoding. Depending on the size of the subgraph, such an encoding might provide a
large space savings at the cost of a modest time trade-off while traversing the graph. This
concept also motivates the portion of the paper where we look at optimization versions of this
problem that seek subgraphs of the given graph which are Wheeler graphs. Unfortunately
for practitioners of such a method, this problem turns out to be computationally intractable
as well. As a positive result, recognizing that the problem presented by Wheeler graphs
is similar to that of identifying the queue number of a graph provides some insight and
indicates a class of graphs where the problem becomes computationally tractable.

1.1 Wheeler Graphs

We first give the definition of a Wheeler graph. The notation (u, v, k) is used for the directed
edge from u to v with label k. We will assume the usual ordering on the edge labels which
come from an alphabet {1, 2, ..., σ}.

I Definition 1. A Wheeler graph is a directed graph with edge labels where there exists an
ordering π on the vertices such that for any two edges (u, v, k) and (u′, v′, k′):

(i) k < k′ =⇒ v <π v
′;

(ii) (k = k′) ∧ (u <π u′) =⇒ v ≤π v′.

In addition, vertices with in-degree zero must be placed first in the ordering.
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Figure 1 An example of a wheeler graph with
σ = 3. The ordering on the edge labels is:
red (solid) < blue (long-dash) < green (short-dash)

See Figure 1 for an illustration. One
critical property of Wheeler graphs is
called path coherence. This property
is characterized by the fact that if you
start at any consecutive range of ver-
tices under the ordering π, and tra-
verse the graph following edge labels
matching the characters in a string P ,
then when finished processing P the ver-
tices ended on will form a consecutive
range. This property is key to allowing the efficient traversal of multiple edges
simultaneously, as well as achieving a compressed representation of the graph.
The following list of properties for a Wheeler graph can be deduced.

I Property 1. All edges inbound to a vertex v have the same edge label.

I Property 2. For a given edge label k, the vertices which have k as their inbound edge label
are ordered consecutively in a proper ordering.

I Property 3. It is possible for a vertex to a have multiple outbound edges with the same
label. It is also possible for a vertex to have more then σ inbound or outbound edges.

I Property 4. We call two edges (u, v, k) and (u′, v′, k) with the same label a rainbow if
u < u′ and v′ < v. No rainbows can exist in a proper ordering (see Figure 2).

I Property 5. Consider a proper ordering. Let Vk refer to the consecutive set of vertices
with the same inbound edge label k. We define two subsets of Vk denoted V 1

k and V 2
k whose

union is Vk. The set V 1
k consists of all vertices v with inbound edges that come from vertices

with lower orderings than v, and the set V 2
k consists of vertices v with inbound edges coming

from vertices with higher orderings than v. Then the intersection of V 1
k and V 2

k contains at
most one vertex u (one may not exist), and all of the vertices in V 1

k − {u} are ordered lower
than all of the vertices in V 2

k . Moreover, a vertex v ∈ V 1
k cannot send an edge with label k

to a vertex with lower order than v, and vertex v ∈ V 2
k cannot send an edge with label k to

a vertex of higher order than v.

Figure 2 In a proper ordering all of the above
configurations cannot occur.

Due to Property 5 and the fact that ver-
tices with in-degree zero are placed first in a
proper ordering, for σ = 1 any proper order-
ing is also a topological ordering (with the
exception of vertices with self-loops which
must be placed last).

1.2 Problem Definitions
The first question we wish to answer here is given a directed graph with edge labels, does
such an ordering π exist? We define this problem formally as the following.

I Problem 1 (Wheeler Graph Recognition). Given a directed edge labeled graph G = (V,E),
answer ‘YES’ if G is a Wheeler graph and ‘NO’ otherwise.

Although we do not demand it here, ideally, a solution to the above problem would also
return a proper ordering.

Motivated by the compression of general graphs (which are not necessarily Wheeler), we
next define two optimization versions of Problem 1 where we seek to find Wheeler subgraphs.

CVIT 2016



23:4 On the Hardness and Inapproximability of Recognizing Wheeler Graphs

I Problem 2 (Wheeler Graph Violation (WGV)). Given a directed edge labeled graph G = (V,E)
identify the smallest E′ ⊆ E such that G′ = (V,E\E′) is a Wheeler graph.

We also consider the dual of this problem.

I Problem 3 (Wheeler Subgraph (WS)). Given a directed edge labeled graph G = (V,E)
identify the largest E′′ ⊆ E such that G′′ = (V,E′′) is a Wheeler graph.

1.3 Our Contribution

We first provide a proof that the Wheeler graph recognition problem is indeed a compu-
tationally hard problem. In Section 2, we show that the problem of recognizing whether
a given graph is a Wheeler graph is NP-complete even for an edge alphabet of size σ = 2.
This is based on a reduction of the Betweenness problem to Wheeler graph recognition.
The result holds even when the input is a directed acyclic graph (DAG).
In Appendix B we show that for σ = 1 the recognition problem can be reduced to that of
determining if a DAG has queue number one. This can be solved in linear time [21].
Section 3 we show Wheeler graph recognition remains NP-complete even when the number
of edges leaving a vertex with the same label is at most five. This holds for DAGs as
well. This result is motivated by a recent work by Alanko, Policriti and Prezza [3] which
identified that the recognition problem can be solved in polynomial time when the number
of edges with the same label leaving a vertex is at most two.
Section 4 examines the optimization version of this problem called Wheeler Graph
Violation (WGV). We show via a reduction of the Minimum Feedback Arc Set problem
that this problem is APX-hard, and assuming the Unique Games Conjecture, cannot be
approximated within a constant factor. This also holds even when the graph is a DAG.
In Section 5 we look at the dual of the minimization problem, the Wheeler Subgraph
problem (WS). We show this problem is in the complexity class APX for σ = O(1). We
do this by demonstrating that we can obtain solutions whose value is Ω(1/σ) times the
optimal value.
In Section 6 and Appendix C we provide an exponential time algorithm which solves
the recognition problem on a graph G = (V,E) in time 2O(n+e logσ) where n = |V | and
e = |E|. It uses the idea of enumerating through all possible encodings (of bounded size)
of Wheeler graphs, and the fact that we can test whether there exists an isomorphism
between two undirected graphs in sub-exponential time. This technique also gives us
exact algorithms for the WGV and WS problems which run in time 2O(n+e logσ).
In Appendix D, using PQ-trees and ideas similar to those used in detecting if the
queue number of a DAG is one, we demonstrate a class of graphs where Wheeler graph
recognition can be done in linear time.

2 NP-completeness of Wheeler Graph Recognition

I Theorem 2. The Wheeler Graph Recognition Problem is NP-complete for any σ ≥ 2.

We prove the NP-completeness of recognizing whether a graph is a Wheeler graph through a
reduction of the Betweenness problem. This problem was established as NP-complete by
Opatrný in 1979 [29]. Like our problem, it deals with finding a total ordering on a set of
elements subject to some constraints.
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2.1 The Betweenness Problem
The input to the Betweenness problem is a list of distinct elements T = t1, . . . , tn and a
collection of k < n3 ordered triples of (t11, t12, t13), (t21, t22, t23), . . . (tk1 , tk2 , tk3) where every element
in a triple is in T . The list T should be placed into a total ordering with the property that
for each of the given triples the middle item in the triple appears somewhere between the
other two items. The items of each triple are not required to be consecutive in the total
ordering. The decision problem is determining if such an ordering is possible.

As an example, consider the input T = 1, 2, 3, 4, 5 and the triples: (3, 4, 5), (4, 1, 3),
(1, 4, 5), (2, 4, 1), (5, 2, 3). A total ordering which satisfies the given triples is the ordering
3, 1, 4, 2, 5. The ordering 3, 1, 2, 4, 5 does not since it violates the triple (2, 4, 1).

2.2 Reduction from Betweenness to Wheeler Graph Recognition
Suppose we are given as input to the Betweenness Problem the list t1, t2, . . . , tn and
triples (t11, t12, t13), (t21, t22, t23), . . . , (tk1 , tk2 , tk3). We construct a graph of size O(nk) as follows.
Note that this graph is a DAG and all vertices are reachable from the source vertex v0.

Figure 3 An example of the reduction with the input list
1, 2, 3, 4, 5, 6 and triples (5, 2, 3), (1, 5, 2), (4, 5, 6).

Create a source vertex v0 and
vertices vji for 1 ≤ i ≤ n and
1 ≤ j ≤ k.
For each triple (tj1, t

j
2, t

j
3) create

a vertex for each element of the
triple, we call them wj1, w

j
2, and

wj3 respectively.
Create the edges (v0, v

1
i , 1) and

edges (vji , v
j+1
i , 1) for 1 ≤ i ≤

n, 1 ≤ j ≤ k − 1.
Create the following edges:

(vji , w
j
1, 2) if ti = tj1

(vji , w
j
2, 2) if ti = tj2

(vji , w
j
3, 2) if ti = tj3

(vji , w
j
2, 2) if ti = tj1

(vji , w
j
2, 2) if ti = tj3

Theorem 2 follows from Lemma 3.

I Lemma 3. An instance of the Betweenness problem has an ordering satisfying all of the
constraints iff the graph constructed as above is a Wheeler graph.

Proof. (Sketch) The intuition is that the vertices with inbound edge label one represent
the permutation of the elements in T . The edges labeled one force the permutation to be
duplicated k times, once for each constraint. The vertices with the inbound edge label two
represent the elements in each triple. The edges with label two enforce that the only valid
orderings of the vertices representing elements in T are orderings that satisfy the Betweenness
constraints. This is enforced by having no edges labeled two which are crossing in the figure.
The detailed proof is deferred to Appendix A. J

The fact that being a Wheeler graph implies (arched) level planarity with respect to each
edge label is the key to the reduction.

CVIT 2016
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The Wheeler graph recognition problem can be solved in linear time for an alphabet of
size one. This follows from relating the notion of queue number to Wheeler graphs, and a
previous result giving a linear time algorithm for finding a one-queue DAG [20, 21, 22]. This
also gives an upper bound on the number of edges which can be in a Wheeler graph [13].
Detailed proofs are deferred to Appendix B.

I Theorem 4. The Wheeler graph recognition problem can be solved in linear time for an
edge alphabet of size σ = 1.

I Theorem 5. For σ = 1, the number of edges in a Wheeler graph is Θ(n).

3 NP-completeness of Wheeler Graph Recognition on d-NFA’s

This section concerns recognizing whether d-NFA is also a Wheeler graph. A d-NFA is
defined as follows:

I Definition 6. A d-NFA G is an NFA where the number of edges with the same character
leaving a vertex is at most d. We refer to the value d as the non-determinism of G.

We emphasize that here a NFA contains a single start state, from which we assume each
vertex is reachable. The results in this section are in contrast to the recent work of Alanko,
Policriti and Prezza who showed that it can recognized in polynomial time whether a 2-NFA
is a Wheeler graph [3]. Their result coupled with the observation that the reduction in Section
2 requires a nΘ(1)-NFA suggests an interesting question about what role non-determinism
plays in the tractability of Wheeler graph recognition. To this end, we prove Theorem 7.

I Theorem 7. The Wheeler Graph Recognition Problem is NP-complete for d-NFA’s, d ≥ 5.

The strategy of the proof is to reduce the NP-complete problem 4-NAESAT to Wheeler
Graph Recognition. In 4-NAESAT each clause is of length 4, and an expression is satisfiable
iff there exists a truth assignment such that each clause contains both a true literal and a
false literal. Our reduction has a useful property highlighted by Lemma 8.

I Lemma 8. An instance φ of 4-NAESAT can reduced in poly-time to an instance φ′ of
3-NAESAT where a variable occurring in the middle of a clause appears at most twice in φ′.

Proof. Convert the 4-NAESAT instance φ to a 3-NAESAT instance φ′ by converting each
clause (ak, bk, ck, dk) into the clauses (ak, wk, bk) and (ck, wk, dk). Both clauses have a
satisfying not-all-equal assignment iff it is not the case that ak = bk = ck = dk. We note
that the variable used in the middle of the clauses, wk, is used only twice in φ′. J

For convenience, we define a case of 3-NAESAT where each variable occuring in the
middle occurs at most twice, we call this 3-NAESAT∗. We next describe the construction of
a one source DAG from an instance of 3-NAESAT∗.

Suppose we are given an instance φ of 3-NAESAT∗ with variables x1, x2, . . . , xn and the
clauses (ak, bk, ck) where we assume ak, bk, ck can represent either a Boolean variable or its
negation. We create a single source DAG G based on φ. The first step creates a menorah
like structure which allows for the vertices representing xi and xi to swap places in G, but
otherwise fixes the positions of the vertices. We begin by adding the vertices which represent
our variables, x1, . . . , xn, X, x1, . . . , xn; (the role of X will become clear). Next, we add the
structure to constrain their possible positions.
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Figure 4 The vertices Z1 and Z2 could be for example for
the clauses (x1, x2, x3), (x2, x3, x4). For each ‘betweenness’
constraint we add a new layer and enforce the constraint as
was done in Section 2. The constraint shown is (x4, X, x4).

Add to G the vertices:
s0

1 . . . , s
0
n;

For 1 ≤ i ≤ n−1, 1 ≤ j ≤ n−i:
sji and s

j
i ;

Add to G the red edges:
(s0

1, s
0
2, 1), . . . (s0

n, X, 1);

For 1 ≤ i ≤ n−1, 1 ≤ j ≤ n−i:
(sj−1
i , sji , 1) and (sj−1

i , sji , 1);

For 1 ≤ i ≤ n:
(sn−ii , xi, 1) and (sn−ii , xi, 1);

For clause k, denoted (ak, bk, ck),
we add a vertex Zk. Suppose
the middle variable of the clause,
bk, is xh (positive or negated),
then we add the vertices zjk for
1 ≤ j ≤ n − h, and red edges
(s0
h, z

1
k, 1), (z1

k, z
2
k, 1) . . . (zn−hk , Zk, 1).

Now we wish add a set of betweenness type constraints on any proper ordering given of the
vertices L0 = {x1, . . . , X, xn . . . x1, Z1, Z2, . . .}. Given a constraint (y1, y2, y3) we insist y2 be
between y1 and y2 in the ordering. This can be enforced by adding a layer of new vertices
L1 = {x1

1, . . . , X
1, x1

n . . . x
1
1, Z

1
1 , Z

1
2 , . . .} with red edges labeled 1 from vertices in layer L0

to their corresponding vertices in L1. We use the same gadget that was used in Section
2. Consider adding a betweenness on the vertices y1, y2, y3 in L0. Add the vertices w1

1,
w1

2, and w1
3 and the blue edges (y1

1 , w
1
1, 2), (y1

2 , w
1
2, 2), (y1

3 , w
1
3, 2), (y1

1 , w
1
2, 2) and (y1

3 , w
1
2, 2).

Additional betweenness constraints can be similarly enforced by adding a new layer on top
of L1 with a new gadget. Add the betweenness constraints (xi, X, xi) for 1 ≤ i ≤ n fixing X,
and betweenness constraints (ak, Zk, bk) and (ck, X, Zk) for every clause (ak, bk, ck).

Before proving the correctness of the reduction, we make the observation that because
any variable occurring in the middle of a clause occurs as most twice in the whole expression,
the maximum number of edges leaving a vertex s0

i is bounded by 3 + 2 = 5. All of the other
vertices have at most three edges with the same label leaving them.

I Lemma 9. The leveled graph G constructed as above from an instance φ′ of 3-NAESAT∗
is a Wheeler graph iff φ′ is satisfiable.

Proof. Given a truth assignment that satisfies the 3-NAESAT∗ instance φ′, put the vertices in
L0 whose variables are assigned the value T on the left side of X in Figure 4, and the vertices
whose variables are assigned false on the right side of X. For example, if x1 = T, x2 = F , the
two left-most vertex on level L0 would be x1 followed by x2. Now, for clause (ak, bk, ck) we
have the possible not-all-equal truth assignments and relative orderings of L0 which satisfy
the Wheeler graph axioms in Table 1. This shows that a Wheeler graph ordering of the
vertices is possible by placing Zk’s correctly given the truth assignment.

In the other direction, if G is a Wheeler graph then the ordering of the menorah structure
is fixed with the exception of zji vertices and the ordering duplicated across layers L0,L1, . . ..
We will show the ordering given to L0 must have every clause getting a not-all-equal
assignment. Suppose to the contrary that L0 was given an ordering where either ak, bk, ck
are all on the left(true) or the right side(false) of X. Then we have the options in Table 2. In

CVIT 2016
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Possible Orderings (ak has variable xj and ck has variable xh)
akbkck j < h h < j

FFT ck . . . X . . . bk, Zk . . . ak ck . . . X . . . bk, Zk . . . ak

FTF bk, Zk . . . X . . . ck . . . ak bk, Zk . . . X . . . ak . . . ck

TFF ak . . . bk, Zk . . . X . . . bk . . . ck ak . . . bk, Zk . . . X . . . bk . . . ck

FTT ck . . . bk . . . X . . . bk, Zk . . . ak ck . . . bk . . . X . . . bk, Zk . . . ak

TFT ak . . . ck . . . X . . . Zk, bk ck . . . ak . . . X . . . Zk, bk

TTF ak . . . Zk, bk . . . X . . . ck ak . . . Zk, bk . . . X . . . ck

Table 1 Possible relative orderings of ak, bk, ck, Zk, X subject to (ak, Zk, bk) and (ck, X, Zk).

(Not) Possible Orderings (ak has variable xj and ck has variable xh)
akbkck j < h h < j

TTT ak . . . bk . . . ck . . . X ck . . . bk . . . ak . . . X

FFF X . . . ck . . . bk . . . ak X . . . ak . . . bk . . . ck

Table 2 Orderings implied by all-equal assignment are not possible while satisfying constraints.

all cases listed in Table 2, placing Zk between ak and bk violates the constraint (ck, X, Zk),
implying we violate a Wheeler graph constraint as well, a contradiction. Hence, if G is a
Wheeler graph, a valid ordering for L0 implies a valid truth assignment for φ′. J

4 The Wheeler Graph Violation Problem is APX-hard

In this section, we show that obtaining an approximate solution to the WGV problem that
comes within a constant factor of the optimal solution is NP-hard. We do this through a
reduction that shows that WGV is at least as hard as solving the Minimum Feedback Arc
Set problem (FAS). The Minimum Feedback Arc Set problem in its original formulation is
phrased in terms of a directed graph where the objective is to find the minimum number
of edges which need to be removed in order to make the directed graph a DAG. A slightly
different formulation proves more useful for us. Letting Fπ = {(vi, vj) ∈ E | π(vi) > π(vj)}
we have the following:

I Lemma 10 (Younger [31]). Determining a minimum feedback arc set for G = (V,E) is
equivalent to finding an ordering π on V for which |Fπ| is minimized.

From this, we can present the equivalent formulation of FAS.

I Definition 11 (Minimum Feedback Arc Set (FAS)). The input is a list T = t1t2 . . . tn of n
numbers and a set of k inequalities of the form ti < tj . This task is to compute an ordering
π on T so that the number of inequalities violated in minimized.

Interestingly, we could not have used FAS for proving that the Wheeler graph recognition
problem is NP-complete, as FAS is fixed-parameter tractable in terms of the size of the
feedback arc set [9]. This implies that if we were to set the feedback arc set to size zero
(which we will see is equivalent to no Wheeler graph axiom violations in following reduction),
the problem becomes solvable in polynomial time.

On the other hand, it has been shown that FAS is APX-hard, meaning that every problem
in APX is reducible to it [24]. It also implies, assuming NP 6= P, that there is a constant C
such that there is no polynomial time algorithm which provides a C-approximation. The
reduction provided in this section implies:

I Theorem 12. The WGV problem is APX-hard.
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In addition, Guruswami et al. demonstrated that assuming the Unique Games Conjecture
holds, and NP 6= P, there is no constant C > 1 such that an algorithm’s approximate solution
to FAS is always a factor C from the optimal solution. We state this as a lemma.

I Lemma 13 (Guruswami et al. [19]). Conditioned on the Unique Games Conjecture, for
every C ≥ 1, it is NP-hard to find a C-approximation to FAS.

An approximation preserving reduction from FAS to WGV combined with Lemma 13
proves the other main result of this section:

I Theorem 14. Conditioned on the Unique Games conjecture, for every constant C ≥ 1, it
is NP-hard to find a C-approximation to WGV.

4.1 The Reduction of FAS to WGV
Let T = t1, t2, . . . , tn and inequalities t11 < t12, t

2
1 < t22, . . . , t

k
1 < tk2 be the input to FAS.

We define a heavy edge between the vertices u and v with label ` as k + 1 sub-
divided edges between u and v each with label `. That is, a heavy edge between u

and v with label ` consists of the edges (u,wi, `) and (wi, v, `) for 1 ≤ i ≤ k + 1. See
Figure 5 for an illustration. Use the following steps to create a graph (which is a DAG):

Figure 5 A bold edge in Figure 6 is actually
k + 1 subdivided edges.

Create a vertex v0 and the vertices vji for
1 ≤ i ≤ n+ 1 and 1 ≤ j ≤ k.
For each inequality tj1 < tj2 create a ver-
tex for each element in the inequality, we
call them wj1 and wj2, respectively.
Create the heavy edges (v0, v

1
i , 1) for 1 ≤

i ≤ n+1 and the heavy edges (vji , v
j+1
i , 1)

for 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ k − 1.
Create the heavy edges (v0, w

1
1, 2), and

the heavy edges (vjn+1, w
j
2, 2) and

(vjn+1, w
j+1
1 , 2) for 1 ≤ j ≤ k−1, and the

heavy edge (vkn+1, w
k
2 , 2).

Finally, add the regular (not heavy) edges
(vji , w

j
1, 2) if ti = tj1, and (vji , w

j
2, 2) if

ti = tj2 for 1 ≤ i ≤ n, 1 ≤ j ≤ k.

Figure 6 An example of the reduction from
FAS to WGV where T = 1, 2, 3, 4, 5, 6 and the set
of inequalities is 5 < 3, 1 < 5, and 6 < 4.

An example of the reduction is given in
Figure 6. The intuition is that the vertices
with an inbound heavy edge labeled one rep-
resent the permutation of the elements in
T . The heavy edges labeled one force the
permutation to be duplicated k times, once
for each constraint. The vertices with the in-
bound edge label two represent the elements
in each inequality. Equivalence between a
solution to an instance of FAS and the con-
structed instance of WGV follows from the
lemmas presented next.

In the following lemma we let E′ be
a solution to WGV and G′ = (V,E\E′).
Moreover we let π represent a proper ordering on the vertices of G′. The first lemma
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indicates that, other than permuting the ordering found on the vertices vji for the group
defined by 1 ≤ i ≤ n (with the ordering duplicated for 1 ≤ j ≤ k), the ordering for the
vertices in Figure 6 is fixed. We formalize this with the following lemma.

I Lemma 15. Let φ represent a permutation of the set [n+ 1]. Any ordering π which is a
proper ordering of V in G′ is of the form

v0, v
1
φ(1), v

1
φ(2), . . . v

1
φ(n+1), . . . v

k
φ(1), v

k
φ(2), . . . v

k
φ(n+1), w

1
1, w

1
2, w

2
1, w

2
2, . . . w

k
1 , w

k
2 .

Proof. We consider an edge (u, v, k) as violating a Wheeler graph axiom if
1. there exists an edge (u′, v′, k′) with k < k′ and v ≥π v′, or
2. there exists an edge (u′, v′, k′) with k = k′ and u <π u′ and v′ < v, or
3. the in-degree of u is zero and there exist w ∈ V where in degree w is one or greater and

w <π u.
The ordering given in Figure 6 causes at most k edges to violate a Wheeler graph axiom, so
we know that |E′| ≤ k. If any of the w vertices is placed before a w vertex in π that causes
k + 1 edges to violate Wheeler graph Axiom (ii), implying |E′| ≥ k + 1, a contradiction.
Similarly, v0 must be placed first in the ordering, otherwise |E′| ≥ k + 1.

A vj vertex must precede a vj+1 vertex in π, for j ≥ 1. Otherwise, consider the lowest
ordered such vj+1

i that is preceding a vj vertex. If vjt follows vj+1
i in the ordering, then the

heavy edge (vji , v
j+1
i , 1) violates Wheeler graph axiom (ii) due to the edge (vj−1

t , vjt , 1) when
j ≥ 2 and (v0, v

j
t , 1) when j = 1. This is since vj−1

t <π v
j
i and vj+1

i <π v
j
t . This causes k + 1

violations, implying |E′| ≥ k + 1, a contradiction.
The same ordering that was found on the vertices vj1, v

j
2, . . . v

j
n+1 must be duplicated across

the vertices vj+1
1 , vj+1

2 , . . . vj+1
n+1. Otherwise, consider the lowest ordered vertex vj+1

i in the
second group which violates the ordering of the first. Supposing, vjt is element preceding vji
in the ordering, then the heavy edge (vjt , v

j+1
t , 1) violates Axiom (ii) due to edge (vji , v

j+1
i , 1)

since vjt <π v
j
i and vj+1

i <π v
j+1
t . This creates k + 1 violations, a contradiction.

The vertex w1
1 must be ordered first in the w block, else (v0, w

1
1, 2) and (v1

n+1, w
1
2, 2) cause

k + 1 violations.
The vertex w1

2 must precede w2
1, else the heavy edge (v1

n+1, w
1
2, 2) and edge (v2

i1
, w2

1, 2)
where ti1 = t21 cause k + 1 violations since v1

n+1 <π v
2
i1

but w2
1 <π w

1
2.

The vertex v1
n+1 must proceed the vertex v1

i2
where ti2 = t12. Otherwise the edges

(v1
n+1, w

2
1, 2) and (v1

i2
, w1

2, 2) cause k + 1 violations since v1
n+1 <π v

1
i2

but w1
2 <π w

2
1.

We can inductively proceed to wk1 and wk2 making the same arguments. J

Let f(x) refer to the reduction described above applied to an instance x of FAS creating
an instance of WGV. We also refer to the solution to either of these problems as OPT(·),
and val(·) as the cost function. For FAS val(x) is the number of violated inequalities and for
WGV it is the number of violating edges.

I Lemma 16. Given an instance x of FAS, a solution(or sub-optimal solution) to the instance
f(x) of WGV that has ` ≤ k axiom violating edges yields a solution(or sub-optimal solution)
to x with ` violated inequalities. The converse holds as well.

Proof. By Lemma 15 any two optimal ordering of the vertices in G′ must differ only in the
ordering given to vj1, . . . , vjn, v

j
n+1, duplicated for 1 ≤ j ≤ k. Ignore the vertex vjn+1 and

apply the remaining ordering to T . Each edge that has to be removed is one of the two
edges (vji1 , w

j
1, 2) and (vji2 , w

j
2, 2), where ti1 = tj1 and ti2 = tj2, and where vji2 <π v

j
i1

and
wj1 <π w

j
2. This implies for our solution to x the jth inequality has ti2 < ti1 , not satisfying
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the inequality ti1 < ti2 . On the other hand, if it holds for the edges (vji1 , w
j
1, 2) and (vji2 , w

j
2, 2)

that vji1 <π v
j
i2
, this implies the inequality is satisfied.

Conversely, suppose we are given an ordering of the list T which has ` inequalities not
satisfied. Apply the same ordering to vj1, . . . , vjn for 1 ≤ j ≤ k and let vjn+1 be the highest
ordered vertex for that group. This causes ` violations involving only pairs of light edges.
We can remove one edge from each pair and obtain a (perhaps sub-optimal) solution where `
edges are removed. J

I Lemma 17. Given an instance x of FAS, a C-approximation to the solution OPT(f(x))
yields a C-approximation to the solution OPT(x).

Proof. By Lemma 16 any (sub-optimal) solution with objective value C · val(OPT(f(x))) to
f(x), gives us a (sub-optimal) solution to x with the same objective value, C ·val(OPT(x)). J

Theorem 12 follows from Lemma 17 and Theorem 14 follows from Lemma 17 and Lemma 13.

5 The Wheeler Subgraph Problem is in APX

Figure 7 Arborescences have their
roots aligned in level L0. The relative
ordering for each type of vertex can be
read from top to bottom, left to right.

The dual problem to WGV is the problem of finding
the largest subgraph of G which is a Wheeler graph.
This problem (defined in Section 1.2) is called Wheeler
Subgraph, or WS. Unlike WGV, this problem yields
a Θ(1)-approximate solution for constant σ.

We first prove the result for σ = 1. The proof uses
a branching of a directed graph. A branching is a set
of arborescence where an arborescence is a directed,
rooted tree where all edges point away from the root.
A branching is spanning in that every vertex in V is
included exactly one arborescence in the branching.

I Lemma 18. There exist a linear time Θ(1)-
approximation algorithm for WS when the alphabet
set size σ is one.

Proof. Let V0 be the set of sources in G (vertices
with in-degree zero). There are two cases:
Case: |V0| ≤ n/2: Take a branching F of the input
graph G such that each non-source vertex than zero is included in some non-singleton
arborescence whose root is a source vertex in V0. Let |F| denote the total number of
arborescences in F . Since |V0| ≤ n/2, it follows that |F| ≤ n/2 as well.

We create a planar leveling (L0, L1, . . .) of F by aligning all roots of the branching on
level L0 in arbitrary order. Then set Li to be the vertices which are distance i from some
root in L0. Because these are trees, we can order the vertices in levels in such a way that the
leveling is planar (and for the purpose of visualization say left to right as in Figure 7).

We claim that F is a Wheeler graph and that we can obtain a proper ordering π for the
vertices of F from this leveling. Starting with V0, we order the vertices on each level from
the bottom to top before proceeding right to the next level. One can check that the Wheeler
graph axioms are satisfied.

The number of edges in F , denoted e(F), is equal to n − |F|. And, since |F| ≤ n/2,
we have that e(F) ≥ n/2. At the same time, by Theorem 5 the optimal number of edges,
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denoted |E∗|, is Θ(n). The the ratio of the optimal solution value over the branching solution
value is bounded. In particular, |E∗|/e(F) ≤ Θ(n)/(n/2) = Θ(1). The construction of the
branching, the planar leveling, and the extracting π can all be done in linear time.

Case |V0| > n/2: Take one outbound edge from each vertex in V0. We obtain a Wheeler graph
with |V0| > n/2 edges. This gives us an approximation ratio of |E∗|/|V0| < Θ(n)/(n/2) =
Θ(1).

In either case, we have an approximate solution with ẽ edges where ẽ ∈ Θ(|E∗|). J

Now, we consider when σ > 1. Suppose G∗ = (V,E∗) is the optimal solution for G. Then
E∗ = E∗1 ∪E∗2 . . . E∗σ where E∗k = {(u, v, k) ∈ E∗}. Let Gk = (V,Ek) where Ek = {(u, v, k) ∈
E} and let G′k = (V,E′k) be the optimal solution for Gk. Then, since |E∗k | ≤ |E′k| we have

|E∗| =
σ∑
k=1
|E∗k | ≤ σ ·max

k
|E∗k | ≤ σ ·max

k
|E′k|.

Applying the result for σ = 1 (Lemma 18), we can approximate maxk |E′k| with a solution
having ẽ = α ·maxk |E′k| edges for some constant α ≤ 1. Therefore,

α

σ
|E∗| ≤ αmax

k
|E′k| = ẽ ≤ max

k
|E′k| ≤ |E∗|.

So the solution proves Ω(1/σ)-approximation for G as well.
I Theorem 19. There exist a linear time Ω(1/σ)-approximation algorithm for WS.

6 An Exponential Time Algorithm

We can apply the encoding introduced by Gagie et al. [17] to develop exponential time
algorithms to solve all the problems listed so far. The idea is to enumerate over all possible
encodings of Wheeler graphs with the proper number of vertices, edges, and labels, checking
whether the encoding is isomorphic with the given graph. This idea exploits that having such
a space efficient encoding also implies have a limited search space of Wheeler graphs. The
graph isomorphism can be checked efficiently enough to maintain the desired time complexity.
The results are summarized in the following two theorems, proven in Appendix C.
I Theorem 20. Recognizing whether G = (V,E) is a Wheeler graph can be done in time
2e logσ+O(n+e), where n = |V |, e = |E|, and σ is the size of the edge label alphabet.
I Theorem 21. The WGV problem and WS problem for an input G = (V,E) with n = |V |,
e = |E| and σ is the size of the edge label alphabet can be solved in time 2e logσ+O(n+e).

7 Open Problems

Is the Wheeler graph recognition problem NP-complete for 3-NFA and 4-NFA?
For which other classes of graphs can Wheeler graph recognition be done efficiently?
Is there a fixed parameter tractable exponential time algorithm for any of the problems
given in this paper?

Constructive answers to these questions would likely contribute to our knowledge about how
to find an ordering of the vertices "close" to that required by the Wheeler graph axioms. As
a result, it could aid in our ability to apply BWT based indices to various structures, as well
as our ability to find useful compressible subgraphs.
Acknowledgement: We thank Travis Gagie and Nicola Prezza for introducing this problem
to us.
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A Proof of Lemma 3

First assume there exists an ordering of T that satisfies the given triples. Place v0 first
in the ordering and then order the vertices vj1, . . . , vjn in the same way starting from index
(j − 1)n+ 1. Order the vertices wj1, w

j
2,and w

j
3 in the same relative order given to vji1 , v

j
i2
,

and vji3 starting from index kn+ 3(j − 1) + 1, where ti1 = tj1, ti2 = tj2, and ti3 = tj3. Axiom
(i) of the Wheeler graph axioms is clearly satisfied.

For the second axiom, we first show that the edges with label one satisfy Axiom (ii). It
suffices to show that if one tail position of an edge minus another tail position is positive,
then the subtraction of the corresponding head positions is non-negative. Consider any two
edges (vji , v

j+1
i , 1) and (vqp, vq+1

p , 1). Vertex vji is at position (j − 1)n + i and vertex vj+1
i

is at position jn + i. Similarly vertex vqp is at position (q − 1)n + p and vertex vq+1
p is at

position qn+ p. Without loss of generality we assume that j < q. Then

(q − 1)n+ p− ((j − 1)n+ i) = (q − j)n+ p− i > 0

and also
qn+ p− (jn+ i) = (q − j)n+ p− i > 0.

For the edges with label two, we only need to consider edges with the same index j. This
is since if j < q for the edges (vji1 , w

j
`1
, 2) and (vqi2 , w

q
`2
, 2). Subtracting the tail positions we

have
(q − 1)n+ i2 − ((j − 1)n+ i1) = (q − j)n+ i2 − i1 ≥ n− 2 > 0

and subtracting the head positions we have

kn+ `2 + 3(q − 1)− (kn+ `1 + 3(j − 1)) = `2 − `1 + 3(q − j) ≥ `2 − `1 + 3 > 0.

For edges with label two and the same index j we first suppose the ordering on the
elements of the triple is tj1 < tj2 < tj3. Consider the vertices vji1 such that ti1 = tj1, vertex v

j
i2

such that ti2 = tj2, and vertex vji3 such that ti3 = tj3. We have then vji1 <π v
j
i2
<π v

j
i3

and
wj1 <π w

j
2 <π w

j
3. We show Axiom (ii) holds for the edges

(vji1 , w
j
1, 2), (vji2 , w

j
2, 2), (vji3 , w

j
3, 2), (vji1 , w

j
2, 2), (vji3 , w

j
2, 2).

It holds since:

1. For edges (vji1 , w
j
1, i) and (vji1 , w

j
2, 2), vji1 =π v

j
i1
.

2. For the edges (vji1 , w
j
1, 2) and (vji2 , w

j
2, 2), vji1 <π v

j
i2

and wj1 <π w
j
2.

3. For the edges (vji1 , w
j
1, 2) and (vji3 , w

j
2, 2), vji1 <π v

j
i3

and wj1 <π w
j
2.

4. For the edges (vji1 , w
j
1, 2) and (vji3 , w

j
3, 2), vji1 <π v

j
i3

and wj1 <π w
j
3.

5. For the edges (vji1 , w
j
2, 2) and (vji2 , w

j
2, 2), wj2 =π w

j
2.

6. For the edges (vji1 , w
j
2, 2) and (vji3 , w

j
2, 2), wj2 =π w

j
2.

7. For the edges (vji1 , w
j
2, 2) and (vji3 , w

j
3, 2), vji1 <π v

j
i3

and wj2 <π w
j
3.

8. For the edges (vji2 , w
j
2, 2) and (vji3 , w

j
2, 2), wj2 =π w

j
2.

9. For the edges (vji2 , w
j
2, 2) and (vji3 , w

j
3, 2), vji2 <π v

j
i3

and wj2 <π w
j
3.

10. For the edges (vji3 , w
j
2, 2) and (vji3 , w

j
3, 2), vji3 =π v

j
i3
.
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The argument for when tj3 < tj2 < tj1 is similar.
Conversely, suppose a valid ordering π exists for the vertices of the directed graph. Take

as the ordering on T the ordering of v1
1 , . . . , v

1
n. We claim that for the elements of the triple

(tj1, t
j
2, t

j
3) that either tj1 < tj2 < tj3 or tj3 < tj2 < tj1.

The vertex v0 must be first in the ordering since it has in-degree zero. The vertices v1
i

must precede any vertices vji with j ≥ 2. We show for a fixed j ≥ 2 the only valid ordering
of vji for 1 ≤ i ≤ n is the same as the ordering of v1

i for 1 ≤ i ≤ n. Let vji with j ≥ 2 be the
vertex with smallest position in the ordering that violates this. Then vji−1 must be higher in
the ordering then vji and the edges (vj−1

i−1 , v
j
i−1, 1) and (vj−1

i , vji , 1) violate Axiom (ii).
Next, suppose for the sake of contradiction that some ordering other than tj1 < tj2 < tj3 or

tj3 < tj2 < tj1 happens in the ordering. In all cases the ordering of wj1, w
j
2, and w

j
3 must be the

same as the relative ordering of vji1 , v
j
i2
, and vji3 , otherwise for some s 6= t we have the edges

(vjis , w
j
s, 2) and (vjit , w

j
t , 2) where vjis <π v

j
it
and wjt <π wjs (a transposition). Therefore,

1. If the ordering is tj1 < tj3 < tj2, then v
j
i1
<π v

j
i3
<π v

j
i2

and wj1 <π w
j
3 <π w

j
2 implying the

edges (vji1 , w
j
2, 2) and (vji3 , w

j
3, 2) violate Axiom (ii) (vji1 <π v

j
i3

and wj3 <π w
j
2).

2. If the ordering is tj3 < tj1 < tj2, then v
j
i3
<π v

j
i1
<π v

j
i2

and wj3 <π w
j
1 <π w

j
2 implying the

edges (vji3 , w
j
2, 2) and (vji1 , w

j
1, 2) violate Axiom (ii)(vji3 <π v

j
i1

and wj1 <π w
j
2).

3. If the ordering is tj2 < tj1 < tj3, then v
j
i2
<π v

j
i1
<π v

j
i3

and wj2 <π w
j
1 <π w

j
3 implying the

edges (vji1 , w
j
1, 2) and (vji3 , w

j
2, 2), violate Axiom (ii) (vji1 <γ v

j
i3

and wj2 <γ w
j
1).

4. If the ordering is tj2 < tj3 < tj1, then v
j
i2
<π v

j
i3
<π v

j
i1

and wj2 <π w
j
3 <π w

j
1 implying the

edges (vji3 , w
j
3, 2) and (vji1 , w

j
2, 2), violate Axiom (ii) (vji3 <γ v

j
i1

and wj2 <γ w
j
3).

In all cases Axiom (ii) is violated. Hence, it must hold that the triple is ordered as tj1 < tj2 < tj3
or tj3 < tj2 < tj1. This completes the proof.

B Wheeler graph Recognition for σ = 1 in Linear Time

B.1 Queue Number
The concept of queue number and queue layout were introduced by Heath and Rosenberg [22].
The definition of queue number for directed graphs used in [21] requires that we be able to
process the edges so that every time the tail of an edge is encountered the edge is enqueued,
and every time the head of an edge is encountered the edge is dequeued. The minimum
number of queues necessary to do this is the queue number. A directed graph with queue
number one is characterized by the fact that there exists a topological ordering on the vertices
which allows for processing the edges in the way described using one queue. Similar to our
problem, the challenge in identifying one-queue DAGs is in identifying if an ordering on the
vertices exists to make processing the edges in this way possible. The problem of detecting
whether a graph is a one-queue DAG was shown to be solvable in linear time by Heath and
Pemmaraju [20, 21].

B.2 Proof of Theorem 4
We ignore self-loops since they must be placed last in a proper ordering. We distinguish
between an ordering of V which satisfies the Wheeler graph axioms and one which allows for
edge processing with one queue as a Wheeler ordering and one-queue ordering respectively.
When σ = 1, any proper Wheeler ordering is also a topological ordering (see Property
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5), hence, the problem of finding a one-queue ordering and a Wheeler ordering are almost
equivalent. The only difference is that for a Wheeler ordering all of the vertices with in-degree
zero must be placed first in the ordering. We can overcome this difference and apply an
algorithm which detects one-queue DAGs if we first create a new vertex u with in-degree
zero. Let V0 ⊂ V represent all vertices in V with in-degree zero. Add an edge from u to
each vertex in V0. Since a valid one-queue ordering is a topological ordering, v0 must be first
in the one-queue ordering. Moreover, any vertices in the V − V0 must be in the one-queue
ordering after the last position given to a vertex in V0, otherwise a rainbow is created. Thus,
the above modification ensures that the only acceptable one-queue orderings on V place the
vertices in V0 before any vertices in V − V0, ensuring the ordering is a Wheeler ordering.

B.3 Proof of Theorem 5
Ignoring self-loops, for σ = 1 every Wheeler graph is also a one-queue DAG. A result by
Dujmovic and Wood implies that the total number of edges is Θ(n) [13]. The addition of
self-loops adds at most n edges.

C Exponential Time Algorithms

C.1 Proof of Theorem 20
Before describing the algorithm that proves Theorem 20 we need to describe the encoding
of a Wheeler graph given in [17]. A Wheeler graph can be completely specified by three
bit vectors. Two bit vectors I and O both of length e + n and a bit vector L of length
e log σ. We assume that the vertices of the Wheeler graph G are listed in a proper ordering
x1 <π x2 <π . . . <π xn. The array I is of the form 0`110`21 . . . 0`n1 and O is of the form
0k110k21 . . . 0kn1. Here `i is the out-degree of xi whereas ki is the in-degree of xi. The array
L indicates which of the e character symbols are assigned to each edge. Specifically, the ith
character in L gives us the label of the edge corresponding to the ith zero in O. In [17] an
additional C array is added, and these arrays are equipped with additional rank and select
structures to allow for efficient traversal as is done in the FM-index [15]. For our purposes,
however, the arrays O, I, and L are adequate.

The outline of the algorithm is given below as Algorithm 1. It essentially enumerates all
bit vectors of a given length, checks whether or not the bit vector encodes a valid Wheeler
graph, and if so then checks whether the encoding matches our given graph G. Let S
represent the set of all possible encodings we wish to check. Note that |S| ≤ 22(e+n)+e logσ.

Algorithm 1 IdentifyWheelerGraph(G)
for all (O, I, L) ∈ S do

if (O, I, L) defines a valid wheeler graph G′ then
convert G to undirected graph α(G)
convert G′ to undirected graph α(G′)
if α(G) and α(G′) are isomorphic then

return ’Wheeler Graph’
end if

end if
end for
return “Not a Wheeler Graph"
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Figure 8 A k-gadget replacing directed
labeled edge (u, v, k).

Next, we provide the details for Algorithm 1.
The Wheeler graph corresponding to the encod-
ing can be extracted by working from right to
left reading the array I. For each zero in I, we
know which symbol should be on the inbound
edge going into the corresponding vertex. We
only need to decide where the edge’s tail was.
Let k be the edge label and j be the index of
the label k in L which is furthest to the right
in L and yet to be used. If no such j exists
we reject the encoding. When assigning the tail
for an edge, take as the tail the vertex xi where
i = rank1(O, select0(O, j)). We call the graph constructed in this way G′.

We now wish to check whether G′ and G are the same graphs only with a reordering of
the vertices, that is, G′ is the result of applying an isomorphism to G. Unlike the typical
isomorphism for labeled graphs, where a bijection between the symbols on the edge alphabet
is all that is required, here we wish for the adjacency and the label on the edge to be
preserved in the mapping between G and G′. Specifically, we wish to know if there exists
a bijective function f : V (G) → V (G′), such that if u, v ∈ V (G) are adjacent via an edge
(u, v, k) with label k in G, then f(u) and f(v) are also adjacent via an edge (f(u), f(v), k)
with label k in G′. Using ideas similar to those presented by Miller in [27], this problem can
be reduced in polynomial time to checking whether two undirected graphs are isomorphic.

I Lemma 22. Checking whether the direct edge labeled graph G′ is edge label preserving
isomorphic to G can be reduced in polynomial time to checking if two undirected graphs are
isomorphic.

Proof. Define the transformation α from directed edge labeled graph G to undirected graph
α(G) as follows: For every directed edge (u, v, k) replace it with the k-gadget in Figure 8.

Assume that there exists an edge label preserving isomorphism f from V (G) to V (G′).
This implies that when α is applied to G′ the same gadget is used to replace the edge
(f(u), f(v), k) as the gadget used to replace the edge (u, v, k) in G. Therefore, the function
f can be naturally extended to an isomorphism f̃ on the vertices of α(G) providing an
isomorphism between α(G) and α(G′).

Now, consider the case where g is an isomorphism between α(G) and α(G′). We wish
to show that G and G′ must be related by an isomorphism preserving edge labels. We
define a n-tuple of numbers for each vertex v ∈ V (α(G)), β(v) = (a1, a2, . . . , an) where ai
is the number of vertices with graph distance (the number of edges) i from v. Notice first
that β(v) = β(g(v)), that is β(v) is invariant under g. In Figure 8 β(x) = (1, 1, . . . , 1, 2, . . .)
where the leading 1’s are repeated k + 1 times. Also, β(y) = (1, 1, . . . , 1, 2, . . .) where the
leading 1’s are repeated σ + 1 times. For example, when k = 1, we have β(x) = (1, 1, 2, . . .).
Now observe that for any vertex u ∈ V (G) of degree d we have that β(u) = (d, 2d, . . .). It
follows that any vertex which is a x-type vertex of a k-gadget is mapped by g onto an x-type
vertex of a k-gadget. Similarly, any vertex which is a y-type vertex of a k-gadget is mapped
by g onto y-type vertex of a k-gadget. Hence, k-gadgets are mapped by g onto k-gadgets.
This also implies that vertices in V (α(G)) originally in G are mapped by g onto vertices in
V (α(G′)) which were originally in V (G′). If we restrict g to only the vertices originally in
V (G), then g provides us with an isomorphism between G and G′. The reduction clearly
takes polynomial time. J
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The final step in this algorithm is to check whether α(G) and α(G′) are isomorphic.
Using well established techniques this can be done in time 2

√
n′+O(1) where n′ is the number

of vertices in α(G) [4]. The total time complexity of Algorithm 1 is the number of bit
strings tested, multiplied by the time it takes to (1) validate whether the bit string encodes a
Wheeler graph G′ and decode it, (2) convert G and G′ to undirected graphs α(G) and α(G′),
and (3) test whether α(G) and α(G′) are isomorphic. This yields an overall time complexity
of |S|nO(1)2

√
n+2e(σ+1)+O(1), i.e., 2e logσ+O(n+e) for Algorithm 1.

This also gives us an exponential time algorithm for identifying the minimum number of
edges that need to be removed to obtain a Wheeler graph, solving both the WGV and WS,
along with obtaining a solution’s corresponding encoding. Iterate over all possible subsets of
edges in E, take the corresponding induced subgraph and apply Algorithm 1. The solution to
both problems is the encoding with the fewest edges removed. The resulting time complexity
is the same as the above with the addition of one e term in the exponent. This proves
Theorem 21.

D A Class of Graphs with Linear Time Solution for Recognition

It is interesting to consider which special cases of this problem can be solved efficiently. We
identify two characteristics which make this problem tractable with techniques similar to
those used to detect one-queue DAGs. This may describe some useful subset of acyclic NFA’s
where the transition function is total. It may also be used to guide the search for a Wheeler
subgraph by removing edges until the conditions are satisfied.

We make two definitions which describe the characteristics we require in order to solve
the problem efficiently.

I Definition 23. We consider a graph G to have full spectrum outputs if for every vertex v
of out-degree greater than zero every label appears on an edge leaving from v.

I Definition 24. A graph G has the unique string traversal property if for every two sets of
vertices S1, S2 there is either a unique string s, or no string, such that if we traverse from S1
processing the string s we arrive at S2.

Here we provide a linear time solution for the special case where the graph has full
spectrum outputs and the unique string traversal property. Note that if G has the unique
string traversal property then G must be acyclic and thus contains some vertices with
in-degree zero. Let V0 refer to the set of vertices with in-degree zero. Before presenting the
solution, we introduce an essential data structure, as well as the process by which we can
detect whether a DAG has a queue number of one.

D.1 PQ-trees
PQ-trees where introduced by Booth and Lueker for the purpose of solving the consecutive
ones problem [6], and have since found applications in a wide range of problems including
planarity detection, detecting interval graphs, and graph embedding [6, 10]. PQ-trees
represent a set of possible orderings of the leaves which are subject to certain constraints.
These constraints specify that some subset of the leaves must be contiguous in the ordering.
The trees are made up of three types of nodes, p-nodes, q-nodes, and leaves. The p-nodes
allow for arbitrary permutations of their child nodes, whereas q-nodes only allow for the
reversal of their child nodes. The leaves represent the actual elements whose ordering we are
interested in. See 9 for an example.
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A universal PQ-tree is a p-node v where all of the leaves are v’s children. The ε-tree, Tε
is a special tree which represents the empty set of orderings. We can take the intersection of
two PQ-trees in time proportional to the sum of the two tree sizes [6]. The resulting PQ-tree
represents the intersection of the orderings represented by each PQ-tree. Deletion of a leaf
can be done in constant time.

D.2 Detecting One-Queue DAGs

Figure 9 In the figure, p-nodes are
represented by circles and q-nodes by
rectangles. The orderings represented
by this PQ-Tree are orderings where 1
can be reversed with 2, the leaves 3,4,5
can be permuted arbitrarily, and the sets
1,2 and 3,4,5, can be swapped.

The problem of detecting whether a directed graph
has queue number one can be solved in linear time,
but the solution is non-trivial. It consists of taking
a leveling of the DAG (V1, . . . , Vk). Beginning with
the universal PQ-tree whose leaves are V1, we then
"grow" the leaves of the PQ-tree to be the vertices
in V2 according to adjacency. Then the leaves which
should be in correspondence in V2 are merged into the
same leaf. If at any point the merging step fails, we
obtain the ε-tree and conclude that the DAG does not
have queue number one. If we get to the final level
without a merging step returning the ε-tree, the DAG
has a queue number of one. Details of the algorithm
are given in [20, 21]. For convenience, we will call
the combined steps of growing and merging from one level to the next pushing. Pushing
a PQ-tree T to the next level with vertices V is denoted pseudocode as Push(T, V ). The
intuition behind this procedure is that when the level-k has been pushed to, the PQ-tree
captures all possible orderings of Vk such that a one queue layout of levels one through k is
possible if one of these orderings was fixed. This interpretation of the process is very useful
for understanding the algorithm presented next.

D.3 Linear Time Solution
The basic approach to solving this problem is to use a depth-first search, treating sets of
vertices as a single vertex. These vertex sets will have PQ-trees pushed across them in a
similar fashion as was done in [21]. The situation is slightly more complicated here as we
have multiple edge types. This results in a tree structure, rather than a path of vertex sets.
We will label the vertices representing vertex sets with capital letters. We label the PQ-tree
for a vertex set V as TV .

For simplicity, we split the algorithm into two parts. The first part is to create a
tree where vertex sets play the role of vertices. It is a depth-first search using the edges
between neighborhoods as connecting edges. The pseudocode is given in Algorithm 2. Ni(V )
denotes the set of neighbors of the set V connected by an edge with label i. The function
createVertex takes a set of vertices and creates a new instance of a vertex class which
can maintain pointers to its parent, children, internal vertices, and a string. Lemma 25 can
be proven by applying induction to the number of edge labels, σ.

Thanks to Lemma 25, we only need to determine the relative ordering within each vertex
set.

I Lemma 25. If the given graph G is a Wheeler graph, in a proper ordering, the vertex sets
obtained as above are ordered by the lexicographical ordering of their strings.
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Algorithm 2 CreateNeighborhoodGraph
Require: Vertex set V with adjacency information
1: function CreateNeighborhoodGraph(V ):
2: for all i ∈ [σ] do
3: if Ni(V ) 6= ∅ then
4: Vi ← createVertex(Ni(V ))
5: Vi.parent← V

6: Vi.string ← i || V.string . Concatenate
7: V.children.add(CreateNeighborhoodGraph(Vi))
8: end if
9: end for
10: return V

11: end function

An example of a tree obtained from Algorithm 2 is shown in Figure 10. The vertex sets
are disjoint due to the unique string traversal property. It can be easily shown that all
vertices are included in some vertex set. Also, during Algorithm 2 we can identify if the
graph satisfies the unique string traversal property by checking if a vertex gets included into
two vertex sets.

Moving forward, the main algorithm is a recursive procedure which starts with the set
of vertices V0 which have in-degree zero. The pseudocode for this procedure is given in
Algorithm 3. The first step removes vertices in V with out-degree zero and the corresponding
leaves from TV . This is necessary since when we push a PQ-tree back up to V , these
vertices will not be leaves in the resulting PQ-tree, making computing the intersection
in future steps impossible. Hereafter, we consider V as containing no degree zero vertex.
Let V be the vertices processed prior to reaching V . We assume that all of the PQ-
tree’s we see are not the ε-tree, otherwise, we know the graph is not a Wheeler graph.

Figure 10 Tree resulting from Al-
gorithm 2. An oval corresponds to a
set of vertices in G.

We assume inductively that the PQ-tree TV represents
all orderings of V such that if we fixed any one of
these orderings there still exists a proper ordering of
the vertices in V . After performing the first line of the
first for-loop, the PQ-tree TV1 represents all orderings
of V1 such that if we fixed any one of these orderings
there still exists a proper ordering of the vertices in
V ∪ V . After performing the second line in the first
for-loop, TV represents all orderings of V such that if
we fixed any one of these orderings there still exists
a proper ordering of the vertices in V ∪ V ∪ V1. After
repeating this loop a second time, TV represents all
orderings of V such that if we fixed any one of them
there still exists a proper ordering of the vertices in
V ∪ V ∪ V1 ∪ V2. We push TV down to V ’s children
in the last for-loop. When finally pushed, both TVi

represents all orderings of Vi such that
fixing an ordering still allows for a valid ordering of all vertices encountered so far.

The full spectrum output condition is necessary to apply this algorithm. Every vertex in
V maps onto some vertex in each of V ’s children. As a result, when the PQ-tree TVi

gets
pushed back from a child Vi creating a new PQ-tree T , all the vertices in V are leaves in T .

The pseudocode for the whole algorithm is given in Algorithm 4.
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Algorithm 3 Propagating PQ-Trees
Require: PQ-Tree TV and corresponding vertex set V .
1: function PropagatePQTrees(TV , V ):
2: Remove in-degree zero vertex from V and TV
3: for all Vi ∈ V.children do
4: TVi

← push(TV , Vi) . Push PQ-Tree down to child.
5: TV ← TV ∩ push(TVi

, V ) . Push PQ-tree up from child and take intersection
6: if TV = Tε then
7: return "failure"
8: end if
9: end for
10: for all Vi ∈ V.children do
11: TVi

← push(TV , Vi) . Push intersected PQ-Tree down
12: result← PropagatePQTrees(TVi

, Vi) . Recursively apply to children
13: if result = "failure " then
14: return "failure"
15: end if
16: end for
17: return "success"
18: end function

Algorithm 4 Detecting Wheeler graphs
Require: Graph full spectrum graph G = (V,E) with unique string traversal property.
1: function DetectWheelerGraph(G):
2: Let V0 denote the set of all degree zero vertex in G
3: V0 = createVertex(V0)
4: createNeighborhoodGraph(V0)
5: V0.string ← “ε”
6: Let TV0 be the universal tree with leaves V0
7: if propagatePQTrees(V0, TV0) = "success" then
8: return "Wheeler graph"
9: else
10: return "not a Wheeler graph"
11: end if
12: end function

Time Complexity: Each set of edges between two vertex sets has PQ-trees pushed across
it three times. These pushes can be done in time proportional to the number of edges. All
intersections can be done in time proportional to the number of vertices. As a result, the
algorithm can be performed in linear time. We have demonstrated the following:

I Theorem 26. It can be determined in linear time if a directed edge labeled graph with full
spectrum outputs and the unique string traversal property is a Wheeler graph.
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