
The Complexity of Transitively Orienting
Temporal Graphs
George B. Mertzios !

Department of Computer Science, Durham University, UK

Hendrik Molter !

Technische Universität Berlin, Faculty IV, Algorithmics and Computational Complexity, Germany

Malte Renken !

Technische Universität Berlin, Faculty IV, Algorithmics and Computational Complexity, Germany

Paul G. Spirakis !

Department of Computer Science, University of Liverpool, UK
Computer Engineering & Informatics Department, University of Patras, Greece

Philipp Zschoche !

Technische Universität Berlin, Faculty IV, Algorithmics and Computational Complexity, Germany

Abstract

In a temporal network with discrete time-labels on its edges, entities and information can only “flow”
along sequences of edges whose time-labels are non-decreasing (resp. increasing), i.e. along temporal
(resp. strict temporal) paths. Nevertheless, in the model for temporal networks of [Kempe, Kleinberg,
Kumar, JCSS, 2002], the individual time-labeled edges remain undirected: an edge e = {u, v} with
time-label t specifies that “u communicates with v at time t”. This is a symmetric relation between
u and v, and it can be interpreted that the information can flow in either direction. In this paper
we make a first attempt to understand how the direction of information flow on one edge can impact
the direction of information flow on other edges. More specifically, naturally extending the classical
notion of a transitive orientation in static graphs, we introduce the notion of a temporal transitive
orientation and we systematically investigate its algorithmic behavior in various situations. An
orientation of a temporal graph is called temporally transitive if, whenever u has a directed edge
towards v with time-label t1 and v has a directed edge towards w with time-label t2 ≥ t1, then u also
has a directed edge towards w with some time-label t3 ≥ t2. If we just demand that this implication
holds whenever t2 > t1, the orientation is called strictly temporally transitive, as it is based on the
fact that there is a strict directed temporal path from u to w. Our main result is a conceptually
simple, yet technically quite involved, polynomial-time algorithm for recognizing whether a given
temporal graph G is transitively orientable. In wide contrast we prove that, surprisingly, it is
NP-hard to recognize whether G is strictly transitively orientable. Additionally we introduce and
investigate further related problems to temporal transitivity, notably among them the temporal
transitive completion problem, for which we prove both algorithmic and hardness results.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Mathem-
atics of computing → Discrete mathematics

Keywords and phrases Temporal graph, transitive orientation, transitive closure, polynomial-time
algorithm, NP-hardness, satisfiability.

Funding George B. Mertzios: Supported by the EPSRC grant EP/P020372/1.
Hendrik Molter : Supported by the German Research Foundation (DFG), project MATE (NI 369/17).
Malte Renken: Supported by the German Research Foundation (DFG), project MATE (NI 369/17).
Paul G. Spirakis: Supported by the NeST initiative of the School of EEE and CS at the University
of Liverpool and by the EPSRC grant EP/P02002X/1.

ar
X

iv
:2

10
2.

06
78

3v
1

 [
cs

.D
S]

 1
2

Fe
b

20
21

mailto:george.mertzios@durham.ac.uk
https://orcid.org/0000-0001-7182-585X
mailto:h.molter@tu-berlin.de
https://orcid.org/0000-0002-4590-798X
mailto:m.renken@tu-berlin.de
http://orcid.org/0000-0002-1450-1901
mailto:p.spirakis@liverpool.ac.uk
https://orcid.org/0000-0001-5396-3749
mailto:zschoche@tu-berlin.de
https://orcid.org/0000-0001-9846-0600

2 The Complexity of Transitively Orienting Temporal Graphs

1 Introduction

A temporal (or dynamic) network is, roughly speaking, a network whose underlying topology
changes over time. This notion concerns a great variety of both modern and traditional
networks; information and communication networks, social networks, and several physical
systems are only few examples of networks which change over time [27,38,41]. Due to its vast
applicability in many areas, the notion of temporal graphs has been studied from different
perspectives under several different names such as time-varying, evolving, dynamic, and
graphs over time (see [13–15] and the references therein). In this paper we adopt a simple
and natural model for temporal networks which is given with discrete time-labels on the
edges of a graph, while the vertex set remains unchanged. This formalism originates in the
foundational work of Kempe et al. [28].

▶ Definition 1 (Temporal Graph [28]). A temporal graph is a pair G = (G, λ), where
G = (V, E) is an underlying (static) graph and λ : E → N is a time-labeling function which
assigns to every edge of G a discrete-time label.

Mainly motivated by the fact that, due to causality, entities and information in temporal
graphs can only “flow” along sequences of edges whose time-labels are non-decreasing
(resp. increasing), Kempe et al. introduced the notion of a (strict) temporal path, or (strict)
time-respecting path, in a temporal graph (G, λ) as a path in G with edges e1, e2, . . . , ek

such that λ(e1) ≤ . . . ≤ λ(ek) (resp. λ(e1) < . . . < λ(ek)). This notion of a temporal path
naturally resembles the notion of a directed path in the classical static graphs, where the
direction is from smaller to larger time-labels along the path. Nevertheless, in temporal paths
the individual time-labeled edges remain undirected: an edge e = {u, v} with time-label
λ(e) = t can be abstractly interpreted as “u communicates with v at time t”. Here the
relation “communicates” is symmetric between u and v, i.e. it can be interpreted that the
information can flow in either direction.

In this paper we make a first attempt to understand how the direction of information flow
on one edge can impact the direction of information flow on other edges. More specifically,
naturally extending the classical notion of a transitive orientation in static graphs [24], we
introduce the notion of a temporal transitive orientation and we thoroughly investigate its
algorithmic behavior in various situations. Imagine that v receives information from u at
time t1, while w receives information from v at time t2 ≥ t1. Then w indirectly receives
information from u through the intermediate vertex v. Now, if the temporal graph correctly
records the transitive closure of information passing, the directed edge from u to w must
exist and must have a time label t3 ≥ t2. In such a transitively oriented temporal graph,
whenever an edge is oriented from a vertex u to a vertex w with time-label t, we have that
every temporal path from u to w arrives no later than t, and that there is no temporal path
from w to u. Different notions of temporal transitivity have also been used for automated
temporal data mining [40] in medical applications [39], text processing [45]. Furthermore, in
behavioral ecology, researchers have used a notion of orderly (transitive) triads A-B-C to
quantify dominance among species. In particular, animal groups usually form dominance
hierarchies in which dominance relations are transitive and can also change with time [33].

One natural motivation for our temporal transitivity notion comes from thinking about
vertices u, v, w as journalists or lawyers. Suppose that v queried some important information
from u (the information source) at time t1, and afterwards, at time t2 ≥ t1, w queried the
important information from v (the intermediary). Then, in order to ensure the validity of
the information received, w might want to verify it by subsequently querying the information
directly from u at some time t3 ≥ t2. Note that w might first receive the important information

G.B. Mertzios, H. Molter, M. Renken, P.G. Spirakis and P. Zschoche 3

from u through various intermediaries, and using several channels of different lengths. Then,
to maximize confidence about the information, w should query u for verification only after
receiving the information from the latest of these indirect channels.

It is worth noting here that the model of temporal graphs given in Definition 1 has been
also used in its extended form, in which the temporal graph may contain multiple time-labels
per edge [35]. This extended temporal graph model has been used to investigate temporal
paths [3, 9, 11,16, 35,48] and other temporal path-related notions such as temporal analogues
of distance and diameter [1], reachability [2] and exploration [1,3,20,21], separation [22,28,49],
and path-based centrality measures [12,29], as well as recently non-path problems too such as
temporal variations of coloring [37], vertex cover [4], matching [36], cluster editing [18], and
maximal cliques [8,26,47]. However, in order to better investigate and illustrate the inherent
combinatorial structure of temporal transitivity orientations, in this paper we mostly follow
the original definition of temporal graphs given by Kempe et al. [28] with one time-label per
edge [7,17,19]. Throughout the paper, whenever we assume multiple time-labels per edge we
will state it explicitly; in all other cases we consider a single label per edge.

In static graphs, the transitive orientation problem has received extensive attention which
resulted in numerous efficient algorithms. A graph is called transitively orientable (or a
comparability graph) if it is possible to orient its edges such that, whenever we orient u

towards v and v towards w, then the edge between u and w exists and is oriented towards w.
The first polynomial-time algorithms for recognizing whether a given (static) graph G on n

vertices and m edges is comparability (i.e. transitively orientable) were based on the notion
of forcing an orientation and had running time O(n3) (see Golumbic [24] and the references
therein). Faster algorithms for computing a transitive orientation of a given comparability
graph have been later developed, having running times O(n2) [43] and O(n + m log n) [30],
while the currently fastest algorithms run in linear O(n + m) time and are based on efficiently
computing a modular decomposition of G [31, 32]; see also Spinrad [44]. It is fascinating
that, although all the latter algorithms compute a valid transitive orientation if G is a
comparability graph, they fail to recognize whether the input graph is a comparability graph;
instead they produce an orientation which is non-transitive if G is not a comparability graph.
The fastest known algorithm for determining whether a given orientation is transitive requires
matrix multiplication, currently achieved in O(n2.37286) time [5].

Our contribution. In this paper we introduce the notion of temporal transitive orientation
and we thoroughly investigate its algorithmic behavior in various situations. An orientation of
a temporal graph G = (G, λ) is called temporally transitive if, whenever u has a directed edge
towards v with time-label t1 and v has a directed edge towards w with time-label t2 ≥ t1,1
then u also has a directed edge towards w with some time-label t3 ≥ t2. If we just demand
that this implication holds whenever t2 > t1, the orientation is called strictly temporally
transitive, as it is based on the fact that there is a strict directed temporal path from u to w.
Similarly, if we demand that the transitive directed edge from u to w has time-label t3 > t2,
the orientation is called strongly (resp. strongly strictly) temporally transitive.

Although these four natural variations of a temporally transitive orientation seem super-
ficially similar to each other, it turns out that their computational complexity (and their
underlying combinatorial structure) varies massively. Indeed we obtain a surprising result
in Section 3: deciding whether a temporal graph G admits a temporally transitive orientation
is solvable in polynomial time (Section 3.1), while it is NP-hard to decide whether it admits

1 That is, whenever there exists a (non-strict) directed temporal path from u to w arriving at time t2

4 The Complexity of Transitively Orienting Temporal Graphs

a strictly temporally transitive orientation (Section 3.2). On the other hand, it turns out that,
deciding whether G admits a strongly or a strongly strictly temporal transitive orientation is
(easily) solvable in polynomial time as they can both be reduced to 2SAT satisfiability.

Our main result is that, given a temporal graph G = (G, λ), we can decide in polynomial
time whether G can be transitively orientable, and at the same time we can output a temporal
transitive orientation if it exists. Our algorithm, whose proof of correctness is technically quite
involved, is conceptually simple and easy to implement. It is heavily based on the notion of
forcing an orientation2, thus extending the classical polynomial-time algorithm for computing
a transitive orientation in static graphs described by Golumbic [24]. However, in contrast
to the case of static graphs, it turns out that, in temporal graphs, we cannot use simple
orientation forcings to eliminate the condition that a triangle cannot be oriented cyclically.
To resolve this issue, we prove that the recognition problem of temporally transitive graphs
is equivalent to deciding the Boolean satisfiability of a mixed formula ϕ3NAE ∧ ϕ2SAT . Here
ϕ3NAE is a 3NAE formula, i.e., the disjunction of clauses with three literals each, where every
clause NAE(ℓ1, ℓ2, ℓ3) is satisfied if and only if at least one of the literals {ℓ1, ℓ2, ℓ3} is equal
to 1 and at least one of them is equal to 0. Note that every clause NAE(ℓ1, ℓ2, ℓ3) corresponds
to the condition that a specific triangle in the temporal graph cannot be cyclically oriented.
Furthermore ϕ2SAT is a 2SAT formula, i.e., the disjunction of 2CNF clauses with two literals
each, where every clause (ℓ1 ∨ ℓ2) is satisfied if and only if at least one of the literals {ℓ1, ℓ2}
is equal to 1.

However, although deciding whether ϕ2SAT is satisfiable can be done in linear time with
respect to the size of the formula [6], the problem Not-All-Equal-3-SAT is NP-complete [42].
Therefore, expressing our problem as a Boolean satisfiability problem in this sense does not
help deducing a polynomial-time algorithm (unless P=NP). Nevertheless, we prove a sequence
of structural properties that a temporally transitive orientation has to satisfy, which allows
us to present a polynomial-time algorithm for this problem. This phenomenon of deducing a
polynomial-time algorithm for an algorithmic graph problem by deciding satisfiability of a
mixed Boolean formula (i.e. with both clauses of two and three literals) occurs rarely; this
approach has been successfully used for the efficient recognition of simple-triangle (known
also as “PI”) graphs [34].

In the second part of our paper (Section 4) we consider a natural extension of the temporal
orientability problem, namely the temporal transitive completion problem. In this problem
we are given a temporal graph G and a natural number k, and the question is whether it is
possible to add at most k new edges (with the corresponding time-labels) to G such that the
resulting temporal graph is (strongly/strictly/strongly strictly) transitively orientable. We
prove that all four versions of temporal transitive completion are NP-complete. In contrast
we show that, if the input temporal graph G is directed (i.e. if every time-labeled edge
has a fixed orientation) then all versions of temporal transitive completion are solvable in
polynomial time. As a corollary of our results it follows that all four versions of temporal
transitive completion are fixed-parameter-tractable (FPT) with respect to the number q of
unoriented time-labeled edges in G.

In the third and last part of our paper (Section 5) we consider the multilayer transitive
orientation problem. In this problem we are given an undirected temporal graph G = (G, λ),
where G = (V, E), and we ask whether there exists an orientation F of its edges (i.e. with
exactly one orientation for each edge of G) such that, for every ‘time-layer” t ≥ 1, the (static)
oriented graph induced by the edges having time-label t is transitively oriented in F . Problem

2 That is, orienting an edge from u to v forces us to orient another edge from a to b.

G.B. Mertzios, H. Molter, M. Renken, P.G. Spirakis and P. Zschoche 5

definitions of this type are commonly referred to as multilayer problems [10], Observe that
this problem trivially reduces to the static case if we assume that each edge has a single
time-label, as then each layer can be treated independently of all others. However, if we
allow G to have multiple time-labels on every edge of G, then we show that the problem
becomes NP-complete, even when every edge has at most two labels.

2 Preliminaries and Notation

Given a (static) undirected graph G = (V, E), an edge between two vertices u, v ∈ V is
denoted by the unordered pair {u, v} ∈ E, and in this case the vertices u, v are said to
be adjacent. If the graph is directed, we will use the ordered pair (u, v) (resp. (v, u)) to
denote the oriented edge from u to v (resp. from v to u). For simplicity of the notation, we
will usually drop the parentheses and the comma when denoting an oriented edge, i.e. we
will denote (u, v) just by uv. Furthermore, ûv = {uv, vu} is used to denote the set of both
oriented edges uv and vu between the vertices u and v.

Let S ⊆ E be a subset of the edges of an undirected (static) graph G = (V, E), and let
Ŝ = {uv, vu : {u, v} ∈ S} be the set of both possible orientations uv and vu of every edge
{u, v} ∈ S. Let F ⊆ Ŝ. If F contains at least one of the two possible orientations uv and
vu of an edge {u, v} ∈ S, then F is called an orientation of the edges of S. F is called
a proper orientation if it contains exactly one of the orientations uv and vu of every edge
{u, v} ∈ S. Note here that, in order to simplify some technical proofs, the above definition
of an orientation allows F to be not proper, i.e. to contain both uv and vu for a specific edge
{u, v}. However, whenever F is not proper, this means that F can be discarded as it cannot
be used as a part of a (temporal) transitive orientation. For every orientation F denote by
F −1 = {vu : uv ∈ F} the reversal of F . Note that F ∩ F −1 = ∅ if and only if F is proper.

In a temporal graph G = (G, λ), where G = (V, E), whenever λ({v, w}) = t (or simply
λ(v, w) = t), we refer to the tuple ({v, w}, t) as a time-edge of G. A triangle of (G, λ) on
the vertices u, v, w is a synchronous triangle if λ(u, v) = λ(v, w) = λ(w, u). Let G = (V, E)
and let F be a proper orientation of the whole edge set E. Then (G, F), or (G, λ, F), is a
proper orientation of the temporal graph G. An partial proper orientation of a temporal
graph G = (G, λ, F) is an orientation of a subset of E. To indicate that the edge {u, v} of a
time-edge ({u, v}, t) is oriented from u to v (that is, uv ∈ F in a (partial) proper orientation
F), we use the term ((u, v), t), or simply (uv, t). For simplicity we may refer to a (partial)
proper orientation just as a (partial) orientation, whenever the term “proper” is clear from
the context.

A static graph G = (V, E) is a comparability graph if there exists a proper orientation F

of E which is transitive, that is, if F ∩ F −1 = ∅ and F 2 ⊆ F , where F 2 = {uw : uv, vw ∈ F

for some vertex v} [24]. Analogously, in a temporal graph G = (G, λ), where G = (V, E), we
define a proper orientation F of E to be temporally transitive, if:

whenever (uv, t1) and (vw, t2) are oriented time-edges in (G, F) such that t2 ≥ t1, there
exists an oriented time-edge (wu, t3) in (G, F), for some t3 ≥ t2.

In the above definition of a temporally transitive orientation, if we replace the condition
“t3 ≥ t2” with “t3 > t2”, then F is called strongly temporally transitive. If we instead replace
the condition “t2 ≥ t1” with “t2 > t1”, then F is called strictly temporally transitive. If we
do both of these replacements, then F is called strongly strictly temporally transitive. Note
that strong (strict) temporal transitivity implies (strict) temporal transitivity, while (strong)
temporal transitivity implies (strong) strict temporal transitivity. Furthermore, similarly to

6 The Complexity of Transitively Orienting Temporal Graphs

the established terminology for static graphs, we define a temporal graph G = (G, λ), where
G = (V, E), to be a (strongly/strictly) temporal comparability graph if there exists a proper
orientation F of E which is (strongly/strictly) temporally transitive.

We are now ready to formally introduce the following decision problem of recognizing
whether a given temporal graph is temporally transitively orientable or not.

Temporal Transitive Orientation (TTO)

Input: A temporal graph G = (G, λ), where G = (V, E).
Question: Does G admit a temporally transitive orientation F of E?

In the above problem definition of TTO, if we ask for the existence of a strictly
(resp. strongly, or strongly strictly) temporally transitive orientation F , we obtain the
decision problem Strict (resp. Strong, or Strong Strict) Temporal Transitive
Orientation (TTO).

Let G = (G, λ) be a temporal graph, where G = (V, E). Let G′ = (V, E′) be a graph such
that E ⊆ E′, and let λ′ : E′ → N be a time-labeling function such that λ′(u, v) = λ(u, v) for
every {u, v} ∈ E. Then the temporal graph G′ = (G′, λ′) is called a temporal supergraph of G.
We can now define our next problem definition regarding computing temporally orientable
supergraphs of G.

Temporal Transitive Completion (TTC)

Input: A temporal graph G = (G, λ), where G = (V, E), a (partial) orientation F of G,
and an integer k.

Question: Does there exist a temporal supergraph G′ = (G′, λ′) of (G, λ), where G′ = (V, E′),
and a transitive orientation F ′ ⊇ F of G′ such that |E′ \ E| ≤ k?

Similarly to TTO, if we ask in the problem definition of TTC for the existence of a
strictly (resp. strongly, or strongly strictly) temporally transitive orientation F ′, we obtain
the decision problem Strict (resp. Strong, or Strong Strict) Temporal Transitive
Completion (TTC).

Now we define our final problem which asks for an orientation F of a temporal graph
G = (G, λ) (i.e. with exactly one orientation for each edge of G) such that, for every
“time-layer” t ≥ 1, the (static) oriented graph defined by the edges having time-label t is
transitively oriented in F . This problem does not make much sense if every edge has exactly
one time-label in G, as in this case it can be easily solved by just repeatedly applying any
known static transitive orientation algorithm. Therefore, in the next problem definition, we
assume that in the input temporal graph G = (G, λ) every edge of G potentially has multiple
time-labels, i.e. the time-labeling function is λ : E → 2N.

Multilayer Transitive Orientation (MTO)

Input: A temporal graph G = (G, λ), where G = (V, E) and λ : E → 2N.
Question: Is there an orientation F of the edges of G such that, for every t ≥ 1, the (static)

oriented graph induced by the edges having time-label t is transitively oriented?

3 The recognition of temporally transitively orientable graphs

In this section we investigate the computational complexity of all variants of TTO. We
show that TTO as well as the two variants Strong TTO and Strong Strict TTO, are
solvable in polynomial time, whereas Strict TTO turns out to be NP-complete.

G.B. Mertzios, H. Molter, M. Renken, P.G. Spirakis and P. Zschoche 7

u w

v

t3

t2t1

u w

v

t1 t2

t1 = t2 = t3 t1 < t2 = t3 t1 ≤ t2 < t3 t1 = t2 t1 < t2

TTO non-cyclic wu = wv
vw =⇒ uw

vu =⇒ wu
uv = wv uv =⇒ wv

Strong TTO ⊥ wu ∧ wv
vw =⇒ uw

vu =⇒ wu
uv = wv uv =⇒ wv

Strict TTO ⊤ non-cyclic vw =⇒ uw

vu =⇒ wu
⊤ uv =⇒ wv

Str. Str. TTO ⊤ wu ∧ wv
vw =⇒ uw

vu =⇒ wu
⊤ uv =⇒ wv

Table 1 Orientation conditions imposed by a triangle (left) and an induced path of length two
(right) in the underlying graph G for the decision problems (Strict/Strong/Strong Strict)
TTO. Here, ⊤ means that no restriction is imposed, ⊥ means that the graph is not orientable, and
in the case of triangles, “non-cyclic” means that all orientations except the ones that orient the
triangle cyclicly are allowed.

The main idea of our approach to solve TTO and its variants is to create Boolean
variables for each edge of the underlying graph G and interpret setting a variable to 1 or 0
with the two possible ways of directing the corresponding edge.

More formally, for every edge {u, v} we introduce a variable xuv and setting this variable
to 1 corresponds to the orientation uv while setting this variable to 0 corresponds to the
orientation vu. Now consider the example of Figure 1(a), i.e. an induced path of length
two in the underlying graph G on three vertices u, v, w, and let λ(u, v) = 1 and λ(v, w) = 2.
Then the orientation uv “forces” the orientation wv. Indeed, if we otherwise orient {v, w}
as vw, then the edge {u, w} must exist and be oriented as uw in any temporal transitive
orientation, which is a contradiction as there is no edge between u and w. We can express
this “forcing” with the implication xuv =⇒ xwv. In this way we can deduce the constraints
that all triangles or induced paths on three vertices impose on any (strong/strict/strong
strict) temporal transitive orientation. We collect all these constraints in Table 1.

When looking at the conditions imposed on temporal transitive orientations collected
in Table 1, we can observe that all conditions except “non-cyclic” are expressible in 2SAT.
Since 2SAT is solvable in linear time [6], it immediately follows that the strong variants of
temporal transitivity are solvable in polynomial time.

▶ Theorem 2. Strong TTO and Strong Strict TTO are solvable in polynomial time.

In the variants TTO and Strict TTO, however, we can have triangles that impose a
“non-cyclic” orientation of three edges. This can be naturally modeled by a not-all-equal
(NAE) clause3. However, if we now naïvely model the conditions with a Boolean formula, we

3 A not all equal clause is a set of literals and it evaluates to true if and only if at least two literals in the

8 The Complexity of Transitively Orienting Temporal Graphs

u w

v

(a)

u w

v

(b)
3

55

Figure 1 The orientation uv forces the orientation wu and vice-versa in the examples of (a) a
static graph G where {u, v}, {v, w} ∈ E(G) and {u, w} /∈ E(G), and of (b) a temporal graph (G, λ)
where λ(u, w) = 3 < 5 = λ(u, v) = λ(v, w).

obtain a formula with 2SAT clauses and 3NAE clauses. Deciding whether such a formula is
satisfiable is NP-complete in general [42]. Hence, we have to investigate these two variants
more thoroughly.

Indeed we obtain a surprising result: TTO is solvable in polynomial time while Strict
TTO is NP-complete. In the following subsection we provide a polynomial-time algorithm
for TTO and at the end of the section we prove that Strict TTO is NP-complete.

3.1 A polynomial-time algorithm for TTO
Let G = (V, E) be a static undirected graph. There are various polynomial-time algorithms
for deciding whether G admits a transitive orientation F . However our results in this section
are inspired by the transitive orientation algorithm described by Golumbic [24], which is
based on the crucial notion of forcing an orientation. The notion of forcing in static graphs
is illustrated in Figure 1 (a): if we orient the edge {u, v} as uv (i.e., from u to v) then we
are forced to orient the edge {v, w} as wv (i.e., from w to v) in any transitive orientation F

of G. Indeed, if we otherwise orient {v, w} as vw (i.e. from v to w), then the edge {u, w}
must exist and it must be oriented as uw in any transitive orientation F of G, which is a
contradiction as {u, w} is not an edge of G. Similarly, if we orient the edge {u, v} as vu then
we are forced to orient the edge {v, w} as vw. That is, in any transitive orientation F of
G we have that uv ∈ F ⇔ wv ∈ F . This forcing operation can be captured by the binary
forcing relation Γ which is defined on the edges of a static graph G as follows [24].

uv Γ u′v′ if and only if
{

either u = u′ and {v, v′} /∈ E

or v = v′ and {u, u′} /∈ E
. (1)

We now extend the definition of Γ in a natural way to the binary relation Λ on the edges
of a temporal graph (G, λ), see Equation (2). For this, observe from Table 1 that the only
cases, where we have uv ∈ F ⇔ wv ∈ F in any temporal transitive orientation of (G, λ), are
when (i) the vertices u, v, w induce a path of length 2 (see Figure 1 (a)) and λ(u, v) = λ(v, w),
as well as when (ii) u, v, w induce a triangle and λ(u, w) < λ(u, v) = λ(v, w). The latter
situation is illustrated in the example of Figure 1 (b). The binary forcing relation Λ is only
defined on pairs of edges {u, v} and {u′, v′} where λ(u, v) = λ(u′, v′), as follows.

uv Λ u′v′ if and only if λ(u, v) = λ(u′, v′) = t and

u = u′ and {v, v′} /∈ E, or
v = v′ and {u, u′} /∈ E, or
u = u′ and λ(v, v′) < t, or
v = v′ and λ(u, u′) < t.

(2)

set evaluate to different truth values.

G.B. Mertzios, H. Molter, M. Renken, P.G. Spirakis and P. Zschoche 9

Note that, for every edge {u, v} ∈ E we have that uv Λ uv. The forcing relation Λ for
temporal graphs shares some properties with the forcing relation Γ for static graphs. In
particular, the reflexive transitive closure Λ∗ of Λ is an equivalence relation, which partitions
the edges of each set Et = {{u, v} ∈ E : λ(u, v) = t} into its Λ-implication classes (or simply,
into its implication classes). Two edges {a, b} and {c, d} are in the same Λ-implication class
if and only ab Λ∗ cd, i.e. there exists a sequence

ab = a0b0 Λ a1b1 Λ . . . Λ akbk = cd, with k ≥ 0.

Note that, for this to happen, we must have λ(a0, b0) = λ(a1, b1) = . . . = λ(ak, bk) = t for
some t ≥ 1. Such a sequence is called a Λ-chain from ab to cd, and we say that ab (eventually)
Λ-forces cd. Furthermore note that ab Λ∗ cd if and only if ba Λ∗ dc. The next observation
helps the reader understand the relationship between the two forcing relations Γ and Λ.

▶ Observation 3. Let {u, v} ∈ E, where λ(u, v) = t, and let A be the Λ-implication class
of uv in the temporal graph (G, λ). Let G′ be the static graph obtained by removing from G

all edges {p, q}, where λ(p, q) < t. Then A is also the Γ-implication class of uv in the static
graph G′.

For the next lemma, we use the notation Â = {uv, vu : uv ∈ A}.

▶ Lemma 4. Let A be a Λ-implication class of a temporal graph (G, λ). Then either
A = A−1 = Â or A ∩A−1 = ∅.

Proof. Suppose that A∩A−1 ≠ ∅, and let uv ∈ A∩A−1, i.e. uv, vu ∈ A. Then, for any pq ∈ A

we have that pq Λ∗ uv and qp Λ∗ vu. Since Λ∗ is an equivalence relation and uv, vu ∈ A, it
also follows that pq, qp ∈ A. Therefore also pq, qp ∈ A−1, and thus A = A−1 = Â. ◀

▶ Lemma 5. Let F be a temporal transitive orientation of a temporal graph (G, λ), and let
A be a Λ-implication class of (G, λ). Then either A ⊆ F or A−1 ⊆ F , and in either case
A ∩A−1 = ∅.

Proof. We defined the binary forcing relation Λ to capture the fact that, for any temporal
transitive orientation F of (G, λ), if ab Λ cd and ab ∈ F , then also cd ∈ F . Applying this
property repeatedly, it follows that either A ⊆ F or F ∩A = ∅. If A ⊆ F then A−1 ⊆ F −1.
On the other hand, if F ∩A = ∅ then A ⊆ F −1, and thus also A−1 ⊆ F . In either case, the
fact that F ∩ F −1 = ∅ by the definition of a temporal transitive orientation implies that also
A ∩A−1 = ∅. ◀

Let now ab = a0b0 Λ a1b1 Λ . . . Λ akbk = cd be a given Λ-chain. Note by Equation (2)
that, for every i = 1, . . . , k, we have that either ai−1 = ai or bi−1 = bi. Therefore we can
replace the Λ-implication ai−1bi−1 Λ aibi by the implications ai−1bi−1 Λ aibi−1 Λ aibi, since
either aibi−1 = ai−1bi−1 or aibi−1 = aibi. Thus, as this addition of this middle edge is always
possible in a Λ-implication, we can now define the notion of a canonical Λ-chain, which
always exists.

▶ Definition 6. Let ab Λ∗ cd. Then any Λ-chain of the from

ab = a0b0 Λ a1b0 Λ a1b1 Λ . . . Λ akbk−1 Λ akbk = cd

is a canonical Λ-chain.

The next lemma extends an important known property of the forcing relation Γ for static
graphs [24, Lemma 5.3] to the temporal case.

10 The Complexity of Transitively Orienting Temporal Graphs

▶ Lemma 7 (Temporal Triangle Lemma). Let (G, λ) be a temporal graph and with a syn-
chronous triangle on the vertices a, b, c, where λ(a, b) = λ(b, c) = λ(c, a) = t. Let A, B, C be
three Λ-implication classes of (G, λ), where ab ∈ C, bc ∈ A, and ca ∈ B, where A ≠ B−1

and A ̸= C−1.

1. If some b′c′ ∈ A, then ab′ ∈ C and c′a ∈ B.
2. If some b′c′ ∈ A and a′b′ ∈ C, then c′a′ ∈ B.
3. No edge of A touches vertex a.

Proof. 1. Let b′c′ ∈ A, and let bc = b0c0 Λ b1c0 Λ . . . Λ bkck−1 Λ bkck = b′c′ be a canonical
Λ-chain from bc to b′c′. Thus note that all edges bici−1 and bici of this Λ-chain have the
same time-label t in (G, λ). We will prove by induction that abi ∈ C and cia ∈ B, for
every i = 0, 1, . . . , k. The induction basis follows directly by the statement of the lemma,
as ab = ab0 ∈ C and ca = c0a ∈ B.
Assume now that abi ∈ C and cia ∈ B. If bi+1 = bi then clearly abi+1 ∈ C by the
induction hypothesis. Suppose now that bi+1 ̸= bi. If {a, bi+1} /∈ E then aci Λ bi+1ci.
Then, since cia ∈ B and bi+1ci ∈ A, it follows that A = B−1, which is a contradiction to
the assumption of the lemma. Therefore {a, bi+1} ∈ E. Furthermore, since bici Λ bi+1ci,
it follows that either {bi, bi+1} /∈ E or λ(bi, bi+1) < t. In either case it follows that
abi Λ abi+1, and thus abi+1 ∈ C.
Similarly, if ci+1 = ci then ci+1a ∈ B by the induction hypothesis. Suppose now
that ci+1 ≠ ci. If {a, ci+1} /∈ E then abi+1 Λ ci+1bi+1. Then, since abi+1 ∈ C and
bi+1ci+1 ∈ A, it follows that A = C−1, which is a contradiction to the assumption of the
lemma. Therefore {a, ci+1} ∈ E. Furthermore, since bi+1ci Λ bi+1ci+1, it follows that
either {ci, ci+1} /∈ E or λ(ci, ci+1) < t. In either case it follows that cia Λ ci+1a, and
thus ci+1a ∈ C. This completes the induction step.

2. Let b′c′ ∈ A and a′b′ ∈ C. Then part 1 of the lemma implies that c′a ∈ B. Now let
ab = a0b0 Λ a1b0 Λ . . . Λ aℓbℓ−1 Λ aℓbℓ = a′b′ be a canonical Λ-chain from ab to a′b′.
Again, note that all edges aibi−1 and aibi of this Λ-chain have the same time-label t in
(G, λ). We will prove by induction that c′ai ∈ B and bic

′ ∈ A for every i = 0, 1, . . . , k.
First recall that c′a = c′a0 ∈ B. Furthermore, by applying part 1 of the proof to the
triangle with vertices a0, b0, c and on the edge c′a0 ∈ B, it follows that b0c′ ∈ A. This
completes the induction basis.
For the induction step, assume that c′ai ∈ B and bic

′ ∈ A. If ai+1 = ai then clearly
c′ai+1 ∈ B. Suppose now that ai+1 ̸= ai. If {ai+1, c′} /∈ E then ai+1bi Λ c′bi. Then,
since ai+1bi ∈ C and bic

′ ∈ A, it follows that A = C−1, which is a contradiction to the
assumption of the lemma. Therefore {ai+1, c′} ∈ E. Now, since aibi Λ ai+1bi, it follows
that either {ai, ai+1} /∈ E or λ(ai, ai+1) < t. In either case it follows that c′ai Λ c′ai+1.
Therefore, since c′ai ∈ B, it follows that c′ai+1 ∈ B.
If bi+1 = bi then clearly bi+1c′ ∈ A. Suppose now that bi+1 ̸= bi. Then, since c′ai+1 ∈ B,
ai+1bi ∈ C, and bic

′ ∈ A, we can apply part 1 of the lemma to the triangle with vertices
ai+1, bi, c′ and on the edge ai+1bi+1 ∈ C, from which it follows that bic

′ ∈ A. This
completes the induction step, and thus c′ak = c′a′ ∈ B.

3. Suppose that ad ∈ A (resp. da ∈ A), for some vertex d. Then, by setting b′ = a and
c′ = d (resp. b′ = d and c′ = a), part 1 of the lemma implies that ab′ = aa ∈ C

(resp. c′a = aa ∈ B). Thus is a contradiction, as the underlying graph G does not have
the edge aa. ◀

G.B. Mertzios, H. Molter, M. Renken, P.G. Spirakis and P. Zschoche 11

Deciding temporal transitivity using Boolean satisfiability. Starting with any undirected
edge {u, v} of the underlying graph G, we can clearly enumerate in polynomial time the
whole Λ-implication class A to which the oriented edge uv belongs (cf. Equation (2)). If
the reversely directed edge vu ∈ A then Lemma 4 implies that A = A−1 = Â. Otherwise, if
vu /∈ A then vu ∈ A−1 and Lemma 4 implies that A ∩A−1 = ∅. Thus, we can also decide in
polynomial time whether A ∩A−1 = ∅. If we encounter at least one Λ-implication class A

such that A∩A−1 ≠ ∅, then it follows by Lemma 5 that (G, λ) is not temporally transitively
orientable.

In the remainder of the section we will assume that A ∩A−1 = ∅ for every Λ-implication
class A of (G, λ), which is a necessary condition for (G, λ) to be temporally transitive
orientable. Moreover it follows by Lemma 5 that, if (G, λ) admits a temporally transitively
orientation F , then either A ⊆ F or A−1 ⊆ F . This allows us to define a Boolean variable
xA for every Λ-implication class A, where xA = xA−1 . Here xA = 1 (resp. xA−1 = 1) means
that A ⊆ F (resp. A−1 ⊆ F), where F is the temporally transitive orientation which we are
looking for. Let {A1, A2, . . . , As} be a set of Λ-implication classes such that {Â1, Â2, . . . , Âs}
is a partition of the edges of the underlying graph G.4 Then any truth assignment τ of the
variables x1, x2, . . . , xs (where xi = xAi for every i = 1, 2, . . . , s) corresponds bijectively to
one possible orientation of the temporal graph (G, λ), in which every Λ-implication class is
oriented consistently.

Now we define two Boolean formulas ϕ3NAE and ϕ2SAT such that (G, λ) admits a temporal
transitive orientation if and only if there is a truth assignment τ of the variables x1, x2, . . . , xs

such that both ϕ3NAE and ϕ2SAT are simultaneously satisfied. Here ϕ3NAE is a 3NAE formula,
i.e., the disjunction of clauses with three literals each, where every clause NAE(ℓ1, ℓ2, ℓ3) is
satisfied if and only if at least one of the literals {ℓ1, ℓ2, ℓ3} is equal to 1 and at least one
of them is equal to 0. Furthermore ϕ2SAT is a 2SAT formula, i.e., the disjunction of 2CNF
clauses with two literals each, where every clause (ℓ1 ∨ ℓ2) is satisfied if and only if at least
one of the literals {ℓ1, ℓ2} is equal to 1. For simplicity of the presentation we also define a
variable xuv for every directed edge uv. More specifically, if uv ∈ Ai (resp. uv ∈ A−1

i) then
we set xuv = xi (resp. xuv = xi). That is, xuv = xvu for every undirected edge {u, v} ∈ E.
Note that, although {xuv, xvu : {u, v} ∈ E} are defined as variables, they can equivalently be
seen as literals in a Boolean formula over the variables x1, x2, . . . , xs. The process of building
all Λ-implication classes and all variables {xuv, xvu : {u, v} ∈ E} is given by Algorithm 1.

Description of the 3NAE formula ϕ3NAE. Consider a synchronous triangle of (G, λ) on
the vertices u, v, w. First observe that, if at least one of the three equalities xuv = xwv,
or xvw = xuw, or xwu = xvu is true (or equivalently, if at least one of the pairs {uv, wv},
{vw, uw}, {wu, vu} of oriented edges belongs to the same Λ-implication class Ai), then
the triangle on the vertices u, v, w is never cyclically oriented in any proper orientation F .
Therefore, if xuv ̸= xwv, xvw ̸= xuw, and xwu ̸= xvu, then we add to ϕ3NAE the clause
NAE(xuv, xvw, xwu). Note that the triangle on u, v, w is transitively oriented if and only if
NAE(xuv, xvw, xwu) is satisfiable, i.e., at least one of the variables {xuv, xvw, xwu} receives
the value 1 and at least one of them receives the value 0.

Description of the 2SAT formula ϕ2SAT. Consider a triangle of (G, λ) on the vertices
u, v, w, where λ(u, v) = t1, λ(v, w) = t2, λ(w, v) = t3, and t1 ≤ t2 ≤ t3. If t1 < t2 = t3 then

4 Here we slightly abuse the notation by identifying the undirected edge {u, v} with the set of both its
orientations {uv, vu}.

12 The Complexity of Transitively Orienting Temporal Graphs

Algorithm 1 Building the Λ-implication classes and the edge-variables.

Input: A temporal graph (G, λ), where G = (V, E).
Output: The variables {xuv, xvu : {u, v} ∈ E}, or the announcement that (G, λ) is tempor-

ally not transitively orientable.

1: s← 0; E0 ← E

2: while E0 ̸= ∅ do
3: s← s + 1; Let {p, q} ∈ E0 be arbitrary
4: Build the Λ-implication class As of the oriented edge pq (by Equation (2))
5: if qp ∈ As then {As ∩A−1

s ̸= ∅}
6: return “NO”
7: else
8: xs is the variable corresponding to the directed edges of As

9: for every uv ∈ As do
10: xuv ← xs; xvu ← xs {xuv and xvu become aliases of xs and xs}
11: E0 ← E0 \ Âs

12: return Λ-implication classes {A1, A2, . . . , As} and variables {xuv, xvu : {u, v} ∈ E}

we add to ϕ2SAT the clauses (xuw ∨xwv)∧ (xvw ∨xwu); note that these clauses are equivalent
to xwu = xwv. If t1 ≤ t2 < t3 then we add to ϕ2SAT the clauses (xwv ∨ xuw) ∧ (xuv ∨ xwu);
note that these clauses are equivalent to (xvw ⇒ xuw) ∧ (xvu ⇒ xwu). Now consider a path
of length 2 that is induced by the vertices u, v, w, where λ(u, v) = t1, λ(v, w) = t2, and
t1 ≤ t2. If t1 = t2 then we add to ϕ2SAT the clauses (xvu ∨ xwv) ∧ (xvw ∨ xuv); note that
these clauses are equivalent to (xuv = xwv). Finally, if t1 < t2 then we add to ϕ2SAT the
clause (xvu ∨ xwv); note that this clause is equivalent to (xuv ⇒ xwv).

By slightly abusing the notation, we say that ϕ3NAE ∧ ϕ2SAT is satisfiable if and only
if there exists a truth assignment τ which simultaneously satisfies both ϕ3NAE and ϕ2SAT.
Given the above definitions of ϕ3NAE and ϕ2SAT, it is easy to check that their clauses model
all conditions of the oriented edges imposed by the row of “TTO” in Table 1. Therefore we
obtain that the temporal graph (G, λ) is transitively orientable if and only if ϕ3NAE ∧ ϕ2SAT
is satisfiable.

Although deciding whether ϕ2SAT is satisfiable can be done in linear time with respect
to the size of the formula [6], the problem Not-All-Equal-3-SAT is NP-complete [42]. We
overcome this problem and present a polynomial-time algorithm for deciding whether ϕ3NAE∧
ϕ2SAT is satisfiable as follows. In the initialization phase, we exhaustively check which truth
values are forced in ϕ3NAE ∧ ϕ2SAT by using Initial-Forcing (see Algorithm 2) as a
subroutine. During the execution of Initial-Forcing, we either replace the formulas
ϕ3NAE and ϕ2SAT by the equivalent formulas ϕ

(0)
3NAE and ϕ

(0)
2SAT, respectively, or we reach a

contradiction by showing that ϕ3NAE ∧ ϕ2SAT is unsatisfiable. Clearly, we have the following.

▶ Observation 8. The temporal graph (G, λ) is transitively orientable if and only if ϕ
(0)
3NAE ∧

ϕ
(0)
2SAT is satisfiable.

The main phase of the algorithm starts once the formulas ϕ
(0)
3NAE and ϕ

(0)
2SAT have been

computed. During this phase, we iteratively modify the formulas such that, at the end of
iteration j we have the formulas ϕ

(j)
3NAE and ϕ

(j)
2SAT. As we prove, ϕ

(j−1)
3NAE ∧ϕ

(j−1)
2SAT is satisfiable

if and only if ϕ
(j)
3NAE ∧ ϕ

(j)
2SAT is satisfiable. Note that, during the execution of the algorithm,

we can both add clauses to and remove clauses from ϕ
(j)
2SAT. On the other hand, we can only

G.B. Mertzios, H. Molter, M. Renken, P.G. Spirakis and P. Zschoche 13

remove clauses from ϕ
(j)
3NAE.

For the remainder of the section we write xab
∗⇒ϕ2SAT xuv (resp. xab

∗⇒
ϕ

(j)
2SAT

xuv) if the
truth assignment xab = 1 forces the truth assignment xuv = 1 from the clauses of ϕ2SAT
(resp. of ϕ

(j)
2SAT at the iteration j of the algorithm); in this case we say that xab implies xuv

in ϕ2SAT (resp. in ϕ
(j)
2SAT).

We next introduce the notion of uncorrelated triangles, which lets us formulate some
important properties of the implications in ϕ2SAT and ϕ

(0)
2SAT.

▶ Definition 9. Let u, v, w induce a synchronous triangle in (G, λ), where each of the variables
of the set {xuv, xvu, xvw, xwv, xwu, xuw} belongs to a different Λ-implication class. If none
of the variables of the set {xuv, xvu, xvw, xwv, xwu, xuw} implies any other variable of the
same set in the formula ϕ2SAT (resp. in the formula ϕ

(0)
2SAT), then the triangle of u, v, w is

ϕ2SAT-uncorrelated (resp. ϕ
(0)
2SAT-uncorrelated).

Now we present two crucial technical lemmas which prove some crucial structural prop-
erties of the 2SAT formulas ϕ2SAT and ϕ

(0)
2SAT. These structural properties will allow us to

prove the correctness of our main algorithm in this section (Algorithm 4). In a nutshell, these
two lemmas guarantee that, whenever we have specific implications in ϕ2SAT (resp. in ϕ

(0)
2SAT),

then we also have some specific other implications in the same formula.

▶ Lemma 10. Let u, v, w induce a synchronous and ϕ2SAT-uncorrelated triangle in (G, λ),
and let {a, b} ∈ E be an edge of G such that {a, b} ∩ {u, v, w} ≤ 1. If xab

∗⇒ϕ2SAT xuv, then
xab also implies at least one of the four variables in the set {xvw, xwv, xuw, xwu} in ϕ2SAT.

Proof. Let t be the common time-label of all the edges in the synchronous triangle of the
vertices u, v, w. That is, λ(u, v) = λ(v, w) = λ(w, u) = t. Denote by A, B, and C the
Λ-implication classes in which the directed edges uv, vw, and wu belong, respectively. Let
xab = xa0b0 ⇒ϕ2SAT xa1b1 ⇒ϕ2SAT . . . ⇒ϕ2SAT xak−1bk−1 ⇒ϕ2SAT xakbk

= xuv be a ϕ2SAT-
implication chain from xab to xuv. Note that, without loss of generality, for each variable
xaibi

in this chain, the directed edge aibi is a representative of a different Λ-implication class
than all other directed edges in the chain (otherwise we can just shorten the ϕ2SAT-implication
chain from xab to xuv). Furthermore, since xakbk

= xuv, note that akbk and uv are both
representatives of the same Λ-implication class A. Therefore Lemma 7 (the temporal triangle
lemma) implies that wak ∈ C and bkw ∈ B. Therefore we can assume without loss of
generality that u = ak and v = bk. Moreover, let A′ /∈ {A, A−1, B, B−1, C, C−1} be the Λ-
implication class in which the directed edge ak−1bk−1 belongs. Since xak−1bk−1 ⇒ϕ2SAT xakbk

,
note that without loss of generality we can choose the directed edge ak−1bk−1 to be such a
representative of the Λ-implication class A′ such that either ak−1 = ak or bk−1 = bk. We
now distinguish these two cases.

Case 1: u = ak = ak−1 and v = bk ̸= bk−1. Then, since xak−1bk−1 = xakbk−1 ⇒ϕ2SAT

xakbk
= xuv and λ(ak, bk) = t, it follows that λ(u, bk−1) ≥ t+ 1. Suppose that {w, bk−1} /∈ E.

Then xubk−1 ⇒ϕ2SAT xuw, which proves the lemma. Now suppose that {w, bk−1} ∈ E. If
λ(w, bk−1) ≤ λ(u, bk−1)− 1 then xubk−1 ⇒ϕ2SAT xuw, which proves the lemma. Suppose that
λ(w, bk−1) ≥ λ(u, bk−1)+1. Then xubk−1 ⇒ϕ2SAT xwbk−1 ⇒ϕ2SAT xwu, i.e. xubk−1

∗⇒ϕ2SAT xwu,
which again proves the lemma. Suppose finally that λ(w, bk−1) = λ(u, bk−1). Then, since
λ(u, w) = t < λ(w, bk−1) = λ(u, bk−1), it follows that wbk−1 Λ ubk−1. If {v, bk−1} /∈ E

then xubk−1 = xwbk−1 ⇒ϕ2SAT xwv, which proves the lemma. Now let {v, bk−1} ∈ E. If
λ(v, bk−1) ≤ λ(w, bk−1) − 1 then xubk−1 = xwbk−1 ⇒ϕ2SAT xwv, which proves the lemma.
If λ(v, bk−1) ≥ λ(w, bk−1) + 1 then xubk−1 = xwbk−1 ⇒ϕ2SAT xvbk−1 ⇒ϕ2SAT xwv, which

14 The Complexity of Transitively Orienting Temporal Graphs

proves the lemma. If λ(v, bk−1) = λ(w, bk−1) then ubk−1 Λ vbb−1, and thus xubk−1 =
xak−1bk−1 ⇏ϕ2SAT xakbk

= xuv, which is a contradiction.

Case 2: u = ak ̸= ak−1 and v = bk = bk−1. Then, since xak−1bk−1 = xak−1bk
⇒ϕ2SAT

xakbk
= xuv and λ(ak, bk) = t, it follows that λ(v, ak−1) ≤ t−1. Suppose that {w, ak−1} /∈ E.

Then xak−1v ⇒ϕ2SAT xwv, which proves the lemma. Now suppose that {w, ak−1} ∈ E.
If λ(w, ak−1) ≤ t − 1 then xak−1v ⇒ϕ2SAT xwv, which proves the lemma. Suppose that
λ(w, ak−1) = t. Then, since λ(v, ak−1) ≤ t− 1, it follows that vw Λ at−1w. If {u, ak−1} /∈ E

then also at−1w Λ uw, and thus xwv = xwu, which is a contradiction to the assumption
that the triangle of u, v, w is uncorrelated. Thus {u, ak−1} ∈ E. If λ(u, ak−1) ≤ t− 1 then
again at−1w Λ uw, which is a contradiction. On the other hand, if λ(u, ak−1) ≥ t then
xak−1v = xak−1bk−1 ⇏ϕ2SAT xakbk

= xuv, which is a contradiction.
Finally suppose that λ(w, ak−1) ≥ t + 1. Then, since λ(v, w) = t and λ(v, ak−1) ≤ t− 1,

it follows that xvw ⇒ϕ2SAT xak−1w ⇒ϕ2SAT xak−1v. However, since xak−1v = xak−1bk
⇒ϕ2SAT

xakbk
= xuv, it follows that xvw

∗⇒ϕ2SAT xuv, which is a contradiction to the assumption that
the triangle of u, v, w is uncorrelated. ◀

▶ Lemma 11. Let u, v, w induce a synchronous and ϕ
(0)
2SAT-uncorrelated triangle in (G, λ),

and let {a, b} ∈ E be an edge of G such that {a, b} ∩ {u, v, w} ≤ 1. If xab
∗⇒

ϕ
(0)
2SAT

xuv, then

xab also implies at least one of the four variables in the set {xvw, xwv, xuw, xwu} in ϕ
(0)
2SAT.

Proof. Assume we have {a, b} ∩ {u, v, w} ≤ 1 and xab
∗⇒

ϕ
(0)
2SAT

xuv. Then we make a case

distinction on the last implication in the implication chain xab
∗⇒

ϕ
(0)
2SAT

xuv.

1. The last implication is an implication from ϕ2SAT, i.e., xab
∗⇒

ϕ
(0)
2SAT

xpq⇒ϕ2SATxuv. If
{p, q} ⊆ {u, v, w} then we are done, since we can assume that {p, q} ≠ {u, v} because
no such implications are contained in ϕ2SAT. Otherwise Lemma 10 implies that xpq also
implies at least one of the four variables in the set {xvw, xwv, xuw, xwu} in ϕ2SAT. If follows
that xab also implies at least one of the four variables in the set {xvw, xwv, xuw, xwu} in
ϕ

(0)
2SAT.

2. The last implication is not an implication from ϕ2SAT, i.e., xab
∗⇒

ϕ
(0)
2SAT

xpq⇒ϕINITxuv,

there the implication xpq⇒ϕINITxuv was added to ϕ
(0)
2SAT by Initial-Forcing. If

xpq⇒ϕINITxuv was added in Line 7 or Line 10 of Initial-Forcing, then we have that
{p, q} ⊆ {u, v, w} and {p, q} ̸= {u, v}, hence the u, v, w is not a ϕ

(0)
2SAT-uncorrelated

triangle, a contradiction. If xpq⇒ϕINITxuv was added in Line 14 of Initial-Forcing,
then we have that xpq⇒ϕINITxuw, hence we are done. ◀

The algorithm. We are now ready to present our polynomial-time algorithm (Algorithm 4)
for deciding whether a given temporal graph (G, λ) is temporally transitively orientable. The
main idea of our algorithm is as follows. First, the algorithm computes all Λ-implication
classes A1, . . . , As by calling Algorithm 1 as a subroutine. If there exists at least one Λ-
implication class Ai where uv, vu ∈ Ai for some edge {u, v} ∈ E, then we announce that
(G, λ) is a no-instance, due to Lemma 5. Otherwise we associate to each Λ-implication class
Ai a variable xi, and we build the 3NAE formula ϕ3NAE and the 2SAT formula ϕ2SAT, as
described in Section 3.1.

In the initialization phase of Algorithm 4 we build the formulas ϕ
(0)
3NAE and ϕ

(0)
2SAT by

checking which truth values are being forced in ϕ3NAE∧ϕ2SAT. Furthermore, we if x⇒
ϕ

(0)
2SAT

a

and x ⇒
ϕ

(0)
2SAT

b, and we have that NAE(a, b, c) ∈ ϕ
(0)
3NAE, then we add x ⇒

ϕ
(0)
2SAT

c to ϕ
(0)
2SAT,

G.B. Mertzios, H. Molter, M. Renken, P.G. Spirakis and P. Zschoche 15

since clearly, if x = 1 then a = b = 1 and we have to set c = 0 to satisfy the NAE
clause NAE(a, b, c). This is done by calling algorithm Initial-Forcing (see Algorithm 2) as a
subroutine. The main idea of Initial-Forcing is that, whenever setting xi = 1 (resp. xi = 0)
forces ϕ3NAE ∧ ϕ2SAT to become unsatisfiable, we choose to set xi = 0 (resp. xi = 1).

The main phase of the algorithm starts once the formulas ϕ
(0)
3NAE and ϕ

(0)
2SAT have been

computed. Then we iteratively try assigning to each variable xi the truth value 1 or 0.
Once we have set xi = 1 (resp. xi = 0) during the iteration j ≥ 1 of the algorithm, we call
algorithm Boolean-Forcing (see Algorithm 3) as a subroutine to check which implications
this value of xi has on the current formulas ϕ

(j−1)
3NAE and ϕ

(j−1)
2SAT and which other truth values

of variables are forced. The correctness of Boolean-Forcing can be easily verified by
checking all subcases of Boolean-Forcing. During the execution of Boolean-Forcing,
we either replace the current formulas by ϕ

(j)
3NAE and ϕ

(j)
2SAT, or we reach a contradiction by

showing that, setting xi = 1 (resp. xi = 0) makes ϕ
(j−1)
3NAE ∧ ϕ

(j−1)
2SAT unsatisfiable. If each of the

truth assignments {xi = 1, xi = 0} leads to such a contradiction, we return that (G, λ) is a
no-instance. Otherwise, if at least one of the truth assignments {xi = 1, xi = 0} does not lead
to such a contradiction, we follow this truth assignment and proceed with the next variable.
We prove that, if we manage to sequentially assign to each variable a truth value without
reaching a contradiction, the resulting truth assignment of x1, . . . , xs naturally defines a
temporal transitive orientation F of (G, λ).

We now prove formally that Algorithm 4 is correct. More specifically, we show that if
Algorithm 4 gets a yes-instance as input then it outputs a temporally transitive orientation,
while if it gets a no-instance as input then it outputs “NO”. We start by proving in the
following auxiliary lemma that, if the algorithm returns “NO” at the jth iteration, then the
formula ϕ

(j−1)
3NAE ∧ ϕ

(j−1)
2SAT of the previous iteration is not satisfiable.

▶ Lemma 12. For every iteration j of Algorithm 4, if Algorithm 4 returns “NO” in Line 16,
then ϕ

(j−1)
3NAE ∧ ϕ

(j−1)
2SAT is not satisfiable.

Proof. Assume otherwise that ϕ
(j−1)
3NAE ∧ ϕ

(j−1)
2SAT is satisfiable, and let xi be the variable of

ϕ
(j−1)
3NAE ∧ ϕ

(j−1)
2SAT that is considered by the algorithm at iteration j. Let τ be a satisfying truth

assignment of ϕ
(j−1)
3NAE ∧ ϕ

(j−1)
2SAT . If xi = 1 (resp. xi = 0) in τ then the algorithm will proceed

by computing the next formula ϕ
(j)
3NAE ∧ ϕ

(j)
2SAT in Line 11 (resp. in Line 14) and thus it will

not return “NO” in Line 16, which is a contradiction. ◀

The next crucial observation follows immediately by the construction of ϕ3NAE in Sec-
tion 3.1, and by the fact that, at every iteration j, Algorithm 4 can only remove clauses from
ϕ

(j−1)
3NAE.

▶ Observation 13. If Algorithm 3 removes a clause from ϕ
(j−1)
3NAE, then this clause is satisfied

for all satisfying assignments of ϕ
(j)
2SAT.

Next, we prove a crucial insight about the Boolean forcing steps in the main phase of
Algorithm 4. This will allow us to assume that whenever a clause is added to the 2SAT part
of the formula in the main phase of the algorithm, then we have set one variable of a NAE
clause to some truth value.

▶ Lemma 14. Whenever Boolean-Forcing (Algorithm 3) is called in an iteration j ≥ 1
(i.e. in the main phase) of Algorithm 4, Lines 11 and 12 of Boolean-Forcing are not
executed if this call of Boolean-Forcing does not output “NO”.

16 The Complexity of Transitively Orienting Temporal Graphs

Algorithm 2 Initial-Forcing

Input: A 2-SAT formula ϕ2SAT and a 3-NAE formula ϕ3NAE

Output: A 2-SAT formula ϕ
(0)
2SAT and a 3-NAE formula ϕ

(0)
3NAE such that ϕ

(0)
2SAT ∧ ϕ

(0)
3NAE

is satisfiable if and only if ϕ2SAT ∧ ϕ3NAE is satisfiable, or the announcement that
ϕ2SAT ∧ ϕ3NAE is not satisfiable.

1: ϕ
(0)
3NAE ← ϕ3NAE; ϕ

(0)
2SAT ← ϕ2SAT {initialization}

2: for every variable xi appearing in ϕ
(0)
3NAE ∧ ϕ

(0)
2SAT do

3: if Boolean-Forcing
(

ϕ
(0)
3NAE, ϕ

(0)
2SAT, xi, 1

)
= “NO” then

4: if Boolean-Forcing
(

ϕ
(0)
3NAE, ϕ

(0)
2SAT, xi, 0

)
= “NO” then

5: return “NO” {both xi = 1 and xi = 0 invalidate the formulas}

6: else

7:
(

ϕ
(0)
3NAE, ϕ

(0)
2SAT

)
← Boolean-Forcing

(
ϕ

(0)
3NAE, ϕ

(0)
2SAT, xi, 0

)
8: else

9: if Boolean-Forcing
(

ϕ
(0)
3NAE, ϕ

(0)
2SAT, xi, 0

)
= “NO” then

10:
(

ϕ
(0)
3NAE, ϕ

(0)
2SAT

)
← Boolean-Forcing

(
ϕ

(0)
3NAE, ϕ

(0)
2SAT, xi, 1

)
11: for every clause NAE(xuv, xvw, xwu) of ϕ

(0)
3NAE do

12: for every variable xab do

13: if xab
∗⇒

ϕ
(0)
2SAT

xuv and xab
∗⇒

ϕ
(0)
2SAT

xvw then {add (xab ⇒ xuw) to ϕ
(0)
2SAT}

14: ϕ
(0)
2SAT ← ϕ

(0)
2SAT ∧ (xba ∨ xuw)

15: Repeat lines 2 and 11 until no changes occur on ϕ
(0)
2SAT and ϕ

(0)
3NAE

16: return
(

ϕ
(0)
3NAE, ϕ

(0)
2SAT

)

Proof. Assume for contradiction that Lines 11 and 12 of Algorithm 3 are executed in iteration
j of Algorithm 4 and Algorithm 3 does not output “NO”. Let j be the first iteration where
this happens. This means that there is a clause NAE(xuv, xvw, xwu) of ϕ′

3 and an implication
xuv

∗⇒ϕ′
2

xvw during the execution of Algorithm 3. Let NAE(xuv, xvw, xwu) and xuv
∗⇒ϕ′

2
xvw

appear in the first execution of Lines 11 and 12 of Algorithm 3.
We first partition the implication chain xuv

∗⇒ϕ′
2

xvw into “old” and “new” implications,
where “old” implications are contained in ϕ

(0)
2SAT and all other implications (that were added

in previous iterations) are considered “new”. If there are several NAE clauses and implication
chains that fulfill the condition in Line 9 of Algorithm 3, we assume that xuv

∗⇒ϕ′
2

xvw is
one that contains a minimum number of “new” implications. Observe that since we assume
xuv

∗⇒ϕ′
2

xvw is a condition for the first execution of Lines 11 and 12 of Algorithm 3, it
follows that all “new” implications in xuv

∗⇒ϕ′
2

xvw were added in Line 17 or Line 19 of
Algorithm 3 in previous iterations.

Note that by definition of ϕ
(0)
2SAT, we know that xuv

∗⇒ϕ′
2

xvw contains at least one
“new” implication. Furthermore, we can observe that xuv

∗⇒ϕ′
2

xvw contains at least two

G.B. Mertzios, H. Molter, M. Renken, P.G. Spirakis and P. Zschoche 17

Algorithm 3 Boolean-Forcing

Input: A 2-SAT formula ϕ2, a 3-NAE formula ϕ3, and a variable xi of ϕ2 ∧ ϕ3, and a truth
value Value ∈ {0, 1}

Output: A 2-SAT formula ϕ′
2 and a 3-NAE formula ϕ′

3, obtained from ϕ2 and ϕ3 by setting
xi = Value, or the announcement that xi = Value does not satisfy ϕ2 ∧ ϕ3.

1: ϕ′
2 ← ϕ2; ϕ′

3 ← ϕ3

2: while ϕ′
2 has a clause (xuv ∨ xpq) and xuv = 1 do

3: Remove the clause (xuv ∨ xpq) from ϕ′
2

4: while ϕ′
2 has a clause (xuv ∨ xpq) and xuv = 0 do

5: if xpq = 0 then return “NO”
6: Remove the clause (xuv ∨ xpq) from ϕ′

2; xpq ← 1

7: for every variable xuv that does not yet have a truth value do
8: if xuv

∗⇒ϕ′′
2

xvu, where ϕ′′
2 = ϕ′

2 \ ϕ2 then xuv ← 0

9: for every clause NAE(xuv, xvw, xwu) of ϕ′
3 do {synchronous triangle on vertices u, v, w}

10: if xuv
∗⇒ϕ′

2
xvw then {add (xuv ⇒ xuw) ∧ (xuw ⇒ xvw) to ϕ′

2}
11: ϕ′

2 ← ϕ′
2 ∧ (xvu ∨ xuw) ∧ (xwu ∨ xvw)

12: Remove the clause NAE(xuv, xvw, xwu) from ϕ′
3

13: if xuv already got the value 1 or 0 then
14: Remove the clause NAE(xuv, xvw, xwu) from ϕ′

3

15: if xvw and xwu do not have yet a truth value then

16: if xuv = 1 then {add (xvw ⇒ xuw) to ϕ′
2}

17: ϕ′
2 ← ϕ′

2 ∧ (xwv ∨ xuw)

18: else {xuv = 0; in this case add (xuw ⇒ xvw) to ϕ′
2}

19: ϕ′
2 ← ϕ′

2 ∧ (xwu ∨ xvw)

20: if xvw = xuv and xwu does not have yet a truth value then
21: xwu ← 1− xuv

22: if xvw = xwu = xuv then return “NO”

23: Repeat lines 2, 4, 7, and 9 until no changes occur on ϕ′
2 and ϕ′

3

24: if both xuv = 0 and xuv = 1 for some variable xuv then return “NO”

25: return (ϕ′
2, ϕ′

3)

implications overall.
We first consider the case that xuv

∗⇒ϕ′
2

xvw contains at least one “old” implication. We
assume w.l.o.g. that xuv

∗⇒ϕ′
2

xvw contains an “old” implication that is directly followed by
a “new” implication (if this is not the case, then we can consider the contraposition of the
implication chain).

Note that since the “new” implication was added in Line 17 or Line 19 of Algorithm 3,
we can assume w.l.o.g that the “new” implication is xab⇒BFxcb and that xca = 1 for some
synchronous triangle on the vertices a, b, c, that is, we have NAE(xab, xbc, xca) ∈ ϕ

(0)
3NAE (this

is the Line 17 case, Line 19 works analogously). Let xpq⇒ϕ
(0)
2SAT

xab be the “old” implication.

18 The Complexity of Transitively Orienting Temporal Graphs

Algorithm 4 Temporal transitive orientation.

Input: A temporal graph (G, λ), where G = (V, E).
Output: A temporal transitive orientation F of (G, λ), or the announcement that (G, λ) is

temporally not transitively orientable.

1: Execute Algorithm 1 to build the Λ-implication classes {A1, A2, . . . , As} and the Boolean
variables {xuv, xvu : {u, v} ∈ E}

2: if Algorithm 1 returns “NO” then return “NO”

3: Build the 3NAE formula ϕ3NAE and the 2SAT formula ϕ2SAT

4: if Initial-Forcing (ϕ3NAE, ϕ2SAT) ̸= “NO” then {Initialization phase}

5:
(

ϕ
(0)
3NAE, ϕ

(0)
2SAT

)
← Initial-Forcing (ϕ3NAE, ϕ2SAT)

6: else {ϕ3NAE ∧ ϕ2SAT leads to a contradiction}
7: return “NO”

8: j ← 1; F ← ∅ {Main phase}
9: while a variable xi appearing in ϕ

(j−1)
3NAE ∧ ϕ

(j−1)
2SAT did not yet receive a truth value do

10: if Boolean-Forcing
(

ϕ
(j−1)
3NAE, ϕ

(j−1)
2SAT , xi, 1

)
̸= “NO” then

11:
(

ϕ
(j)
3NAE, ϕ

(j)
2SAT

)
← Boolean-Forcing

(
ϕ

(j−1)
3NAE, ϕ

(j−1)
2SAT , xi, 1

)
12: else {xi = 1 leads to a contradiction}

13: if Boolean-Forcing
(

ϕ
(j−1)
3NAE, ϕ

(j−1)
2SAT , xi, 0

)
̸= “NO” then

14:
(

ϕ
(j)
3NAE, ϕ

(j)
2SAT

)
← Boolean-Forcing

(
ϕ

(j−1)
3NAE, ϕ

(j−1)
2SAT , xi, 0

)
15: else
16: return “NO”
17: j ← j + 1

18: for i = 1 to s do
19: if xi did not yet receive a truth value then xi ← 1
20: if xi = 1 then F ← F ∪Ai else F ← F ∪Ai

21: return the temporal transitive orientation F of (G, λ)

Then we have that xpq⇒ϕ
(0)
2SAT

xab⇒BFxcb is contained in xuv
∗⇒ϕ′

2
xvw. Furthermore, by

definition of ϕ
(0)
2SAT, we have that |{p, q} ∩ {a, b, c}| ≤ 1, hence we can apply Lemma 11 and

obtain one of the following four scenarios:
1. xpq⇒ϕ

(0)
2SAT

xcb:
In this case we can replace xpq⇒ϕ

(0)
2SAT

xab⇒BFxcb with xpq⇒ϕ
(0)
2SAT

xcb in the implication

chain xuv
∗⇒ϕ′

2
xvw to obtain an implication chain from xuv to xvw with strictly fewer

“new” implications, a contradiction.
2. xpq⇒ϕ

(0)
2SAT

xbc:

Now we have that xpq⇒ϕ
(0)
2SAT

xab and xpq⇒ϕ
(0)
2SAT

xbc. Then by definition of ϕ
(0)
2SAT we also

have that xpq⇒ϕ
(0)
2SAT

xac and hence xca⇒ϕ
(0)
2SAT

xqp. Recall that we know that xca = 1. It

follows that xpq = 0 in iteration j, a contradiction to the assumption that xuv
∗⇒ϕ′

2
xvw

G.B. Mertzios, H. Molter, M. Renken, P.G. Spirakis and P. Zschoche 19

exists.
3. xpq⇒ϕ

(0)
2SAT

xca:

Now we have that xpq⇒ϕ
(0)
2SAT

xab and xpq⇒ϕ
(0)
2SAT

xca. Then by definition of ϕ
(0)
2SAT we also

have that xpq⇒ϕ
(0)
2SAT

xcb. From here it is the same as case 1.
4. xpq⇒ϕ

(0)
2SAT

xac: Same as case 2.

Hence, we have a contradiction in every case and can conclude that xuv
∗⇒ϕ′

2
xvw does not

contain any “old” implications.
Now consider the case that xuv

∗⇒ϕ′
2

xvw only contains “new” implications. We first
assume that xuv

∗⇒ϕ′
2

xvw contains exactly two “new” implications. Then the first implication
is either xuv⇒BFxwv or xuv⇒BFxuw. Note that we cannot add the implication xwv⇒xvw in
Boolean-Forcing, hence the first implication has to be xuv⇒BFxuw which implies that
xvw = 1, which is a contradiction to the existence of the implication chain xuv

∗⇒ϕ′
2

xvw.
From now on we assume that xuv

∗⇒ϕ′
2

xvw contains strictly more than two implications.
Consider two consecutive BF implications in xuv

∗⇒ϕ′
2

xvw. Denote these two implications
by xab ⇒BF xcd and xcd ⇒BF xfg. By the Boolean-Forcing algorithm, we have that
either b = d or a = c, and in both cases the edges ab and cd belong to a synchronous
triangle. Suppose that b = d (the case a = c can be treated analogously), i.e., we have
the implication xab ⇒BF xcb. Let a, b, c be the vertices of the synchronous triangle for this
implication. Similarly, for the implication xcd = xcb ⇒BF xfg we know that either b = g

or c = f . Suppose that b = g (the case c = f can be treated analogously), i.e., we have
the implication xcb ⇒BF xfb. Let f ′, c′, b′ be the vertices of the synchronous triangle for
this implication; that is, the edges cb and c′b′ are both representatives of the Λ-implication
class of the variable xcb. Therefore Lemma 7 (the temporal triangle lemma) implies that ab′

(resp. ac′) exists in the graph and belongs to the same Λ-implication class of ab (resp. ac).
Therefore we can assume without loss of generality that b = b′ and c = c′. Summarizing, we
have a synchronous triangle on the vertices a, b, c and another synchronous triangle b, c, f ′.
For convenience of the presentation, in the remainder of the proof we rename f ′ to d; that is,
the two synchronous triangles from the two consecutive BF implications are on the vertices
a, b, c and b, c, d, respectively. Note that both of these triangles must be also synchronous to
each other, i.e., all their edges have the same time label t, see Figure 2 (a).

We now have the following cases for the two consecutive implications:
(A) xab⇒BFxcb⇒BFxcd is contained in xuv

∗⇒ϕ′
2

xvw and xca = 1 and xbd = 1 (Figure 2 (b)).
(B) xca⇒BFxcb⇒BFxcd is contained in xuv

∗⇒ϕ′
2

xvw and xab = 1 and xbd = 1 (Figure 2 (c)).
All other cases are symmetric to one of the two cases above. We now make a case-distinction
on the (possibly missing) edge {a, d} (dash-dotted green line in Figure 2). Cf. Table 1 for
the following cases.
1. {a, d} is a non-edge or λ(a, d) < t:

(A) In this case ϕ
(0)
2SAT by definition then contains xbd⇒ϕ

(0)
2SAT

xba. Hence, we have that
xab = 0, a contradiction to the assumption that xab⇒BFxcb⇒BFxcd is contained in
xuv

∗⇒ϕ′
2

xvw.
(B) Contradiction since ϕ

(0)
2SAT by definition then contains xab⇒ϕ

(0)
2SAT

xdb.
2. λ(a, d) > t:

(A) In this case ϕ
(0)
2SAT by definition then contains xca⇒ϕ

(0)
2SAT

xda and xbd⇒ϕ
(0)
2SAT

xad, a
contradiction.

(B) In this case we know that xad = 1, since by definition ϕ
(0)
2SAT then contains

xbd⇒ϕ
(0)
2SAT

xad. Furthermore, ϕ
(0)
2SAT by definition then contains xad⇒ϕ

(0)
2SAT

xac and

20 The Complexity of Transitively Orienting Temporal Graphs

b c

a

d

(a)

t

tt

tt

b c

a

d

(b)

t

t

t

t

t

b c

a

d

(c)

t

t

t

t

t

Figure 2 Illustration of the scenario of two consecutive “new” BF implications (a) appearing in
the proof of Lemma 14. The green dash-dotted line indicates that edge {a, d} may exist with some
time label or not. The proof makes a case distinction here. Subfigure (b) illustrates the case that
xab⇒BFxcb⇒BFxcd and xca = xbd = 1, indicated by the red arrows. Subfigure (c) illustrates the
case that xca⇒BFxcb⇒BFxcd and xab = xbd = 1, indicated by the red arrows.

hence we have xca = 0, a contradiction to the assumption that xca⇒BFxcb⇒BFxcd

is contained in xuv
∗⇒ϕ′

2
xvw.

3. λ(a, d) = t:
Note that the above two cases do not apply, we can assume that all pairs of consecutive
implication appearing in xuv

∗⇒ϕ′
2

xvw fall into this case. In particular, also the first one.
Hence, we have that xuv⇒BFxpv

∗⇒BF xvw or xuv⇒BFxup
∗⇒BF xvw.

Assume that xuv⇒BFxpv
∗⇒BF xvw. Then in particular, using Lemma 7 (the temporal

triangle lemma) similarly as described above, we get that vertices p, v, w induce a
synchronous triangle and NAE(xpv, xvw, xwp) ∈ ϕ

(0)
3NAE. Hence, xpv

∗⇒BF xvw is an
implication chain that fulfills the condition in Line 9 but contains less “new” implication
than xuv

∗⇒ϕ′
2

xvw, a contradiction.
Now assume that xuv⇒BFxup

∗⇒BF xvw. Then we have that xvp = 1, otherwise the
implication xuv⇒BFxup would not have been added by Algorithm 3. In this case we also
consider the second implication in the chain. There are two cases:

xuv⇒BFxup⇒BFxuq
∗⇒BF xvw and xpb = 1. Since we have both xvp = 1 and xpq = 1,

we have that Algorithm 3 also sets xvq = 1. It follows that we have that xuv⇒BFxuq

and hence xuv⇒BFxuq
∗⇒BF xvw, an implication chain that fulfills the condition in

Line 9 but contains less “new” implication than xuv
∗⇒ϕ′

2
xvw, a contradiction.

xuv⇒BFxup⇒BFxqp
∗⇒BF xvw and xqu = 1. In this case we also have xuv⇒BFxbv and

xqv⇒BFxqp. Hence, we have an alternative implication chain xuv⇒BFxqv⇒BFxqp
∗⇒BF

xvw that fulfills the condition in Line 9 of the same length. Now if {q, w} is a non-
edge, λ(q, w) < t, or λ(q, w) > t, then one of the previous cases applies to the new
implication chain and we get a contradiction. Hence, assume that λ(q, w) = t. Then
(using Lemma 7) we have that vertices q, v, w induce a synchronous triangle and
NAE(xqv, xvw, xwq) ∈ ϕ

(0)
3NAE. It follows that xqv⇒BFxqp

∗⇒BF xvw is an implication
chain that fulfills the condition in Line 9 but contains less “new” implication than
xuv

∗⇒ϕ′
2

xvw, a contradiction.
This finished the proof. ◀

We next show that for all iterations the 2SAT part of the formula does not contain an
implication chain from a variable to its negation or vice versa.

G.B. Mertzios, H. Molter, M. Renken, P.G. Spirakis and P. Zschoche 21

▶ Lemma 15. For every iteration j of Algorithm 4 we have that if ϕ
(j−1)
3NAE∧ϕ

(j−1)
2SAT is satisfiable

and there is no xuv in ϕ
(j−1)
2SAT such that xuv

∗⇒
ϕ

(j−1)
2SAT

xvu, then there is no xuv in ϕ
(j)
2SAT such

that xuv
∗⇒

ϕ
(j)
2SAT

xvu.

Proof. By Lemma 12 we have that if ϕ
(j−1)
3NAE ∧ϕ

(j−1)
2SAT is satisfiable, then ϕ

(j)
2SAT is well-defined.

Assume for contradiction that there is no xuv in ϕ
(j−1)
2SAT such that xuv

∗⇒
ϕ

(j−1)
2SAT

xvu but we

have a xuv in ϕ
(j)
2SAT such that xuv

∗⇒
ϕ

(j)
2SAT

xvu.

Then we can partition the implication chain xuv
∗⇒

ϕ
(j)
2SAT

xvu into “old” parts, that are

also present in ϕ
(0)
2SAT and “new” implications, that were added by Boolean-Forcing during

some iteration j′ ≤ j.
Note that xuv

∗⇒
ϕ

(j)
2SAT

xvu contains at least one “new” implication. Consider an “old”
implication in the implication chain followed by a “new” implication (if there is none,
then there is one in the contraposition of the implication chain). By Lemma 14 the “new”
implication was added by Algorithm 3 in Line 17 or Line 19. We can assume w.l.o.g that
the “new” implication is xab⇒BFxcb and that xca = 1 for some synchronous triangle on
the vertices a, b, c, that is, we have NAE(xab, xbc, xca) ∈ ϕ

(0)
3NAE (this is the Line 17 case,

Line 19 works analogously). Let xpq⇒ϕ
(0)
2SAT

xab be the “old” implication. Then we have that

xpq⇒ϕ
(0)
2SAT

xab⇒BFxcb is contained in xuv
∗⇒

ϕ
(j)
2SAT

xvw. Furthermore, by definition of ϕ
(0)
2SAT,

we have that |{p, q} ∩ {a, b, c}| ≤ 1, hence we can apply Lemma 11 and obtain one of the
following four scenarios:
1. xpq⇒ϕ

(0)
2SAT

xcb:
In this case we can replace xpq⇒ϕ

(0)
2SAT

xab⇒BFxcb with xpq⇒ϕ
(0)
2SAT

xcb in the implication

chain xuv
∗⇒

ϕ
(j)
2SAT

xvw to obtain an implication chain from xuv to xvw with strictly fewer
“new” implications, a contradiction.

2. xpq⇒ϕ
(0)
2SAT

xbc:

Now we have that xpq⇒ϕ
(0)
2SAT

xab and xpq⇒ϕ
(0)
2SAT

xbc. Then by definition of ϕ
(0)
2SAT we also

have that xpq⇒ϕ
(0)
2SAT

xac and hence xca⇒ϕ
(0)
2SAT

xqp. Recall that we know that xca = 1. It

follows that xpq = 0 in iteration j, a contradiction to the assumption that xuv
∗⇒

ϕ
(j)
2SAT

xvw

exists.
3. xpq⇒ϕ

(0)
2SAT

xca:

Now we have that xpq⇒ϕ
(0)
2SAT

xab and xpq⇒ϕ
(0)
2SAT

xca. Then by definition of ϕ
(0)
2SAT we also

have that xpq⇒ϕ
(0)
2SAT

xcb. From here it is the same as case 1.
4. xpq⇒ϕ

(0)
2SAT

xac: Same as case 2. ◀

Now we are ready to show that if Algorithm 4 gets a yes-instance as input, it will compute
a valid orientation.

▶ Lemma 16. For every iteration j of Algorithm 4 we have that if ϕ
(j−1)
3NAE∧ϕ

(j−1)
2SAT is satisfiable

and there is no xuv in ϕ
(j−1)
2SAT such that xuv

∗⇒
ϕ

(j−1)
2SAT

xvu, then ϕ
(j)
3NAE ∧ ϕ

(j)
2SAT is satisfiable

and there is no xuv in ϕ
(j)
2SAT such that xuv

∗⇒
ϕ

(j)
2SAT

xvu.

Proof. By Lemma 12 we have that if ϕ
(j−1)
3NAE ∧ ϕ

(j−1)
2SAT is satisfiable, then ϕ

(j)
3NAE ∧ ϕ

(j)
2SAT is

well-defined.
Note that if ϕ

(j−1)
3NAE = ∅, this also implies that ϕ

(j)
3NAE = ∅, and then ϕ

(j)
3NAE ∧ ϕ

(j)
2SAT is

satisfiable and there is no xuv in ϕ
(j)
2SAT such that xuv

∗⇒
ϕ

(j)
2SAT

xvu by Lemma 15.

22 The Complexity of Transitively Orienting Temporal Graphs

ax a′
x bx b′

x
cx c′

x dx d′
x

1 2 1 2 1 2 1

2

Figure 3 Illustration of the variable gadget used in the reduction in the proof of Theorem 18.

From now on we assume that ϕ
(j−1)
3NAE ̸= ∅. We now argue that whenever ϕ

(j−1)
3NAE ≠ ϕ

(j)
3NAE,

we have removed some clauses from ϕ
(j−1)
3NAE in Line 12 or in Line 14 of Algorithm 3. By

Observation 13 the removed clauses are satisfied for all satisfying assignments of ϕ
(j)
2SAT and

by Lemma 15 we know that ϕ
(j)
2SAT is satisfiable and there is no xuv in ϕ

(j)
2SAT such that

xuv
∗⇒

ϕ
(j)
2SAT

xvu. It follows that ϕ
(j)
3NAE ∧ ϕ

(j)
2SAT is also satisfiable. ◀

Now we have all ingredients to show that we can solve TTO in polynomial time.

▶ Theorem 17. Algorithm 4 solves TTO in polynomial time.

Proof. If Algorithm 4 outputs an orientation, then clearly ϕ
(0)
3NAE and ϕ

(0)
2SAT is satisfiable

and by Observation 8 we know that this implies that the input instance is a yes-instance.
If the input instance is a yes-instance, then by Observation 8 we have that ϕ

(0)
3NAE and

ϕ
(0)
2SAT is satisfiable. Furthermore, by construction ϕ

(0)
2SAT does not contain any xuv such that

xuv
∗⇒

ϕ
(0)
2SAT

xvu. Lemma 16 now implies that Algorithm 4 finds a satisfying assignment and
outputs an orientation.

Lastly, it is easy to check that Algorithm 4 runs in polynomial time. ◀

3.2 Strict TTO is NP-Complete
In this section we show that in contrast to the other variants, Strict TTO is NP-complete.

▶ Theorem 18. Strict TTO is NP-complete even if the temporal input graph has only
four different time labels.

Proof. We present a polynomial time reduction from (3,4)-SAT [46] where, given a CNF
formula ϕ where each clause contains exactly three literals and each variably appears in
exactly four clauses, we are asked whether ϕ is satisfiable or not. Given a formula ϕ, we
construct a temporal graph G as follows.
Variable gadget. For each variable x that appears in ϕ, we add eight vertices
ax, a′

x, bx, b′
x, cx, c′

x, dx, d′
x to G. We connect these vertices as depicted in Figure 3, that

is, we add the following time edges to G: ({ax, a′
x}, 1), ({a′

x, bx}, 2), ({bx, b′
x}, 1), ({b′

x, cx}, 2),
({cx, c′

x}, 1), ({c′
x, dx}, 2), ({dx, d′

x}, 1), ({d′
x, ax}, 2).

Clause gadget. For each clause c of ϕ, we add six vertices uc, u′
c, vc, v′

c, wc, w′
c to G. We

connect these vertices as depicted in Figure 4, that is, we add the following time edges to G:
({uc, u′

c}, 2), (vc, v′
c}, 1), ({wc, w′

c}, 2), ({uc, vc}, 2), ({vc, wc}, 3), ({wc, uc}, 3), ({vc, w′
c}, 3),

({wc, v′
c}, 3).

Connecting variable gadgets and clause gadgets. Let variable x appear for the ith time in clause
c and let x appear in the jth literal of c. The four vertex pairs (ax, a′

x), (bx, b′
x), (cx, c′

x), (dx, d′
x)

from the variable gadget of x correspond to the first, second, third, and fourth appearance of
x, respectively. The three vertices u′

c, v′
c, w′

c correspond to the first, second, and third literal

G.B. Mertzios, H. Molter, M. Renken, P.G. Spirakis and P. Zschoche 23

uc vc

wc

u′
c v′

c

w′
c

(a)

2
2

3 3

1

2
3

3

uc vc

wc

u′
c v′

c

w′
c

(b)

2
2

3 3

1

2
3

3

uc vc

wc

u′
c v′

c

w′
c

(c)

2
2

3 3

1

2
3

3

Figure 4 Illustration of the clause gadget used in the reduction in the proof of Theorem 18 and
three ways how to orient the edges in it.

of c, respectively. Let i = 1 and j = 1. If x appears non-negated, then we add the time edge
({ax, u′

c}, 4). Otherwise, if x appears negated, we add the time edge ({a′
x, u′

c}, 4). For all
other values of i and j we add time edges analogously.

This finishes the reduction. It can clearly be performed in polynomial time.

(⇒): Assume that we have a satisfying assignment for ϕ, then we
can orient G as follows. Then if a variable x is set to true, we
orient the edges of the corresponding variable gadgets as follows:
(ax, a′

x), (bx, a′
x), (bx, b′

x), (cx, b′
x), (cx, c′

x), (dx, c′
x), (dx, d′

x), (ax, d′
x). Otherwise, if x is set to

false, we orient as follows: (a′
x, ax), (a′

x, bx), (b′
x, bx), (b′

x, cx), (c′
x, cx), (c′

x, dx), (d′
x, dx), (d′

x, ax).
It is easy so see that both orientations are transitive.

Now consider a clause in ϕ with literals u, v, w corresponding to vertices u′
c, v′

c, w′
c of the

clause gadget, respectively. We have that at least one of the three literals satisfies the clause.
If it is u, then we orient the edges in the clause gadgets as illustrated in Figure 4 (a). It is easy
so see that this orientation is transitive. Furthermore, we orient the three edges connecting
the clause gadgets to variable gadgets as follows: By construction the vertices u′

c, v′
c, w′

c are
each connected to a variable gadget. Assume, we have edges {u′

c, x}, {v′
c, y}, {w′

c, z}. Then
we orient as follows: (x, u′

c), (v′
c, y), (w′

c, z), that is, we orient the edge connecting the literal
that satisfies the clause towards the clause gadget and the other two edges towards the
variable gadgets. This yields a transitive in the clause gadget. Note that the variable gadgets
have time labels 1 and 2 so we can always orient the connecting edges (which have time
label 4) towards the variable gadget. We do this with all connecting edges except (x, u′

c).
This edge is oriented from the variable gadget towards the clause gadget, however it also
corresponds to a literal that satisfies the clause. Then by construction, the edges incident to
x in the variable gadget are oriented away from x, hence our orientation is transitive.

Otherwise and if v satisfies the clause, then we orient the edges in the clause gadgets as
illustrated in Figure 4 (b). Otherwise (in this case w has to satisfy the clause), we orient the
edges in the clause gadgets as illustrated in Figure 4 (c). It is easy so see that each of these
orientation is transitive. In both cases we orient the edges connecting the clause gadgets to
the variable gadgets analogously to the first case discussed above. By analogous arguments
we get that the resulting orientation is transitive.

(⇐): Note that all variable gadgets are cycles of length eight with edges having
labels alternating between 1 and 2 and hence the edges have to also be ori-

24 The Complexity of Transitively Orienting Temporal Graphs

ented alternately. Consider the variable gadget corresponding to x. We inter-
pret the orientation (ax, a′

x), (bx, a′
x), (bx, b′

x), (cx, b′
x), (cx, c′

x), (dx, c′
x), (dx, d′

x), (ax, d′
x)

as setting x to true and we interpret the orientation
(a′

x, ax), (a′
x, bx), (b′

x, bx), (b′
x, cx), (c′

x, cx), (c′
x, dx), (d′

x, dx), (d′
x, ax) as setting x to true.

We claim that this yields a satisfying assignment for ϕ.
Assume for contradiction that there is a clause c in ϕ that is not satisfied by this

assignment. Then by construction of the connection of variable gadgets and clause gadgets,
the connecting edges have to be oriented towards the variable gadget in order to keep the
variable gadget transitive. Let the three connecting edges be {u′

c, x}, {v′
c, y}, {w′

c, z} and their
orientation (u′

c, x), (v′
c, y), (w′

c, z). Then we have that (u′
c, x) forces (u′

c, uc) which in turn
forces (wc, uc). We have that (v′

c, y) forces (v′
c, vc) which in turn forces (vc, uc). Furthermore,

we now have that (wc, uc) and (vc, uc) force (wc, vc). Lastly, we have that (w′
c, z) forces

(w′
c, wc) which in turn forces (vc, wc), a contradiction to the fact that we forced (wc, vc)

previously. ◀

4 Temporal Transitive Completion

We now study the computational complexity of Temporal Transitive Completion
(TTC). In the static case, the so-called minimum comparability completion problem,
i.e. adding the smallest number of edges to a static graph to turn it into a comparabil-
ity graph, is known to be NP-hard [25]. Note that minimum comparability completion
on static graphs is a special case of TTC and thus it follows that TTC is NP-hard too.
Our other variants, however, do not generalize static comparability completion in such a
straightforward way. Note that for Strict TTC we have that the corresponding recognition
problem Strict TTO is NP-complete (Theorem 18), hence it follows directly that Strict
TTC is NP-hard. For the remaining two variants of our problem, we show in the following
that they are also NP-hard, giving the result that all four variants of TTC are NP-hard.
Furthermore, we present a polynomial-time algorithm for all four problem variants for the
case that all edges of underlying graph are oriented, see Theorem 20. This allows directly to
derive an FPT algorithm for the number of unoriented edges as a parameter.

▶ Theorem 19. All four variants of TTC are NP-hard.

Proof. We give a reduction from the NP-hard Max-2-Sat problem [23].

Max-2-Sat
Input: A boolean formula ϕ in implicative normal form5 and an integer k.
Question: Is there an assignment of the variables which satisfies at least k clauses in ϕ?

We only describe the reduction from Max-2-Sat to TTC. However, the same construction
can be used to show NP-hardness of the other variants.

Let (ϕ, k) be an instance of Max-2-Sat with m clauses. We construct a temporal graph
G as follows. For each variable x of ϕ we add two vertices denoted vx and vx, connected by
an edge with label 1. Furthermore, for each 1 ≤ i ≤ m− k + 1 we add two vertices vi

x and
vi

x connected by an edge with label 1. We then connect vi
x with vx and vi

x with vx using
two edges labeled 4. Thus vx, vx, vi

x, vi
x is a 4-cycle whose edges alternating between 1 and 4.

Afterwards, for each clause (a⇒ b) of ϕ with a, b being literals, we add a new vertex wa,b.

5 i.e. a conjunction of clauses of the form (a ⇒ b) where a, b are literals.

G.B. Mertzios, H. Molter, M. Renken, P.G. Spirakis and P. Zschoche 25

vx vx
1

44

1

vy

vy

1
4

4
1

vz

vz

1

4

4

1

wx,y
2

3

wx,z
2

3
wy,z

2

35

Figure 5 Temporal graph constructed from the formula (x ⇒ y) ∧ (x ⇒ z) ∧ (y ⇒ z) for k = 1
with orientation corresponding to the assignment x = true, y = false, z = true. Since this
assignment does not satisfy the third clause, the dashed blue edge is required to make the graph
temporally transitive.

Then we connect wa,b to va by an edge labeled 2 and to vb by an edge labeled 3. Consider
Figure 5 for an illustration. Observe that G can be computed in polynomial time.

We claim that (G = (G, λ), ∅, m− k) is a yes-instance of TTC if and only if ϕ has a truth
assignment satisfying k clauses.

For the proof, begin by observing that G does not contain any triangle. Thus an orientation
of G is (weakly) (strict) transitive if and only if it does not have any oriented temporal 2-path,
i.e. a temporal path of two edges with both edges being directed forward. We call a vertex
v of G happy about some orientation if v is not the center vertex of an oriented temporal
2-path. Thus an orientation of G is transitive if and only if all vertices are happy.

(⇐): Let α be a truth assignment to the variables (and thus literals) of ϕ satisfying k clauses
of ϕ. For each literal a with α(a) = true, orient all edges such that they point away from
va and vi

a, 1 ≤ i ≤ m− k + 1. For each literal a with α(a) = false, orient all edges such
that they point towards va and vi

a, 1 ≤ i ≤ m− k + 1. Note that this makes all vertices va

and vi
a happy. Now observe that a vertex wa,b is happy unless its edge with va is oriented

towards wa,b and its edge with vb is oriented towards vb. In other words, wa,b is happy if
and only if α satisfies the clause (a⇒ b). Thus there are at most m− k unhappy vertices.
For each unhappy vertex wa,b, we add a new oriented edge from va to vb with label 5. Note
that this does not make va or vb unhappy as all adjacent edges are directed away from va

and towards vb. The resulting temporal graph is transitively oriented.

(⇒): Now let a transitive orientation F ′ of G′ = (G′, λ′) be given, where G′ is obtained from
G by adding at most m− k time edges. Clearly we may also interpret F ′ as an orientation
induced of G. Set α(x) = true if and only if the edge between vx and vx is oriented towards
vx. We claim that this assignment α satisfies at least k clauses of ϕ.

First observe that for each variable x and 1 ≤ i ≤ m− k + 1, F ′ is a transitive orientation
of the 4-cycle vx, vx, vi

x, vi
x if and only if the edges are oriented alternatingly. Thus, for

each variable, at least one of these k + 1 4-cycles is oriented alternatingly. In particular, for

26 The Complexity of Transitively Orienting Temporal Graphs

a
b c

d2 1 3
Tb,d = 3

Ta,d = 3

Figure 6 Example of a tail-heavy path.

every literal a with α(a) = true, there is an edge with label 4 that is oriented away from va.
Conversely, if α(b) = false, then there is an edge with label 1 oriented towards vb (this is
simply the edge from vb).

This implies that every edge with label 2 or 3 oriented from some vertex wc,d (where
either a = c or a = d) towards va with α(a) = true requires E(G′) \ E(G) to contain an
edge from wc,d to some vi

a. Analogously every edge with label 2 or 3 oriented from va with
α(a) = false to some wc,d requires E(G′) \ E(G) to contain an edge from va to wc,d.

Now consider the alternative orientation F ′′ obtained from α as detailed in the converse
orientation of the proof. For each edge between va and wc,d where F ′ and F ′′ disagree, F ′′

might potentially require E(G′) \E(G) to contain the edge vcvd (labeled 5, say), but in turn
saves the need for some edge wc,dvi

a or vawc,d, respectively. Thus, overall, F ′′ requires at
most as many edge additions as F ′, which are at most m− k. As we have already seen in
the converse direction, F ′′ requires exactly one edge to be added for every clause of ϕ which
is not satisfied. Thus, α satisfies at least k clauses of ϕ. ◀

We now show that TTC can be solved in polynomial time, if all edges are already oriented,
as the next theorem states. While we only discuss the algorithm for TTC the algorithm
only needs marginal changes to work for all other variants.

▶ Theorem 20. An instance (G, F, k) of TTC where G = (G, λ) and G = (V, E), can be
solved in O(m2) time if F is an orientation of E, where m = |E|.

The actual proof of Theorem 20 is deferred to the end of this section. The key idea for the
proof is based on the following definition. Assume a temporal graph G and an orientation
F of G to be given. Let G′ = (V, F) be the underlying graph of G with its edges directed
according to F . We call a (directed) path P in G′ tail-heavy if the time-label of its last edge
is largest among all edges of P , and we define t(P) to be the time-label of that last edge of P .
For all u, v ∈ V , denote by Tu,v the maximum value t(P) over all tail-heavy (u, v)-paths P of
length at least 2 in G′; if such a path does not exist then Tu,v = ⊥. If the temporal graph G
with orientation F can be completed to be transitive, then adding the time edges of the set

X(G, F) := {(uv, Tu,v) | Tu,v ̸= ⊥} ,

which are not already present in G is an optimal way to do so. Consider Figure 6 for an
example.

▶ Lemma 21. The set X(G, F) can be computed in O(m2) time, where G is a temporal graph
with m time-edges and F an orientation of G.

Proof. For each edge vw, we can take G′ (defined above), remove w and all arcs whose label
is larger than λ(v, w), and do a depth-first-search from v to find all vertices u which can
reach v in the resulting graph. Each of these then has Tu,w ≥ λ(v, w). By doing this for
every edge vw, we obtain Tu,w for every vertex pair u, w. The overall running time is clearly
O(m2). ◀

G.B. Mertzios, H. Molter, M. Renken, P.G. Spirakis and P. Zschoche 27

Until the end of this section we are only considering the instance (G, F, k) of TTC, where
G = (G, λ), G = (V, E), and F is an orientation of G. Hence, we can say a set X of oriented
time-edges is a solution to I if X ′ := {{u, v} | (uv, t) ∈ X} is disjoint from E, satisfies
|X| = |X ′| ≤ k, and F ′ := F ∪ {uv | (uv, t) ∈ X} is a transitive orientation of the temporal
graph G + X := ((V, E ∪X ′), λ′), where λ′(e) := λ(e) if e ∈ E and λ′(u, v) := t if X contains
(uv, t) or (vu, t).

The algorithm we use to show Theorem 20 will use X(G, F) to construct a solution (if
there is any) of a given instance (G, F, k) of TTC where F is a orientation of E. To prove
the correctness of this approach, we make use of the following.

▶ Lemma 22. Let I = (G = (G, λ), F, k) be an instance of TTC, where G = (V, E) and F

is an orientation of E and X an solution for I. Then, for any (vu, Tv,u) ∈ X(G, F) there is
a (vu, t) in G + X with t ≥ Tv,u.

Proof. Let (v0vℓ, Tv0,vℓ
) ∈ X(G, F), and G′ = (V, F). Hence, there is a tail-heavy (v0, vℓ)-

path P in G′ of length ℓ ≥ 2. If ℓ = 2, then clearly G + X must contain the time edge
(v1vℓ, t) such that t ≥ Tv1,vℓ

. Now let ℓ > 2 and V (P) := {vi | i ∈ {0, 1, . . . , ℓ}} and
E(P) = {vi−1vi | i ∈ [ℓ]}. Since there is a tail-heavy (vℓ−2, vℓ)-path in G′ of length 2, G + X

must contain a time-edge (vℓ−2vℓ, t) with t ≥ Tv0,vℓ
. Therefore, the (directed) underlying

graph of G + X contains a tail-heavy (v0, vℓ)-path of length ℓ− 1. By induction, G + X must
contain the time edge (v1vℓ, t′) such that t′ ≥ t ≥ Tv0,vℓ

. ◀

Form Lemma 22, it follows that we can use X(G, F) to identify no-instances in some cases.

▶ Corollary 23. Let I = (G = (G, λ), F, k) be an instance of TTC, where G = (V, E) and F

is an orientation of E. Then, I is a no-instance, if for some v, u ∈ V

1. there are time-edges (vu, t) ∈ X(G, F) and (uv, t′) ∈ X(G, F),
2. there is an edge uv ∈ F such that (vu, Tv,u) ∈ X(G, F), or
3. there is an edge vu ∈ F such that (vu, Tv,u) ∈ X(G, F) with λ(v, u) < Tv,u.

We are now ready to prove Theorem 20.

Proof of Theorem 20. Let I = (G = (G, λ), F, k) be an instance of TTC, where F is
a orientation of E. First we compute X(G, F) in polynomial time, see Lemma 21. Let
Y = {(vu, t) ∈ X(G, F) | {v, u} ̸∈ E} and report that I is a no-instance if |Y | > k or one of
the conditions of Corollary 23 holds true. Otherwise report that I is a yes-instance. This
gives an overall running time of O(m2).

Clearly, if one of the conditions of Corollary 23 holds true, then I is a no-instance.
Moreover, by Lemma 22 any solution contains at least |Y | time edges. Thus, if |Y | > k, then
I is a no-instance.

If we report that I is a yes-instance, then we claim that Y is a solution for I. Let F ′ ⊇ F

be a orientation of G + Y . Assume towards a contradiction that F ′ is not transitive. Then,
there is a temporal path ((vu, t1), (uw, t2)) in G + Y such that there is no time-edge (uw, t)
in G + Y , with t ≥ t2. By definition of X(G, F), the directed graph G′ = (V, F) contains a
tail-heavy (v, u)-path P1 with t1 = t(P1) and a tail-heavy (u, w)-path P2 with t2 = t(P2) ≥ t1.
By concatenation of P1 and P2, we obtain that the G′ contains a (v, w)-path P ′ of length at
least two such that t2 = t(P ′). Thus, t2 ≤ Tv,w and (vw, Tv,w) ∈ X(G)—a contradiction. ◀

Using Theorem 20 we can now prove that TTC is fixed-parameter tractable (FPT) with
respect to the number of unoriented edges in the input temporal graph G.

28 The Complexity of Transitively Orienting Temporal Graphs

1,4 2,4

2,4

1,4 3,4

2,4

x1

x2 x3

1 1

2 2 2 3

Figure 7 Temporal graph constructed from the formula NAE(x1, x2, x2) ∧ NAE(x1, x2, x3) and
orientation corresponding to setting x1 = false, x2 = true, and x3 = false. Each attachment
vertex is at the clockwise end of its edge.

▶ Corollary 24. Let I = (G = (G, λ), F, k) be an instance of TTC, where G = (V, E). Then
I can be solved in O(2q ·m2), where q = |E| − |F | and m the number of time edges.

Proof. Note that there are 2q ways to orient the q unoriented edges. For each of these 2q

orientations of these q edges, we obtain a fully oriented temporal graph. Then we can solve
TTC on each of these fully oriented graphs in O(m2) time by Theorem 20. Summarizing,
we can solve TTC on I in 2q ·m2 rime. ◀

5 Deciding Multilayer Transitive Orientation

In this section we prove that Multilayer Transitive Orientation (MTO) is NP-
complete, even if every edge of the given temporal graph has at most two labels. Recall that
this problem asks for an orientation F of a temporal graph G = (G, λ) (i.e. with exactly one
orientation for each edge of G) such that, for every “time-layer” t ≥ 1, the (static) oriented
graph defined by the edges having time-label t is transitively oriented in F . As we discussed
in Section 2, this problem makes more sense when every edge of G potentially has multiple
time-labels, therefore we assume here that the time-labeling function is λ : E → 2N.

▶ Theorem 25. MTO is NP-complete, even on temporal graphs with at most two labels per
edge.

Proof. We give a reduction from monotone Not-All-Equal-3Sat, which is known to be
NP-hard [42]. So let ϕ =

∧m
i=1 NAE(yi,1, yi,2, yi,3) be a monotone Not-All-Equal-3Sat

instance and X := {x1, . . . , xn} :=
⋃m

i=1{yi,1, yi,2, yi,3} be the set of variables.
Start with an empty temporal graph G. For every clause NAE(yi,1, yi,2, yi,3), add to G a

triangle on three new vertices and label its edges ai,1, ai,2, ai,3. Give all these edges label n+1.
For each of these edges, select one of its endpoints to be its attachment vertex in such a way
that no two edges share an attachment vertex. Next, for each 1 ≤ i ≤ n, add a new vertex vi.
Let Ai := {ai,j | yi,j = xi}. Add the label i to every edge in Ai and connect its attachment
vertex to vi with an edge labeled i. See also Figure 7.

We claim that G is a yes-instance of MTO if and only if ϕ is satisfiable.

(⇐): Let α : X → {true, false} be an assignment satisfying ω. For every xi ∈ X, orient
all edges adjacent to vi away from vi if α(xi) = true and towards vi otherwise. Then, orient
every edge ai,j towards its attachment vertex if α(yi,j) = true and away from it otherwise.

G.B. Mertzios, H. Molter, M. Renken, P.G. Spirakis and P. Zschoche 29

Note that in the layers 1 through n every vertex either has all adjacent edges oriented
towards it or away from it. Thus these layers are clearly transitive. It remains to consider
layer n + 1 which consists of a disjoint union of triangles. Each such triangle ai,1, ai,2, ai,3
is oriented non-transitively (i.e. cyclically) if and only if α(yi,1) = α(yi,2) = α(yi,3), which
never happens if α satisfies ϕ.

(⇒): Let ω be an orientation of the underlying edges of G such that every layer is transitive.
Since they all share the same label i, the edges adjacent to vi must be all oriented towards
or all oriented away from vi. We set α(xi) = false in the former and α(xi) = true in the
latter case. This in turn forces each edge ai,j to be oriented towards its attachment vertex if
and only if α(ai,j) = true. Therefore, every clause NAE(yi,1, yi,2, yi,3) is satisfied, since the
three edges ai,1, ai,2, ai,3 form a triangle in layer n + 1 and can thus not be oriented cyclically
(i.e. all towards or all away from their respective attachment vertices). ◀

References

1 Eleni C. Akrida, Leszek Gasieniec, George B. Mertzios, and Paul G. Spirakis. Ephemeral
networks with random availability of links: The case of fast networks. Journal of Parallel and
Distributed Computing, 87:109–120, 2016.

2 Eleni C. Akrida, Leszek Gasieniec, George B. Mertzios, and Paul G. Spirakis. The complexity of
optimal design of temporally connected graphs. Theory of Computing Systems, 61(3):907–944,
2017.

3 Eleni C. Akrida, George B. Mertzios, Sotiris E. Nikoletseas, Christoforos L. Raptopoulos,
Paul G. Spirakis, and Viktor Zamaraev. How fast can we reach a target vertex in stochastic
temporal graphs? Journal of Computer and System Sciences, 114:65–83, 2020. An extended
abstract appeared at ICALP 2019.

4 Eleni C. Akrida, George B. Mertzios, Paul G. Spirakis, and Viktor Zamaraev. Temporal vertex
cover with a sliding time window. Journal of Computer and System Sciences, 107:108–123,
2020. An extended abstract appeared at ICALP 2018.

5 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix
multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 522–539, 2021.

6 Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time algorithm for testing
the truth of certain quantified boolean formulas. Information Processing Letters, 8(3):121–123,
1979.

7 Kyriakos Axiotis and Dimitris Fotakis. On the size and the approximability of minimum
temporally connected subgraphs. In Proceedings of the 43rd International Colloquium on
Automata, Languages, and Programming, (ICALP), pages 149:1–149:14, 2016.

8 Matthias Bentert, Anne-Sophie Himmel, Hendrik Molter, Marco Morik, Rolf Niedermeier,
and René Saitenmacher. Listing all maximal k-plexes in temporal graphs. ACM Journal of
Experimental Algorithmics, 24(1):13:1–13:27, 2019.

9 Matthias Bentert, Anne-Sophie Himmel, André Nichterlein, and Rolf Niedermeier. Efficient
computation of optimal temporal walks under waiting-time constraints. Applied Network
Science, 5(1):73, 2020.

10 Robert Bredereck, Christian Komusiewicz, Stefan Kratsch, Hendrik Molter, Rolf Niedermeier,
and Manuel Sorge. Assessing the computational complexity of multilayer subgraph detection.
Network Science, 7(2):215–241, 2019.

11 Binh-Minh Bui-Xuan, Afonso Ferreira, and Aubin Jarry. Computing shortest, fastest, and
foremost journeys in dynamic networks. International Journal of Foundations of Computer
Science, 14(02):267–285, 2003.

30 The Complexity of Transitively Orienting Temporal Graphs

12 Sebastian Buß, Hendrik Molter, Rolf Niedermeier, and Maciej Rymar. Algorithmic aspects of
temporal betweenness. In Proceedings of the 26th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD), pages 2084–2092. ACM, 2020.

13 Arnaud Casteigts and Paola Flocchini. Deterministic Algorithms in Dynamic Networks:
Formal Models and Metrics. Technical report, Defence R&D Canada, April 2013. URL:
https://hal.archives-ouvertes.fr/hal-00865762.

14 Arnaud Casteigts and Paola Flocchini. Deterministic Algorithms in Dynamic Networks:
Problems, Analysis, and Algorithmic Tools. Technical report, Defence R&D Canada, April
2013. URL: https://hal.archives-ouvertes.fr/hal-00865764.

15 Arnaud Casteigts, Paola Flocchini, Walter Quattrociocchi, and Nicola Santoro. Time-varying
graphs and dynamic networks. International Journal of Parallel, Emergent and Distributed
Systems, 27(5):387–408, 2012.

16 Arnaud Casteigts, Anne-Sophie Himmel, Hendrik Molter, and Philipp Zschoche. Finding
temporal paths under waiting time constraints. In 31st International Symposium on Algorithms
and Computation (ISAAC), pages 30:1–30:18, 2020.

17 Arnaud Casteigts, Joseph G. Peters, and Jason Schoeters. Temporal cliques admit sparse
spanners. In Proceedings of the 46th International Colloquium on Automata, Languages, and
Programming (ICALP), volume 132, pages 134:1–134:14, 2019.

18 Jiehua Chen, Hendrik Molter, Manuel Sorge, and Ondřej Suchý. Cluster editing in multi-layer
and temporal graphs. In Proceedings of the 29th International Symposium on Algorithms and
Computation (ISAAC), pages 24:1–24:13, 2018.

19 J. Enright, K. Meeks, G.B. Mertzios, and V. Zamaraev. Deleting edges to restrict the size of
an epidemic in temporal networks. Journal of Computer and System Sciences. To appear.

20 Jessica Enright, Kitty Meeks, and Fiona Skerman. Assigning times to minimise reachability in
temporal graphs. Journal of Computer and System Sciences, 115:169–186, 2021.

21 Thomas Erlebach, Michael Hoffmann, and Frank Kammer. On temporal graph exploration. In
Proceedings of the 42nd International Colloquium on Automata, Languages, and Programming
(ICALP), pages 444–455, 2015.

22 Till Fluschnik, Hendrik Molter, Rolf Niedermeier, Malte Renken, and Philipp Zschoche.
Temporal graph classes: A view through temporal separators. Theoretical Computer Science,
806:197–218, 2020.

23 M.R. Garey, D.S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph problems.
Theoretical Computer Science, 1(3):237–267, 1976.

24 Martin Charles Golumbic. Algorithmic graph theory and perfect graphs. Elsevier, 2nd edition,
2004.

25 S Louis Hakimi, Edward F Schmeichel, and Neal E Young. Orienting graphs to optimize
reachability. Information Processing Letters, 63(5):229–235, 1997.

26 Anne-Sophie Himmel, Hendrik Molter, Rolf Niedermeier, and Manuel Sorge. Adapting the
Bron-Kerbosch algorithm for enumerating maximal cliques in temporal graphs. Social Network
Analysis and Mining, 7(1):35:1–35:16, 2017.

27 Petter Holme and Jari Saramäki. Temporal network theory, volume 2. Springer, 2019.
28 David Kempe, Jon M. Kleinberg, and Amit Kumar. Connectivity and inference problems for

temporal networks. Journal of Computer and System Sciences, 64(4):820–842, 2002.
29 Hyoungshick Kim and Ross Anderson. Temporal node centrality in complex networks. Physical

Review E, 85(2):026107, 2012.
30 Ross M. McConnell and Jeremy P. Spinrad. Linear-time modular decomposition and efficient

transitive orientation of comparability graphs. In Proceedings of the 5th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 536–545, 1994.

31 Ross M. McConnell and Jeremy P. Spinrad. Linear-time transitive orientation. In Proceedings
of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 19–25, 1997.

32 Ross M. McConnell and Jeremy P. Spinrad. Modular decomposition and transitive orientation.
Discrete Mathematics, 201(1-3):189–241, 1999.

https://hal.archives-ouvertes.fr/hal-00865762
https://hal.archives-ouvertes.fr/hal-00865764

G.B. Mertzios, H. Molter, M. Renken, P.G. Spirakis and P. Zschoche 31

33 David B McDonald and Daizaburo Shizuka. Comparative transitive and temporal orderliness
in dominance networks. Behavioral Ecology, 24(2):511–520, 2013.

34 George B. Mertzios. The recognition of simple-triangle graphs and of linear-interval orders is
polynomial. SIAM Journal on Discrete Mathematics, 29(3):1150–1185, 2015.

35 George B. Mertzios, Othon Michail, Ioannis Chatzigiannakis, and Paul G. Spirakis. Temporal
network optimization subject to connectivity constraints. In Proceedings of the 40th Inter-
national Colloquium on Automata, Languages, and Programming (ICALP), pages 657–668,
2013.

36 George B Mertzios, Hendrik Molter, Rolf Niedermeier, Viktor Zamaraev, and Philipp Zschoche.
Computing maximum matchings in temporal graphs. In Proceedings of the 37th International
Symposium on Theoretical Aspects of Computer Science (STACS), volume 154, pages 27:1–
27:14, 2020.

37 George B Mertzios, Hendrik Molter, and Viktor Zamaraev. Sliding window temporal graph
coloring. In Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI),
volume 33, pages 7667–7674, 2019.

38 Othon Michail and Paul G. Spirakis. Elements of the theory of dynamic networks. Commu-
nications of the ACM, 61(2):72–72, January 2018.

39 Robert Moskovitch and Yuval Shahar. Medical temporal-knowledge discovery via temporal
abstraction. In Proceedings of the AMIA Annual Symposium, page 452, 2009.

40 Robert Moskovitch and Yuval Shahar. Fast time intervals mining using the transitivity of
temporal relations. Knowledge and Information Systems, 42(1):21–48, 2015.

41 V. Nicosia, J. Tang, C. Mascolo, M. Musolesi, G. Russo, and V. Latora. Graph metrics for
temporal networks. In Temporal Networks. Springer, 2013.

42 Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the 10th
Annual ACM Symposium on Theory of Computing (STOC), pages 216–226, 1978.

43 Jeremy P. Spinrad. On comparability and permutation graphs. SIAM Journal on Computing,
14(3):658–670, 1985.

44 Jeremy P. Spinrad. Efficient graph representations, volume 19 of Fields Institute Monographs.
American Mathematical Society, 2003.

45 Xavier Tannier and Philippe Muller. Evaluating temporal graphs built from texts via transitive
reduction. Journal of Artificial Intelligence Research (JAIR), 40:375–413, 2011.

46 Craig A Tovey. A simplified NP-complete satisfiability problem. Discrete Applied Mathematics,
8(1):85–89, 1984.

47 Tiphaine Viard, Matthieu Latapy, and Clémence Magnien. Computing maximal cliques in
link streams. Theoretical Computer Science, 609:245–252, 2016.

48 Huanhuan Wu, James Cheng, Yiping Ke, Silu Huang, Yuzhen Huang, and Hejun Wu. Efficient
algorithms for temporal path computation. IEEE Transactions on Knowledge and Data
Engineering, 28(11):2927–2942, 2016.

49 Philipp Zschoche, Till Fluschnik, Hendrik Molter, and Rolf Niedermeier. The complexity of
finding separators in temporal graphs. Journal of Computer and System Sciences, 107:72–92,
2020.

	1 Introduction
	2 Preliminaries and Notation
	3 The recognition of temporally transitively orientable graphs
	3.1 A polynomial-time algorithm for TTO
	3.2 Strict TTO is NP-Complete

	4 Temporal Transitive Completion
	5 Deciding Multilayer Transitive Orientation

