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Abstract
We study the average-case complexity of the classic Minesweeper game in which players deduce the
locations of mines on a two-dimensional lattice. Playing Minesweeper is known to be co-NP-complete.
We show empirically that Minesweeper exhibits a phase transition analogous to the well-studied SAT
phase transition. Above the critical mine density it becomes almost impossible to play Minesweeper
by logical inference. We use a reduction to Boolean unsatisfiability to characterize the hardness of
Minesweeper instances, and show that the hardness peaks at the phase transition. Furthermore,
we demonstrate algorithmic barriers at the phase transition for polynomial-time approaches to
Minesweeper inference. Finally, we comment on expectations for the asymptotic behavior of the
phase transition.
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1 Introduction

Minesweeper is a single-player game originally released by Microsoft as part of the Windows
3.1 operating system. Players are presented with a rectangular lattice of covered squares,
and behind some of these squares lie mines. The object of the game is to uncover all empty
squares while never uncovering a mine. Players deduce the locations of mines from numbers
on the empty squares which indicate how many mines lie adjacent.

Minesweeper is famous as a mode of mindless procrastination. On the television show
The Office, Jim Halpert quips “those mines aren’t going to sweep themselves” in reference to
his boredom. This popular sentiment would seem to be at odds with complexity-theoretic
studies of Minesweeper. In Section 2 we review earlier results which show that playing
Minesweeper by logical inference is co-NP-complete [12], and deciding whether a Minesweeper
board is consistent with some assignment of mine squares is NP-complete [10], or even
Turing-complete for an infinite board size [9].

This discrepancy is remedied by classic results on phase transitions in NP-complete
problems. While NP-complete problems are widely believed to be exponentially hard in
the worst case, they can be much easier in typical cases. As a representative example, for
random k-SAT with n literals and c clauses, it is found empirically that the probability p(n, c)
of a formula being satisfiable drops sharply to zero when the ratio ` = c/n reaches a certain
threshold [8]. In fact, Friedgut’s theorem [7, 6] implies the existence of a function `∗(n) such
that for any ε > 0, as n→∞

p (n, (1− ε)`∗(n)n)→ 1, p (n, (1 + ε)`∗(n))→ 0. (1)

It is suspected that `∗(n) converges to a limiting critical value.
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2 Minesweeper Phase Transition

This phase transition is closely associated with the average-case complexity of SAT, or
NP-complete problems more generally. Backtracking-based search algorithms for solving SAT
require the largest number of branches for ` near `∗ [8], and a similar increase in hardness at
the phase transition is observed in other constraint satisfaction problems [1]. As long as ` is
sufficiently separated from `∗, SAT can be solved relatively quickly in average cases.

In this paper, we present evidence for a similar phase transition in Minesweeper by
showing empirically that the number of mines which can be flagged by an inference-based
solver rapidly declines near a critical mine density. Furthermore, in Section 3 we define a
metric for the hardness of Minesweeper instances and show that this metric peaks at the
transition point. In Section 4, we discuss a simple family of polynomial-time algorithms and
show that the hardness metric we employ represents a natural barrier for these algorithms.
Finally, in Section 5, we comment on expectations for the asymptotic behavior of the phase
transition.

2 Worst-Case Complexity: CONSISTENCY and INFERENCE

We begin with some definitions. Throughout this paper, when we refer to Minesweeper we
mean the classic Windows game instantiated on an N ×N square lattice. The rules of the
game are as follows.

I Definition 1. A Minesweeper board with size N and mine density ρ is an N×N array with
bN2ρc sites occupied by mines, and the remainder of sites empty or “safe.” A Minesweeper
instance is a Minesweeper board with a subset of its sites uncovered. All the uncovered sites
are labeled by the number of neighboring sites (including diagonal neighbors, and including
wrap-around neighbors for sites on the edge) which contain mines. A move consists of one of
the following:

Revealing a covered site. This results in loss of the game if the site contains a mine.
Otherwise, the site is uncovered and its number of neighboring mines is revealed. If this
number is zero, all neighboring sites are revealed for the player automatically.
Flagging a covered site. This is a bookkeeping tool for sites which are known to contain
mines.

The game is won when all empty sites are uncovered.

When attempting to make inferences about the covered squares, it is helpful to adjust the
labels of uncovered squares by subtracting the mines already accounted for with flags. We
thus define the following [2]:

I Definition 2. The effective label of a Minesweeper site its is label minus its number of
flagged neighbors.

Two decision problems related to Minesweeper have been investigated in the past. The
first, historically speaking, is CONSISTENCY [10]. The CONSISTENCY problem asks whether a
given Minesweeper instance could be realized by some assignment of mines to the covered
squares. Figure 1b shows an example of an inconsistent instance which could never arise in
an actual game of Minesweeper.

Clearly CONSISTENCY belongs to NP by reduction to SAT. We represent each covered site
by a Boolean variable which is true if and only if the site contains a mine. Each site with at
least one covered neighbor defines a Boolean constraint. The instance is consistent if and
only if the conjunction of all these constraints forms a satisfiable formula [10].

In fact, CONSISTENCY is NP-complete. This is shown by reduction from SAT, via the
implementation of logic gates as Minesweeper configurations which logically link the Boolean
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(a) A consistent Minesweeper instance. The
square marked A must contain a mine.
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(b) An inconsistent Minesweeper instance. The
uncovered sites above the flags imply ¬A, while
those below the flags imply A.

Figure 1

variables stored at the covered sites. For example, an AND gate would be constructed by
setting up a Minesweeper instance with two covered sites a and b, and a third covered site c,
with labels on the uncovered sites which together imply that c contains a mine only if both a
and b contain mines. Detailed constructions of such an AND gate as well as a NOT gate are
known [10], and with these components any Boolean circuit can be built. One can construct
arbitrarily complex circuits on an infinite Minesweeper board, and so CONSISTENCY on an
infinite board is Turing-complete [9].

As the authors of [12] note, solving CONSISTENCY is not directly relevant to a Minesweeper
player, who is promised a consistent configuration. Instead, the Minesweeper player is tasked
with deciding whether there exists a covered square which can be inferred to contain a mine,
or to not contain a mine. We call this problem INFERENCE.

There is a simple reduction from INFERENCE to the complement of CONSISTENCY. Given
a Minesweeper instance, we iterate over all the covered sites and tentatively assume they
are either empty or contain mines. For each of these tentative assignments, we consult
a CONSISTENCY oracle; if the oracle ever tells us we have an inconsistent board, then our
tentative assignment is incorrect and we make the opposite inference. Since CONSISTENCY is
in NP, this reduction shows that INFERENCE is in co-NP. Moreover, by reduction from UNSAT,
it has been shown that INFERENCE is co-NP-complete [12].

3 Phase Transition

If P 6= NP, the results of Sec. 2 imply that no polynomial-time algorithm can decide
INFERENCE for all instances. Nonetheless, specific instances of Minesweeper may yield to
a polynomial-time approach, and experience suggests that this is the case for sufficiently
low mine density. By contrast, at sufficiently high mine density, we expect to encounter
configurations like that in Figure 2 where no inference is possible.

For intermediate densities, then, Minesweeper must go from being easily solvable by
inference to rarely solvable by inference. This claim is simple to test empirically. We start
with Minesweeper boards with a single site guaranteed to the player to be labeled zero,
in order to remove uncertainty arising from the first move [2]. We use the reduction from
INFERENCE to UNSAT outlined in the previous section to play Minesweeper, deducing an empty
or mined site at each step until either the game is won or no more inferences are possible.
Our algorithm is outlined as follows.
1. Start by uncovering the guaranteed 0-labeled site.
2. Collect all covered squares bordering uncovered squares into a list frontier_outer, and

all uncovered squares bordering covered squares into a list frontier_inner.
3. Assign a Boolean variable to each site in frontier_outer.
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Figure 2 No inference is possible in the Minesweeper instance in the bottom panel, since the
instance could have arisen from any of the boards shown above (among others), and for each covered
site there is a consistent configuration in which it contains a mine and another in which it is empty.
Note that we are not employing periodic boundary conditions here; alternatively, this grid should be
thought of as part of a large Minesweeper instance.

4. From each site i in frontier_inner, construct a Boolean constraint Fi, and transform
it into conjunctive normal form (CNF). For example, if a site has effective label 1 and
borders two covered sites assigned to variables xβ and xγ in the previous step, then we
have

(¬xβ ∧ xγ) ∨ (xβ ∧ ¬xγ), (2)

which can be written in CNF as

Fi = (xβ ∨ xγ) ∧ (¬xβ ∨ ¬xγ). (3)

5. Let F =
∧
i∈I Fi, with I an index set for frontier_inner, be the conjunction of all

the formulas constructed in the previous step. For every site in frontier_outer, with
Boolean variable xβ , test F ∧ xβ for satisfiability. If it is unsatisfiable, then this site must
not have a mine, so reveal it. If it is satisfiable, then test F ∧ ¬xβ for satisfiability. If it
is unsatisfiable, then this site must have a mine, so flag it.

6. If all mines are flagged, or if no inferences are found, conclude. Otherwise, return to step
2.

In Figure 3, we show the results of these tests. For grids of sizes N = 20, 40, and 80, we
plot the empirical fraction α of mines flagged by inference. We find that α rapidly declines
to 0 roughly in the interval 0.2 < ρ < 0.3, and the decline is steeper at higher values of N .

We would also like to determine how difficult it is to solve the Minesweeper inference
problem at various mine densities. We use an algorithm-agnostic metric derived from the
reduction to UNSAT. As described in the steps above, we construct a Boolean formula Fi from
every labeled site in the inner frontier. We then test the conjunction of all these formulas,
together with one tentative assumption:∧

i∈I
Fi ∧ xβ , or

∧
i∈I

Fi ∧ ¬xβ , (4)

where β is the index of a covered site on the outer frontier and I indexes the inner frontier.
If one of these formulas is unsatisfiable, then we have proved by contradiction the presence
or absence of a mine. In this case we can extract the grouped minimal unsatisfiable (GMUS)
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Figure 3 Averaged results and standard errors of 300 Minesweeper games at each mine density
for each grid size N = 20, 40 and 80 are shown. In black, we plot the expected fraction α of mines
flagged by the INFERENCE solver as a function of the mine density ρ. In green, we plot the expected
maximum size of the grouped minimal unsatisfiable (GMUS) cores encountered in the reduction to
SAT. This is a measure of the hardness of Minesweeper as a function of ρ, and roughly indicates the
number of labeled sites one needs to look at in order to make inferences.

core, a subset S ∈ I for which
∧
i∈S Fi ∧ xβ is unsatisfiable, but for every proper subset

S′ ( S the formula
∧
i∈S′ Fi ∧ xβ is satisfiable (or the equivalent with ¬xβ in place of xβ).

As a measure of hardness we use C = |S|, the number of labeled sites one needs to look at in
order to make the inference about the presence or absence of a mine at site β.

Figure 3 shows the average value of the maximum GMUS core size encountered during
the Minesweeper games as a function of the mine density. This is computed using the
open-source MUSer2 library [3]. The core size is strongly peaked in the vicinity of the phase
transition, and the peak core size grows with the size of the lattice. This indicates that
playing Minesweeper near the critical mine density requires looking at large patches of
the board to make inferences. Furthermore, we clearly see the easy-hard-easy pattern first
suggested in [4].

4 Algorithmic Barriers

In Section 3 we showed that the maximum GMUS core size encountered during the course of a
Minesweeper game peaks at the phase transition. This suggests that the hardest Minesweeper
instances arise at the critical mine density. As another test of this hypothesis, we present
a family of polynomial-time approaches to INFERENCE. These algorithms partially solve
INFERENCE, in the sense that they can identify some but not all inferences, and never make an
invalid inference; there are false negatives, but no false positives. We show that they perform
well below the critical mine density, but fail to find a significant proportion of inferences at
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Figure 4 The performance of the SAT solver is compared to the polynomial-time k-set search
algorithm on a board of size N = 40. The SAT solver finds the theoretical maximum fraction of
mines which can be flagged by inference. The k-set search approach performs comparably until the
phase transition at 0.2 < ρ < 0.3, at which point the SAT solver clearly outperforms k-set search,
and moreover the polynomial-time algorithms are stratified by k.

or near the critical density.
Our algorithms are a generalization of the “naïve single-point” algorithm in [2]. In the

naïve single-point approach, only two types of inferences can be made:
If the effective label of a site is 0, then any of its covered neighbors can be inferred to be
safe.
If the effective label of a site is equal to its number of covered neighbors, then any of its
covered neighbors can be inferred to be mines.

These sorts of inferences are possible precisely when C = 1, i.e., when the SAT solver need
only use a single labeled site to make an inference.

The naïve single-point algorithm has O (ninner) complexity on a single Minesweeper
instance, where ninner is the size of the inner frontier. We employ a natural generalization
with O

(
nkinner

)
complexity, which we call k-set search. We label the sites of the outer frontier

by j = 1, . . . , nouter, and assign to each site i = 1, . . . , ninner in the inner frontier a vector

aij =
{

1 if i borders j
0 otherwise

, (5)

and denote the effective label of site i with ei. In this notation, the constraint provided by a
site in the inner frontier is

nouter∑
j=1

aijxj = ei. (6)

We then iterate over all combinations of up to k of these vectors, with replacement, denoted
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by index sets {i1, . . . , ik}. For each such combination, we consider all the linear combinations
of constraints,

k∑
`=1

(−1)b`

nouter∑
j=1

ai`jxj =
k∑
`=1

(−1)b` ei` , (7)

with b` = 0, 1. If the right hand side is equal to either the minimum or maximum value of
the left hand side, then we can infer the value of any of the variables appearing on the left
hand side with a nonzero coefficient.

It is simple to see that any inference made by k-set search could also be made by a SAT
solver limited to a GMUS core size C ≤ k. The converse is almost true: if the GMUS core
has size k, k-set search will only fail if the inference comes from a linear combination of
constraints with coefficients other than ±1, which is rare. We thus expect that k-set search
will perform well up until the point where the core size reaches k. Figure 3 shows that the
core size is peaked around the phase transition, so in practice we expect that k-set search will
perform significantly less well than a full SAT solver in the vicinity of the phase transition.

Figure 4 confirms this claim. We plot the average fraction α of mines flagged by 1-, 2-,
and 3-set search, compared to the performance of the SAT solver. As we expect, all algorithms
perform roughly equally at low ρ, and then stratify by k in the vicinity of the phase transition.
In the interval 0.2 < ρ < 0.3, a Minesweeper player would benefit substantially from using
(k + 1)-set search over k-set search.

5 Asymptotic Behavior

Naturally, one of the key questions regarding the Minesweeper phase transition is its asymp-
totic behavior. Our empirical studies strongly suggest some kind of phase transition, loosely
speaking, as N →∞. The question is whether this transition is sharp. Let α(N, ρ) denote
the expected fraction of mines which can be flagged by inference on a board of size N with
mine density ρ, as in Figure 3. Following [7], we say the Minesweeper transition is coarse if
there exists some constant C > 0 such that, for all ρ,

lim
N→∞

∣∣∣∣ρdα(N, ρ)
dρ

∣∣∣∣ ≤ C. (8)

Otherwise, we say the transition is sharp.
For several reasons, it is difficult to directly address the question of whether Minesweeper

has a sharp phase transition. First, the distribution of Minesweeper instances is quite
complicated. Although it is simple to define a uniformly random distribution of Minesweeper
boards, the Minesweeper instances which arise during game-play depend on a player’s
strategy.

Even if we restrict to the case of the perfectly logical player who operates by solving
UNSAT, the frontiers which arise depend on the geometry of the percolation clusters formed
by the mines and the sites with nonzero labels. The probability of a given site having either
a mine or a nonzero label is

P (mine or nonzero) = 1− P (zero) = 1− (1− ρ)9. (9)

Setting this equal to the threshold value of p ≈ 0.59 for site percolation on a 2D square lattice
[13], we find ρ ≈ 0.1. However, we are not justified in making such a direct comparison to
the standard percolation problem, because nearby sites in Minesweeper are correlated. To
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Figure 5 The average cluster sizes appearing in the standard percolation problem (right) for a
range of values of the site probability, and in the sites with mines or nonzero labels in Minesweeper
(left) for a range of values of the mine density. The vertical line on the right shows the threshold
probabiilty for percolation.

address this, we perform Monte Carlo simulations of the formation of percolation clusters in
Minesweeper. Figure 5 shows the average cluster size savg, defined as in [5], of the clusters
which form on Minesweeper boards compared to those in standard percolation theory. The
behavior at ρ ≈ 0.1 shows that our calculation gives roughly the correct location of the
percolation threshold for Minesweeper.

The geometry of the percolation clusters in the vicinity of the Minesweeper percolation
threshold is related to that of the clusters in standard percolation theory with independent
sites. This follows from the general principle of universality: the “microscopic” details of a
system do not affect bulk properties at the critical point. More precisely, renormalization
group methods show that if correlations between sites fall off faster than r−d, then the
correlations are irrelevant at the critical point as long as dν > 2, where ν is the critical
exponent for correlation length [11]. The correlations in Minesweeper have finite range,
so they decay faster than any power law, and hence we can ignore the correlations when
considering the geometry of the frontier near the percolation threshold. It is well-known that
percolation clusters exhibit complex fractal geometry near the percolation threshold [14],
and so this complexity should carry over to random Minesweeper instances.

All this is simply to argue that randomMinesweeper instances sample in a very complicated
way from the space of possible INFERENCE problems. There are thus two questions of separate
import. First we should ask if INFERENCE itself, or some generalization of it, has a sharp
phase transition with respect to some parametrized distribution of instances. If this is
answered in the affirmative, then the next question is whether Minesweeper itself samples
from the space of INFERENCE problems in such a way as to lead to a phase transition with
respect to the mine density ρ.

It seems likely that INFERENCE itself exhibits a phase transition. To see this, we consider
a space of problems which contains INFERENCE as a special case, and for which it is much
simpler to define random instances. We start by noting that (5) defines the incidence matrix
of a hypergraph where vertices correspond to covered sites in the outer frontier and hyperedges
correspond to labeled sites in the inner frontier. Each hyperedge can be assigned the effective
label of its corresponding site, and then INFERENCE becomes the following question: if each
vertex must be assigned a value 0 or 1, such that the sum of vertices in each hyperedge is
equal to its label, is the value of any vertex constrained to be either 0 or 1?

The natural generalization is to replace the hypergraph defined by (5) with an arbitrary
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hypergraph, and the effective labels with an integer label between 0 and |e| on each hyperedge
e. We may define a probability measure µ on hypergraphs for which hyperedges of size m
appear independently with probability pm.

The presence of a sharp phase transition in properties of graphs or hypergraphs can
be shown using Friedgut’s theorem [6]. Roughly speaking, this theorem establishes that
any property of hypergraphs which does not exhibit a sharp phase transition must be
approximable by a local property. We will not prove the existence of a sharp phase transition
for inference on random hypergraphs, but intuitively, it is clear that the inference property
should not be locally approximable. Inferences can arise from large sets of hyperedges in
myriad ways; we cannot expect to account for almost all inferences by checking for a finite
set of sub-hypergraphs. Indeed, the k-set search algorithm of Section 4 effectively checks
for a finite set of sub-hypergraphs, and for any fixed k we do not expect this algorithm to
perform well for sufficiently large N . These considerations suggest that inference on random
hypergraphs has a sharp phase transition at some hyperedge probability p∗(N).

Returning to the question of the Minesweeper phase transition, some simple estimates
suggest that even if inference on random hypergraphs does have a sharp phase transition,
the behavior of the Minesweeper phase transition depends on details which are difficult
to ascertain. The distribution of hypergraphs which appear in the inference problems in
Minesweeper is certainly a complicated function of the mine density, and even for fixed mine
density, overlapping hyperedges are not independent of one another. Thus, throughout a
game of Minesweeper, the INFERENCE problems encountered by a player are sampled from
distributions of hypergraph inference problems with a range of parameters.

As a simple phenomenological model of this behavior, assume that the INFERENCE
problems which appear during a game of Minesweeper are sampled using some parameter p,
and that there is a sharp threshold at p = p∗(N) above which inferences become possible.
Furthermore, assume the parameter p is itself drawn from some distribution f(p;N, ρ). The
game of Minesweeper will continue until the random value of p falls below p∗(N). On each
turn, this happens with probability

P (N, ρ) =
∫ p∗(N)

0
f(p;N, ρ) dp. (10)

The expected fraction of mines flagged then scales as the number of turns played, so

α(N, ρ) ∼ 1
N

T (N,ρ)∑
n=0

n(1− P (N, ρ))nP (N, ρ) ∼ (1− P (N, ρ))T (N,ρ), (11)

where T (N, ρ) is the expected number of turns required to complete the game if all mines
are flagged. As ρ is increased, we expect P to increase, since under-constrained inference
problems like the one in Figure 2 are more likely to appear. Thus, (11) reproduces the
sigmoidal behavior evident in Figure 3.

As N is taken to infinity, the shape of α(N, ρ) depends on the exact limiting behavior
of P (N, ρ) and T (N, ρ), which in turn depend on the detailed statistics of Minesweeper
instances. It may approach either a discontinuous function, corresponding to a sharp phase
transition, or some curve which interpolates between α = 1 and α = 0 over a finite range of
mine densities, giving a coarse phase transition.

Despite this uncertainty in the asymptotic behavior, our empirical results show that the
phase transition in Minesweeper at finite N is closely associated with the appearance of
hard INFERENCE problems. We can thus understand a great deal about the average-case
complexity of Minesweeper by thinking in terms of its phase transition.
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