
Scheduling Precedence-Constrained Jobs on Related Machines
with Communication Delay

Biswaroop Maiti∗, Rajmohan Rajaraman∗, David Stalfa∗, Zoya Svitkina† and Aravindan Vijayaraghavan‡
∗Northeastern University, Boston, Massachusetts

m.biswaroop@gmail.com, {r.rajaraman,stalfa.d}@northeastern.edu
†Google Research, Mountain View, California

zoya@google.com
‡Northwestern University, Evanston, Illinois

aravindv@northwestern.edu

Abstract—We consider the problem of scheduling
precedence-constrained jobs on uniformly-related machines
in the presence of an arbitrary, fixed communication delay.
Communication delay is the amount of time that must
pass between the completion of a job on one machine
and the start of any successor of that job on a different
machine. We consider a model that allows job duplication,
i.e. processing of the same job on multiple machines, which,
as we show, can reduce the length of a schedule (i.e., its
makespan) by a logarithmic factor. Our main result is an
approximation algorithm for makespan with approximation
ratio polylogarithmic in the number of machines and the
length of the communication delay, assuming the minimum
makespan is at least the delay. Our algorithm is based on
rounding a linear programming relaxation for the problem,
which includes carefully designed constraints capturing
the interaction among communication delay, precedence
requirements, varying speeds, and job duplication. To derive
a schedule from a solution to the linear program, we balance
the benefits of duplication in satisfying precedence constraints
early against its drawbacks in increasing overall system load.
Our result builds on two previous lines of work, one with
communication delay but identical machines (Lepere, Rapine
2002), and the other with uniformly-related machines but no
communication delay (Chudak, Shmoys 1999).

We next show that the integrality gap of our mathematical
program is polylogarithmic in the communication delay. Our
gap construction employs expander graphs and exploits a
property of robust expansion and its generalization to paths
of longer length, which may be of independent interest.
Finally, we quantify the advantage of duplication in scheduling
with communication delay. We show that the best schedule
without duplication can have a larger makespan than the
optimal with duplication by a logarithmic factor. Nevertheless,
we present a polynomial time algorithm to transform any
schedule to a schedule without duplication at the cost of an
increase in makespan polylogarithmic in the number of jobs
and machines. Together with our makespan approximation
algorithm for schedules allowing duplication, this also yields a
polylogarithmic-approximation algorithm for the setting where
duplication is not allowed.

Keywords-scheduling; approximation algorithms; linear pro-
gramming; communication delay; duplication

I. INTRODUCTION

As computational workloads get larger and more complex,

it becomes necessary to distribute tasks across multiple het-

erogenous processors. For example, the process of training

and evaluating neural network models is often distributed

over diverse devices such as CPUs, GPUs, or other spe-

cialized hardware; this process, commonly referred to as

device placement has gained significant interest [1], [2], [3].

This gives rise to a multiprocessor scheduling problem of

optimizing both the assignment of tasks to processors and

the order of their execution. We address this problem, taking

into account several complications that such a distributed

setting presents, including job dependencies, heterogeneous

machine speeds, and a communication delay between them.

The jobs comprising a workload can have data dependen-

cies between them, where the output of one job serves as

the input to another. As is common in scheduling literature,

we model these dependencies using a directed acyclic graph

(DAG), where a directed edge uv represents that job u
must be scheduled before v. However, if these two jobs are

executed on different machines, additional time is needed to

transfer the data from one machine to the other. We model

this time as a communication delay: this delay is zero if the

two jobs run on the same machine, and is equal to some

value ρ if they run on different machines. Considering that

the communication delay can be substantial, another aspect

of the problem comes into play. Instead of a machine waiting

for the result of some computation to be communicated from

another machine, it may be advantageous for it to perform

this computation itself, thus duplicating work in order to

obtain the result sooner (as highlighted in early work [4]).

Indeed, the technique of duplication to hide latency has been

incorporated in schedulers proposed for grid computing and

cloud environments [5], [6], [7], [8]. In addition, jobs may

have different processing sizes and the devices may run

at different speeds, representing either different types (e.g.

CPU, GPU, or TPU), or differences in machine model.

Optimization problems associated with scheduling under

834

2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS)

2575-8454/20/$31.00 ©2020 IEEE
DOI 10.1109/FOCS46700.2020.00082

20
20

 IE
EE

 6
1s

t A
nn

ua
l S

ym
po

siu
m

 o
n

Fo
un

da
tio

ns
 o

f C
om

pu
te

r S
ci

en
ce

 (F
O

CS
) |

 9
78

-1
-7

28
1-

96
21

-3
/2

0/
$3

1.
00

 ©
20

20
 IE

EE
 |

 D
O

I:
10

.1
10

9/
FO

CS
46

70
0.

20
20

.0
00

82

Authorized licensed use limited to: University of Central Florida. Downloaded on February 24,2021 at 23:09:42 UTC from IEEE Xplore. Restrictions apply.

communication delays have been studied over the last three

decades, but provably good approximation bounds are few

and several challenging open problems remain [9], [10],

[11], [12], [13], [14], [15], [16], [4], [17], [18]. It is known

that scheduling a DAG of uniform size jobs on identical

machines with a communication delay is NP-hard, even

when the number of machines is infinite [18], [17]. Several

inapproximability results have also been derived [10], [12].

However, these results are very limited and the approxima-

bility status of scheduling under communication delay is

listed as one of the top ten open problems in scheduling

surveys [19], [20]. For the special case of uniform speeds

and unit jobs, a logarithmic-approximation algorithm is pre-

sented in [13]. In recent work [21], a quasi-polynomial time

approximation scheme is developed for the problem when

the number of machines is O(1), communication delays are

O(1), and the machines are identical. Our focus in this paper

is on deriving approximation algorithms for scheduling a

DAG with non-uniform size jobs on an arbitrary number

of related machines (arbitrary speeds) and an arbitrary
communication delay.

A. Our results and techniques

We study the problem of scheduling a DAG with n jobs

of arbitrary sizes on m related machines, connected by a

network with a fixed communication delay. In the related

machines model, machine i has a speed si, and the time

taken to complete a job v of size pv on i is given by

pv/si. We represent the network communication delay as ρ
times the processing time of the smallest job on the fastest

machine.

Approximation algorithm for makespan. We focus on the

makespan objective, which is defined as the time taken by a

given schedule to complete the given DAG on the machines.

We consider scheduling policies that allow duplication of

jobs, which, as we discuss below, can reduce makespan when

compared to schedules that do not allow duplication.

Theorem 1 (Makespan approximation). There is

a polynomial time algorithm that, given an in-

stance of DAG scheduling with fixed communica-

tion delay, computes a schedule whose makespan is

O(logm log ρ/ log log ρ)(OPT + ρ), where OPT is

the optimal makespan for the given instance.

We thus obtain an O(logm log ρ/ log log ρ)-approximation

algorithm as long as OPT ≥ ρ, which is a natural re-

quirement since it takes ρ time to distribute the jobs to

the machines at the start of the schedule as well as to

synchronize termination at the end of the schedule. We note

that the logm factor in our approximation corresponds to

an upper bound on the number of geometrically separated

speed groups. This entails that, for the special case of

uniform speeds, our algorithm constructs a schedule with

makespan upper bounded by O(log ρ/ log log ρ)(OPT +ρ),
thus extending the result of [13] to non-uniform job sizes.

A central component of our algorithm is a linear pro-

gramming relaxation. A significant challenge in this regard

is to capture the precedence requirement in the presence of

communication delays: we would like to determine where

and when to schedule individual jobs while, at the same

time, adjusting the start time of each job to account for

communication delays in relation to all its predecessors.

In the full version of our paper [22], we consider several

related LPs and their natural extensions and show that these

approaches are inadequate for our algorithm. To overcome

these challenges, we introduce a set of variables that indicate

whether a job and its predecessor are scheduled within ρ
time of each other, and incorporate these variables into

two new sets of constraints. The first enforces the delay

requirement on jobs that do not start within ρ time of each

other, and the second upper bounds the total size of all

predecessors that can be executed within ρ time of their

successor. The addition of these constraints exponentially

reduces the integrality gap of the program.
Our rounding algorithm has two components. First, we

process a fractional solution to our linear relaxation to

determine a tentative assignment of jobs to groups of

machines, along the lines of [23]. Next, we convert the

group assignment to an actual schedule. Unlike in the

case of related machines with no communication delay, we

cannot invoke a list scheduling type of policy. Furthermore,

our algorithm needs to duplicate jobs judiciously so as to

hide the communication latency and achieve the desired

approximation ratio. The main challenge in this regard is

that, in order to make sufficient progress on the LP solution,

we must duplicate some jobs on machines much slower than

their assigned machine. We overcome this obstacle by upper

bounding the total size of any duplicated jobs and structuring

the machines such that those with slower speed have, as a

whole, higher capacity. Section III gives an overview of our

makespan results and full proofs are given in [22].

Integrality gap. We next study the integrality gap of the

linear program underlying our approximation algorithm, and

its dependence on the communication delay ρ. Previous

work of [23] on scheduling on related machines implies

an integrality gap of Ω(logm/ log logm) for non-uniform

speeds and non-uniform job sizes, but it does not consider

communication delays and hence does not yield any gap in

terms of ρ.

Theorem 2 (Integrality gap). There is a family of

instances with uniform speeds and uniform job sizes

such that for any ρ that is at least some sufficiently

large constant, our linear programming relaxation has

a gap of at least Ω(
√
log ρ).

This integrality gap gives the first evidence that constant

835

Authorized licensed use limited to: University of Central Florida. Downloaded on February 24,2021 at 23:09:42 UTC from IEEE Xplore. Restrictions apply.

factor approximations may not be tractable or may be out of

reach of existing techniques when the communication delay

ρ is super-constant, even with uniform job sizes and identical

machines. The integrality gap also extends to variants of

time-indexed linear programs and, we suspect, to a wider

class of mathematical programming relaxations. Given that

without communication delay, the unit speed and unit job

size case has an integrality gap of at most 2 by Graham’s

list scheduling [24], our result suggests a separation in

the approximability between the variants of precedence-

constrained scheduling with and without communication

delays.

Our gap construction consists of a layered DAG with

L = ω(1) layers, where the dependency graph between

successive layers corresponds to a random graph. The main

technical challenge is to argue that Ω(L) phases (a phase

here corresponds to roughly ρ time units) are needed in

order to schedule all the jobs for the optimal integral

solution. The expansion of the random graph implies that

at most o(1) fraction of the jobs can be scheduled in the

first phase. However, in the next phase, the jobs that were

completed previously are now available on all the machines;

moreover, the remaining graph (on the unscheduled jobs) in

subsequent phases is not random any longer! To overcome

this technical hurdle, we identify and exploit a property of

“robust expansion” and its generalization to paths of longer

length, which may be of independent interest. Section IV

provides an overview of our integrality gap result.

Bounding the duplication advantage. Given the potential

of duplication to effectively hide communication latency, a

natural question arises: how much smaller can the makespan

of a schedule with duplications be, when compared to a no-
duplication schedule, i.e., a schedule in which each job is

processed exactly once? Our final set of results formally

quantifies the duplication advantage.

Theorem 3 (Bounding the duplication advantage).
Upper bound: Given any instance with n jobs, m
machines, communication delay ρ, and a schedule with

makespan C∗ ≥ ρ, there exists a polynomial-time

computable no-duplication schedule with makespan

O(C∗ · log2 n logm). Lower bound: There exists an

instance with n/2 = m = 2ρ for which any no-

duplication schedule has makespan at least ρ/ log ρ
times the optimal makespan.

Together with our makespan algorithm for general schedules,

the algorithm of Theorem 3 yields the following corol-

lary [22].

Corollary 3.1. There is a polynomial time algorithm that,

given an instance of DAG scheduling with fixed commu-

nication delay, computes a no-duplication schedule whose

makespan is O(polylog(n,m, ρ)) ·OPT , where OPT is the

makespan achieved by an optimal no-duplication schedule.

Note that the approximation ratio of Corollary 3.1 holds even

when the makespan of an optimal no-duplication schedule

is less than ρ, since that case can be detected and solved

within an O(1) factor without any communication. We also

note that, since both our LP rounding and the algorithm

of Theorem 3 are combinatorial, our results also yield

a combinatorial approximation algorithm for the uniform

speed case, i.e. P | prec, c | maxCj . Section V gives an

overview of our algorithm that transforms a general schedule

to a no-duplication schedule, and [22] contains the full

proofs for bounding the duplication advantage.

B. Related work

Scheduling theory has a rich history and there is exten-

sive work on scheduling jobs with precedence constraints

dating back over three decades. In the following, we review

scheduling work most closely related to this paper: schedul-

ing DAGs on related machines, and scheduling DAGs under

communication delays.

Scheduling DAGs on related machines. The problem of

scheduling DAGs on related machines (with no communi-

cation delays) to minimize weighted completion time was

first studied by Jaffe, who gave an O(
√
m) approximation

algorithm [25]. This was significantly improved by Chudak

and Shmoys who first derived an O(logm) asymptotic

approximation ratio for minimizing makespan [23] and then

invoked a general framework due to Hall et al [26] and

Queyranne and Sviridenko [27] to convert an approximation

algorithm for makespan to an approximation algorithm for

weighted completion time. The Chudak-Shmoys algorithm

for makespan minimization first solves an LP relaxation

for the problem, and then assigns each job to a group

of machines whose speeds are within a factor of two of

one another. Using Graham’s list scheduling [24], they then

schedule the jobs within each group of machines. The

O(logm) factor arises due to the number of machine groups.

In subsequent work, Chekuri and Bender derived the same

O(logm) approximation via a combinatorial algorithm [28].

In recent work, Shi Li improved the approximation ratio to

O(logm/ log logm) by a more careful tradeoff between the

factor lost for organizing the machines into groups and the

factor lost while assigning jobs to machine groups [29].

With regard to hardness, it is known that the problem is

hard to approximate to within a constant factor even for

the special case of identical machines, where the particular

constant depends on underlying complexity theory assump-

tions [30], [31], [32]. Recent work has also shown that

the problem is hard to approximate to within any constant

assuming the hardness of a particular optimization problem

on k-partite graphs [33].

Scheduling under communication delays. As discussed

above, optimization problems associated with scheduling

836

Authorized licensed use limited to: University of Central Florida. Downloaded on February 24,2021 at 23:09:42 UTC from IEEE Xplore. Restrictions apply.

under communication delays have been studied for three

decades since the early work of [18], [4], [34], but provably

good approximation bounds are few. All previous work

assumes uniform machines and either uniform job sizes or

special cases such as O(1) machines and O(1) communi-

cation delay. For instance, in the special case of unit-size

jobs, identical machines, and unit communication delay, a

7/3-approximation is presented in [15], while [12] shows

that it is NP-hard to approximate better than a factor of

5/4. Hardness results are also shown in [10], [17], [18]. To

the best of our knowledge, our work is among the first to

develop algorithms for scheduling non-uniform jobs with

precedence constraints on related machines connected by an

arbitrary communication network with fixed delay.

Several recent results have shed some light on these

scheduling problems. The work of [21] presents a novel

quasi-polynomial time approximation scheme, based on the

Sherali-Adams hierarchy framework, for the problem with

O(1) identical machines, non-uniform job sizes, and O(1)
variable communication delays. In recent independent work,

[35] proves an O(log ρ · logm)-approximation for the prob-

lem of minimizing makespan on identical machines with

fixed, arbitrary communication delay. This approach also

uses a Sherali-Adams hierarchy and a clustering of the

resulting semimetric.

Another line of work [36], [37] uses a more general

model of communication delay which assigns to each pair

of jobs an amount of data that must be transferred if they are

executed on different machines, and assigns to each pair of

machines a speed at which that data can be transferred. Early

work by Hwang et al. [36] focus on the case of identical

machines and develop an Earliest Time First heuristic for

which they provide bounds on the resulting makespan. Su et

al. [37] generalize this result for the case of related machines

using a generalization of the Earliest Time First heuristic.

However, since neither provides a true approximation, their

results do not entail any results for our problem.

The natural idea of duplication to hide communication

latency was first studied by Papadimitriou and Yannakakis,

who proposed a 2-approximation algorithm for scheduling

DAGs on an unbounded number of identical machines with a

fixed communication delay [4]. Improved bounds for infinite

machines have been given in [9], [11], [38], [16]. For the

case of a bounded number of machines, [14], [15] give

approximation algorithms under some special cases of either

very small or very large communication delay or with the

DAG restricted to be a tree-precedence graph. With duplica-

tion, the only provable guarantee for a bounded number of

machines with an arbitrary communication delay parameter

is due to Lepere and Rapine, who present an algorithm for

scheduling a DAG of unit-size jobs on identical machines

with communication delay of ρ units, which achieves a

makespan O((OPT + ρ) log ρ/ log log ρ) [13].

II. PROBLEM FORMULATION AND NOTATION

An instance of precedence constrained scheduling with

fixed communication delay is a triple (G,M, ρ) where G is

a directed acyclic graph, M is a set of machines, and ρ is the

communication delay. In the graph G = (V,E), the n nodes

of V represent jobs and the edges of E represent precedence

constraints. Each job v has a size pv > 0 and for any subset

U ⊆ V , we define p(U) =
∑

u∈U pu. In the set of machines

M = {1, . . . ,m}, each machine i ∈ M has a speed si.
We order the machines such that s1 ≤ s2 ≤ . . . ≤ sm.

Processing a job v on a machine i takes pv/si units of time.

We normalize these values so that the shortest job has size 1

and the fastest machine has speed 1, in which case one time

unit is defined as the time needed to process the shortest

job on the fastest machine. Each job may be duplicated, i.e.

copies of it processed on different machines. Preemption is

not allowed, and at most one job can run on a machine at

any given time.

m num. of machines n num. of jobs

i, j machines v, u jobs

si machine i’s speed pv size of job v
ρ comm. delay Av predecessors of v

We say that u is a predecessor of v, denoted u ≺ v, if

there is some (non-zero length) directed path from u to v in

G. We denote the set of all predecessors of v by Av (note

that v �∈ Av). The parameter ρ specifies the time needed to

communicate the result of a job computed on one machine

to a different machine. So if u ≺ v and v starts on machine

i at time t, then there must be a copy of u that completes

either on machine i by time t or on a different machine by

time t− ρ.

We represent a schedule as a function σ : V × M →
R ∪ {∞} mapping pair (v, i) to the start time of v on i, or

to ∞ if v is not scheduled on i. We say that σ is a schedule

of (G,M, ρ) if all jobs in G have a finite start time on some

machine in M subject to the constraints listed above. The

objective is to find a σ with minimum makespan, which is

the maximum (finite) completion time in σ of any copy of

any job. Since this objective is trivial if there is only one job

or one machine, we assume n,m ≥ 2. In the three field no-

tation, this problem is denoted Q|duplication, prec, c|Cmax
where c indicates uniform communication delay.

III. APPROXIMATION ALGORITHM FOR MAKESPAN

At a high level, our algorithm finds a fractional solution

to the scheduling problem and then, through a series of re-

finements, constructs a final schedule for the given instance.

The various components of the algorithm are highlighted in

Figure 1. The first step is a standard preprocessing of the

instance, in which we eliminate machines that are slower

than the fastest machine by a factor of m or more, while

incurring at most a constant factor increase in makespan.

We refer the reader to our full paper [22] for details.

837

Authorized licensed use limited to: University of Central Florida. Downloaded on February 24,2021 at 23:09:42 UTC from IEEE Xplore. Restrictions apply.

Use the group
assignments to
build a phase-
structured
schedule

Instance
(G,M, ρ)

Schedule of
(G,M, ρ)

Solve Linear
Relaxation

Preprocess
Instance

Assign Jobs
to Groups

Compute
Schedule

Remove every
machine with
speed less than
1/m times the
max speed

Compute LP
solution that
lower bounds
the optimal
makespan

Use fractional
LP values to
assign each job
to a set of ma-
chines

Figure 1. A high level view of our algorithm.

Approaches based on previous related work. We briefly

review natural approaches to the problem of scheduling

on related machines with communication delay, based on

previous related work and indicate the ways in which these

approaches are inadequate for our setting.

One approach is that taken in [13], which uses a combina-

torial algorithm for the case with unit-speed machines, unit-

size jobs, communication delay ρ, and duplication allowed.

The crux of the algorithm is to repeatedly find jobs that

can be completed in ρ steps and schedule them (duplicating

their uncompleted predecessors, if necessary) until all such

jobs have at least half their remaining predecessors already

scheduled. At this point the algorithm introduces a delay on

all machines, removes all previously scheduled jobs, and

repeats. While this approach may work for arbitrary job

sizes, accounting for variable speeds is more difficult. In

[22] we show that a natural extension of this combinatorial

algorithm fails.

A more effective approach is to develop a suitable LP

relaxation. We consider natural variants of two relaxations

developed in related work. The first captures precedence

constraints and communication delays by relating job-

machine assignment variables to job start and completion

time variables. In this way, precedence constraints can be

addressed effectively, as has been shown by [23], [29],

but communication delays are much more challenging to

capture. One natural approach is to add same-machine

indicator variables δu,v,i. Intuitively δu,v,i = 1 if u and v
are both scheduled on machine i, otherwise δu,v,i = 0. We

could then add the following constraint, where Sv and Cv

represent the start and completion times of job v.

Sv ≥ Cu + ρ
(
1−

∑
i

δu,v,i

)
∀u, v, i : u ≺ v

We can think of the constraint as stating that any job v must

begin at least ρ steps after any of its predecessors u, if v and

u are not executed on the same machine. Unfortunately, a

simple instance with a fractional solution that spreads each

job among all the machines and sets the δ values to 1/m
leads to an integrality gap as large as a polynomial in ρ, m,

and n. See [22] for details.

A different strategy for constructing a linear relaxation is

to use time-indexed job-machine assignment variables xv,i,t

to indicate the completion time t of job v on machine i. In-

deed, such a program capturing both precedence constraints

and communication delays is used in [21] to obtain a quasi-

polynomial time approximation scheme when the number of

machines m is O(1), the communication delays are O(1),
and all machines are identical. Unlike [21], however, we are

working with an arbitrary number of machines of arbitrary

speeds, and an arbitrarily large communication delay. In this

case, the time-indexed relaxation has an integrality gap as

large as a polynomial in ρ, m, and n. See [22].

Developing our relaxation. To overcome the challenges

mentioned above, we introduce two new sets of constraints

– delay constraints and phase constraints – in addition to the

usual related machines scheduling constraints of [23], [29],

where a phase is any interval of ρ time in a schedule. To

build intuition, we introduce these constraints in the setting

with unit speeds and unit job sizes. We then provide a natural

(but weak) generalization of these constraints to the setting

with arbitrary speeds and job sizes which, unfortunately,

has a large integrality gap. Finally, we refine the constraints

yielding our linear relaxation.

For unit speeds and unit job sizes, the phase constraints

require that if a job v is scheduled to start at time t on

machine i, then the total number of v’s predecessors that are

scheduled to start in the interval [t−ρ, t) is at most ρ because

they must all be scheduled on the same machine. To capture

this property, we introduce same-phase variables yu,v for

each pair of jobs u, v such that u ≺ v. We can view yu,v
as indicating whether some copy of u is scheduled within

ρ steps of the start of v. We can then give the following

constraints.

Sv ≥ Su + ρ(1− yu,v) ∀u, v : u ≺ v

ρ ≥
∑
u≺v

yu,v ∀v

The first is the delay constraint and states that the difference

in start times for v and u is at least ρ if some copy of u is

not scheduled within ρ of the start time of v. The second

is the phase constraint and states that the total number of

copies of v’s predecessors that are scheduled to start within

ρ time of v is at most ρ. While this relaxation has a small

integrality gap in the unit case, adapting it to non-unit speeds

and job sizes is not straightforward.

838

Authorized licensed use limited to: University of Central Florida. Downloaded on February 24,2021 at 23:09:42 UTC from IEEE Xplore. Restrictions apply.

In the case with arbitrary speeds and job sizes, we would

like to capture the property analogous to the one used in the

unit case: if a job v is scheduled to start at time t on machine

i then the set of all v’s predecessors that are scheduled to

start in the interval [t− ρ, t) should have total size at most

ρsi. The following relaxation uses a natural extension of the

phase constraint to capture this property. It retains the same-

phase variables and delay constraint of the unit relaxation,

and incorporates xv,i variables to indicate whether job v is

exectued on machine i.

ρ
∑
i

sixv,i ≥
∑
u≺v

puyu,v ∀v

Unfortunately, this constraint has a flaw. If, say, a small

fraction of v is placed on the fastest machine and the rest

on the slowest, then the left-hand term would allow too many

predecessors to be scheduled in the same phase. As shown

in [22], this leads to an integrality gap as large as ρ or

polynomial in m and n.

A key idea in our linear relaxation is the introduction

of machine-dependent same-phase variables, which tie the

notion of a phase to the speed of a particular machine.

Using these variables, we introduce new phase and delay

constraints which rely crucially on our ordering of machines

by increasing speed. Our linear relaxation LP minimizes C
subject to the following constraints.

C ≥ Sv + pv
∑
i

xv,i/si ∀v (1)

Sv ≥ Su + pu
∑
i

xu,i/si ∀u, v : u ≺ v (2)

Sv ≥ Su + ρ
(∑

j≤i

xv,j − zu,v,i
) ∀u, v, i : u ≺ v (3)

∑
j≤i

xv,j ≥
∑
u≺v

puzu,v,i/ρsi ∀v, i (4)

Csi ≥
∑
v

pvxv,i ∀i (5)

∑
i

xv,i = 1 ∀v (6)

Sv ≥ 0 ∀v (7)

xv,i ∈ (0, 1) ∀v, i (8)

zu,v,i ∈ (0, 1) ∀u, v, i (9)

We provide some intuition behind the variables and

constraints. We interpret the variables xv,i as giving the

“primary” placement of v and Sv as the corresponding start

time of v. Then, for any jobs u and v such that u ≺ v and

for any machine i, we can understand the variable zu,v,i as

indicating, first, whether v is executed on a machine indexed

i or lower, and second, whether the start time of u is within

ρ of the start time of v. The significance of this indication

is that, if these conditions are met, then some copy of u
must execute on the same machine as v within ρ time of v

and, therefore, only predecessors of total size at most ρsi
can meet these conditions. We can then think of zu,v,i as

giving a “secondary” placement of u in order to finish v as

quickly as possible. The remaining variable C captures the

makespan of the resulting schedule.

The delay constraint (3) states that if v is scheduled on

a machine slower than i, then v should start at least ρ
time after any predecessor u unless u is scheduled in the

same phase as v. The phase constraint (4) states that if

v is scheduled on a machine slower than i, then the total

size of v’s predecessors scheduled in the same phase is

at most ρsi. The remaining constraints ensure that no job

completion time exceeds the makespan (1), that jobs are

executed completely and in order (2, 6), and that the total

load on any machine does not exceed the makespan (5).

Group assignment. The fractional solution we obtain for

LP gives us a fractional assignment of jobs to machines, as

well as lower bounds on start times of jobs. The objective

function is the maximum over all job completion times as

well as over all machine loads, and so it lower bounds the

optimal makespan. The next step is to convert this solution

into an assignment κ of each job to some set of machines.

This assignment will guide our final construction of the

schedule. We partition the set of machines into K ≤ logm
groups Γ1, . . . ,ΓK of increasing speed and define a job’s

“median” machine group as the lowest (slowest) one such

that the job’s total fractional assignment to this and slower

groups is at least 1/2. Our group assignment follows an

approach similar to [23], [29]: we assign each job to the

highest capacity group that is at least as fast as its median

group. Note that, if there are jobs assigned to groups Γk and

Γk′ , with k < k′, then the minimum speed in group Γk is

less than that in group Γk′ , but the capacity of Γk is at least

that of Γk′ , since the jobs assigned to Γk could have been

assigned to group Γk′ but were not.

Computing the schedule. Our scheduling algorithm (Al-

gorithm 1) takes the group assignment κ and produces a

schedule, with possible duplications, for all jobs. The main

challenge in constructing the schedule is balancing two

conflicting incentives. On one hand, the more we allow a

set of jobs to be duplicated, the faster we can finish any

jobs preceded by jobs in this set. On the other hand, if we

duplicate too often, then we risk overloading machines with

too many jobs to execute. Specifically, we want to avoid

scheduling too much load assigned to higher capacity groups

on lower capacity (faster speed) groups, even when doing so

would allow us to complete some jobs earlier. We strike this

balance by allowing a job to be duplicated only in groups

with capacity higher than its assigned group. Furthermore,

similar to [13], when the scheduler places a set of jobs on a

machine, we require that at least a 1/η fraction of the total

size of that set be from jobs that have not yet been placed

on any machine, where η will be set later. The algorithim

839

Authorized licensed use limited to: University of Central Florida. Downloaded on February 24,2021 at 23:09:42 UTC from IEEE Xplore. Restrictions apply.

also uses sk to denote the speed of the slowest machine in

group Γk.

Algorithm 1: Group-Based Scheduling with Dupli-

cation and Communication Delay

Data: instance (G,M, ρ), assignment κ of jobs to

groups, and overlap parameter η ≥ 1
Result: a schedule σ of G on M

1 Initialize: T ← 0; Placed← ∅; ∀j : Tj ← 0;

∀v, i : σ(v, i)←∞
2 while Placed �= V do
3 forall machine groups k = 1, . . . ,K do
4 forall jobs v : κ(v) = k do
5 i← argminj∈Γk

{Tj}
6 A← (Av ∪ {v}) \ {u : σ(u, i) + pu/si ≤ Ti

or ∃ j, σ(u, j) + pu/sj ≤ Ti − ρ}
7 if (a) p(A \ {v}) ≤ 8ρsk and

(b) p(A \ Placed) ≥ p(A)/η and
(c) A ⊆ {u : κ(u) ≥ k} then

8 forall u ∈ A in topological order do
9 σ(u, i)← Ti

10 Ti ← Ti + pu/si

11 Placed← Placed ∪A

12 T ← min{t : t > T and either t = σ(v, i) +
pv/si or t = ρ+ σ(v, i) + pv/si for some v, i}

13 ∀j : Tj ← max{T, Tj}

The scheduling algorithm proceeds in a series of rounds.

In each round, the algorithm iterates through each machine

group Γk and considers each job v with κ(v) = k that

has not yet been scheduled. On a machine i ∈ Γk the

algorithm schedules v and its predecessors that have not

been completed in earlier phases if the following three

conditions are satisfied: (a) v’s incomplete predecessors

can be completed on i in time O(ρ); (b) the total size

of v and its predecessors not already scheduled (on any

machine) is at least a 1/η fraction of the total size of

its uncompleted predecessors; and (c) all of v’s remaining

predecessors have been assigned to higher indexed groups.

Condition (c) ensures that we duplicate jobs only from lower

capacity groups to higher capacity groups. Condition (a)
ensures that any jobs we duplicate from lower capacity,

higher speed groups won’t take too long on the lower speed

group. Condition (b) ensures that the resulting schedule has

two properties. First, it ensures that the total increase in load

from duplication is no more than η. Second it ensures that,

when large gaps are introduced in the schedule, all jobs that

could have been scheduled in that gap have the size of their

predecessor set reduced by a factor of η. The usefulness

of these conditions is made more explicit in the analysis

section.

Overview of the analysis. For the purposes of analysis,

we divide our schedule into phases of length ρ and partition

these phases into three types. We then bound the makespan

of our schedule by bounding the total number of phases of

each type. Our analysis combines elements of the analysis

in [23] and [13].

The three types of phases are chain phases, load phases,

and height phases. We define a chain of jobs C such that

each element in C precedes the next, and each element

has an instance which takes a sufficiently long time in the

schedule. Chain phases are those phases in which some

machine spends most of its time working on some chain

element. All non-chain phases are divided into load and

height phases. Load phases are non-chain phases in which

every machine of some group is working on jobs for most

of the phase. The remaining phases are height phases. We

can think of the three categories more intuitively as follows.

Chain phases primarily reduce the remaining execution time

of the chain. Load phases primarily reduce the remaining

execution time of the set of all jobs. Height phases primarily

reduce the amount of time before the next chain phase (or

the end of the schedule if the chain has been completed).

Figure 2 depicts the relationship between the chain and the

sets of jobs on which height phases make progress.

The main lemmas of this section upper bound the number

of phases of each type. We present those lemmas and give

overviews of their proofs below.

Lemma III.1. There are at most O(OPT/ρ) chain phases.

Since chain jobs take a long time in the schedule, con-

dition (a) of our algorithm ensures that every chain job is

scheduled only on machines in its assigned group. Since

we derived the group assignments from LP, the time spent

executing jobs in the chain is at most O(OPT), so the total

number of chain phases is at most O(OPT/ρ).

Lemma III.2. There are at most O(OPT · Kη/ρ) load

phases.

Condition (c) guarantees that the set of jobs scheduled on

groups Γk, . . . ,ΓK is a subset of the jobs assigned to these

groups by κ. So, by condition (b), we have that for any k,

the total load on groups Γk, . . . ,ΓK is at most an η factor

above the total load assigned to those groups by κ. Using a

lemma from [23], this entails that the total number of load

phases is no more than O(OPT ·Kη/ρ).

Lemma III.3. There are at most O(K(OPT + ρ) ·
logη(ρ)/ρ) height phases.

Bounding the number of height phases is more involved as

it requires a closer analysis of the linear program as well as

a more detailed understanding of the step-by-step operation

of the scheduling algorithm. We first partition the jobs into

bands B1, B2, . . . according to their start times as given by

LP. We show that, for each job v in a band, the total size

840

Authorized licensed use limited to: University of Central Florida. Downloaded on February 24,2021 at 23:09:42 UTC from IEEE Xplore. Restrictions apply.

1

2

3

4

5

time →

m
a
ch
in
es

Figure 2. Machines are shown vertically on the left and time increases from left to right. The chain is shown as dark gray boxes. Each light gray,
borderless area represents the set of jobs that precede the chain job to its right (if it exists) and complete after the chain job to its left (if it exists).

of v’s predecessors in the same band is small enough to be

completed in O(ρ) time on v’s assigned group. Then, for

each height phase τ , we consider the lowest band Br with

some job scheduled after phase τ and the slowest group Γk

with a job in that band. Let v be some unscheduled job in Br

assigned to group Γk. We consider a series of height phases

separated by at most O(1) height phases. We show, for each

height phase in this series, that there is some iteration of

our scheduling algorithm in which the algorithm considers
placing v with its remaining predecessors on some machine

in Γk and in which all of v’s predecessors that started in

the previous height phase in the series have completed with

enough time to communicate the results to all machines.

Due to our choice of v, we can then infer that, if the

algorithm does not place v in this iteration, it is because

v’s uncompleted predecessor set violates condition (b). This

entails that by the next height phase in the series, the size

of v’s remaining predecessor set is reduced by a factor of η.

Since v’s predecessors within the band can be completed in

O(ρ) time on any machine in group Γk, we have that after

O(logη ρ) height phases v’s predecessor set is empty. This

entails that v is scheduled before (or during) the next height

phase in the series. Letting r∗ be the total number of bands,

this argument upper bounds the number of height phases by

O(Kr∗ logη ρ). We then show that the number of bands r∗

is O((OPT + ρ)/ρ), which gives the desired bound on the

number of height phases.

Finally, we set η to log ρ/ log log ρ. Summing over

the number of phases of each type, we have that the

length of our schedule is upper-bounded by O(K ·
log ρ/ log log ρ)(OPT + ρ).

IV. INTEGRALITY GAP

We construct a new integrality gap instance that achieves

a ω(1) integrality gap in the presence of communication

delays. The gap construction consists of a layered DAG with

L = ω(1) layers and n vertices in each layer, where each

job in layer 	 has dependencies on d randomly chosen jobs

in V�+1 as shown in Figure 3. In particular, ρ = dL = nc for

a small constant c > 0. The parameters of the construction

are set up in such a way that fractionally all the jobs can

be assigned in one phase (hence the LP solution value is at

most ρ).

n

V1 V� V�+1 VL

d

Figure 3. The figure shows the DAG with L layers V1, . . . , VL rep-
resenting the nL jobs. Each of the n jobs in V� has dependencies on d
randomly chosen jobs in V�+1. We set ρ = dL, m = ρ, and the parameters

L = c1
√
logn, d = 2c2

√
logn for some appropriate constants c1, c2 > 0.

The main technical challenge is to argue that Ω(L) phases

are needed to schedule all the jobs in order to get a lower

bound of Ω(Lρ) for the integer solution value. This gives

a gap of Ω(L) = Ω(
√
log ρ). From the expansion of the

random graph in each layer, it is easy to argue that at most

a o(1) fraction of the jobs in layers {1, . . . , L − 2} can be

scheduled in the first phase (since at most ρ � n of the

jobs can be on one machine). However, in the next phase

the results of all jobs that were scheduled previously are now

available to all the machines; moreover the choice of these

jobs could depend on the randomness in the DAG. Hence

the remaining graph in each layer (after removing vertices

that have already been scheduled) in the subsequent phases

is not random any longer!
To overcome this technical hurdle, we identify and exploit

a property of robust expansion, which may be of independent

interest. The standard vertex expansion property of a random

graph says that w.h.p. any subset S ⊂ V� of size |S| ≤ n/d
has a neighborhood of size |Γ(S)| = Ω(d|S|). However,

random graphs have the stronger property that no subset T of

size o(d|S|) can have Ω(d|S|) of the edges from S incident

on it. For our analysis, we need to prove the following

generalization for paths of length 	 < L.

Lemma IV.1. For any S ⊂ Vi (of sufficiently small size),

there is w.h.p. no subset of size o(d�|S|) that can have

Ω(d�|S|) of the length-	 paths going into S.

Each job u in layer i (i.e. a vertex in Vi) has d�−i incoming

paths from layer V�, and all of the vertices in these paths

need to be scheduled before scheduling u – either in a

previous phase, or on the same machine in the current phase.

The above robust expansion property is used to upper bound

the number of jobs completed in each phase in two different

841

Authorized licensed use limited to: University of Central Florida. Downloaded on February 24,2021 at 23:09:42 UTC from IEEE Xplore. Restrictions apply.

ways: 1) to upper bound the number of jobs in Vi whose

dependencies in V� “mostly” consist of jobs scheduled in

previous phases, and 2) to upper bound the number of jobs

in Vi such that most of their dependencies in V� need to be

resolved in the current phase. This allows us to prove that

we need at least L/2 phases before most of the jobs in V1
can be scheduled.

We believe that our integrality gap argument applies to

a wider class of relaxations for the problem. Any program

that captures communication delay and precedence require-

ments through individual constraints for each job and has

independent load constraints for each machine is likely to

incur a similar gap.

V. BOUNDING THE DUPLICATION ADVANTAGE

The final contribution of this paper is to quantitatively

characterize the duplication advantage. While it is easy to

construct instances where the makespan of a schedule allow-

ing duplication (which we refer to as a general schedule) is

better than that of a no-duplication schedule (one in which

all jobs are processed exactly once), our goal is to place

upper and lower bounds on the duplication advantage.

Lower bound. We first present a simple family of instances

with m identical machines, n = 2m+ 1 unit jobs, and ρ =
logm, for which any no-duplication schedule has makespan

Ω(ρ2/ log ρ), while the optimal makespan is at most ρ. The

DAG for such an instance consists of a rooted binary tree

with m leaves and edges directed away from the root, such

that an optimal schedule executes each root-leaf path on a

separate machine (with necessary duplication), while any no-

duplication schedule is essentially forced to decompose the

tree into ρ/(log ρ) phases, interspersed with communication

delays. Note that we thus have Ω(logm/ log logm) and

Ω(logn/ log log n) bounds on the duplication advantage.

Upper bound. Our main result in this section is that the

duplication advantage is, in fact, also upper-bounded by

a polylogarithmic factor of O(log2 n logm). Our proof is

through a polynomial-time algorithm that transforms any

schedule σ with makespan M∗ to a no-duplication schedule

with the polylogarithmic factor loss in makespan.

The algorithm processes a given (general) schedule in

“phases” of length ρ. Consider the tth phase [tρ, (t + 1)ρ)
of σ for integer t ≥ 0. Let σt denote the schedule σ
restricted to job executions that begin in the time interval

[tρ, (t+1)ρ). Let G0 denote the subgraph of G induced by

the jobs processed in σ during phase 0. For t > 0, let Gt

denote the subgraph of G induced by jobs not in ∪�<tG�

whose first execution in σ begins in [tρ, (t + 1)ρ). For

convenience, we use G<t to denote ∪�<tG�.

The core of the algorithm is transforming each phase into

a no-duplication schedule of length O(ρ log2 n logm). There

are technical complications since (i) processing of jobs may

span multiple phases of the schedule, and (ii) the number of

phases may be super-polynomial in the size of the instance.

Both these can be handled relatively easily by considering

machines that are processing “long” jobs separately, and

ignoring phases where no jobs are started or completed. We

assume for now that all jobs take at most ρ time in σ. Later

we show how to remove this assumption.

With this assumption, our algorithm for transforming an

arbitrary schedule σ to a no-duplication schedule σ̂ consists

of transforming each σt, t ≥ 0, to a no-duplication schedule

σ̂t that completes Gt in O(ρ log2 n logm) time. We then

concatenate these schedules, inserting ρ time units before

and after each σ̂t. The extra time allows for communication

of all jobs from σ̂t−1 and for completion of all jobs in σt

(assuming pv ≤ ρ, ∀v). Since each σt is of length ρ, it

follows that σ̂ is of length O(M∗ · log2 n logm). From here

on, we fix the phase index t and consider σt.

The following lemma gives, for any two jobs in Gt that

share a predecessor in Gt, a lower bound on the number of

machines on which both jobs are executed.

Lemma V.1. Suppose jobs u and v in Gt share a common

predecessor p in Gt, and let mu, mv , and mp denote the

number of machines that process u, v, and p, respectively,

in σi. Then, there exist at least mu + mv − mp machines

that process both u and v in σi.

Proof: Let Mp (resp., Mu and Mv) denote the set of mp

(resp., mu and mv) machines processing p (resp., u and v)

in σi. Since Mp ⊇Mu,Mv , it follows that at most mp−mu

(resp., mp −mv) of the machines in Mp do not process u
(resp., v). Thus, at least mp − (mp −mu)− (mp −mv) =
mu + mv − mp machines in Mp process both u and v,

yielding the desired claim.

With lemma V.1, we can prove the following lemma,

which entails the desired bound for the special case in which

every job completes in ρ steps in σ.

Lemma V.2. There exists a polynomial-time com-

putable no-duplication schedule that can complete Gt in

O(ρ log2 n logm) steps.

We now give an overview of the algorithm’s core. Con-

sider the sub-DAG D of the original DAG formed by jobs

processed within a particular phase of the general schedule.

We face several technical challenges while designing a no-

duplication schedule for this sub-DAG. First, we need to

determine the relative order between the jobs. On the one

hand, if a node serves as a predecessor of many jobs, it

could be given higher priority. On the other hand, that same

job might be duplicated several times and have successors

on many different machines, something not allowed in the

no-duplication schedule. Second, if we choose to process

two jobs on two different machines in a phase, we have to

ensure that they do not share a common predecessor.

To address these challenges, we organize and process

the jobs of D as follows. First, we divide them into

842

Authorized licensed use limited to: University of Central Florida. Downloaded on February 24,2021 at 23:09:42 UTC from IEEE Xplore. Restrictions apply.

O(log n logm) groups based on their level of duplication

in the general schedule; each group consists of jobs whose

duplication level is within a factor of (1+1/(2 log n)) of one

another. We then process the groups from the highest level

of duplication down to the lowest, since the duplication level

of a job in D is at least that of any of its successors. Within

a given group, we construct an undirected graph H over the

sink jobs (which have no successors in the group) in which

an edge exists between two sinks if they share a common

predecessor. Our key insight about H is that any subset of

jobs in H composed of regions of diameter O(log n) that

do not share any common neighbors among them can be

processed in a single phase in a no-duplication schedule.

We show that using a classic low-diameter decomposition

technique from approximation algorithms and distributed

computing (e.g., see [39], [40], [41]), we can find a subset of

Ω(H) jobs that has the desired structure. A recursive use of

this subroutine, together with the other techniques indicated

above, yields the desired no-duplication schedule. We now

give a more formal proof of Lemma V.2.

Proof: Recall that σt is a one-phase schedule for

completing Gt (with possible duplication of jobs). We divide

the jobs of Gt into groups based on the number of machines

they are duplicated on in σt. For any integer r ≥ 0,

let Gtr be the set of jobs that are duplicated on at least

(1 + μ)r machines and fewer than (1 + μ)r+1 machines,

where μ = 1/(2 log n). Since any job is duplicated on at

most m machines, we obtain that the number of subgroups

r∗ is at most log1+μ m = O(logm log n).
We first argue that for any r and r′ < r, any job in

Gtr has no predecessors in Gtr′ . Recall that any job u
in Gtr is duplicated on at least (1 + μ)r machines and

suppose v is some predecessor of u in Gt. Since there is

no communication in σt, it follows that v must be executed

on every machine where u is executed, which implies that v
is also duplicated on at least (1 + μ)r machines. Therefore,

v ∈ Gtr′ for some r′ ≥ r.

Our algorithm computes a no-duplication schedule for

Gtr, in order from r = r∗ to r = 0. In the remainder,

we show that any Gtr can be completed by a no-duplication

schedule in O(log n) phases. Together with the bound on

the number of subgroups, this yields the desired bound.

Fix integer r ∈ [0, r∗]. We show how to construct a no-

duplication schedule that completes at least 1/4 of the sinks

(jobs with no successors) in Gtr in one phase. Repeating

this at most 2 logn times schedules all the sinks of Gtr,

and hence also all of Gtr in 2 logn phases (non-sink jobs

are scheduled with sink jobs for which they are required).

We construct an auxiliary undirected graph H over the

sinks in Gtr as follows: there is an edge between sink job

u and sink job v if and only if u and v share a common

predecessor in Gtr. Using a standard ball-growing technique

(or the notion of sparse partitions), we determine a collection

{S�} of disjoint sets of sinks in H such that (a) in every set

S�, there exists a sink s� that is within log n hops of every

sink in S�, (b) for any distinct 	, 	′ and any two sinks s ∈ S�

and s′ ∈ S�′ , s is not adjacent to s′; and (c) the total number

of sinks in the collection is at least |H|/2. Our algorithm

for obtaining a collection {S�} is given in Algorithm 2. For

any undirected graph K, vertex v ∈ K, and integer x ≥ 0,

let Bx(K, v) denote the ball of radius x around v in K.

Algorithm 2: Find Sinks

1 Initialize: H ′ ← H; 	← 0
2 while H ′ is not empty do
3 s� ← an arbitrary node in H ′

4 x← min{y : |By+1(H
′, s�)| ≤ 2|By(H

′, s�)|}
5 S� ← Bx(H

′, s�)
6 H ′ ← H ′ \Bx+1(H

′, s�)

We now argue the three properties we desire. For (a),

we note that in step 4, x ≤ log n since otherwise

|By+1(H
′, s�)| > 2|By(H

′, s�)| for 0 ≤ y < log n, imply-

ing that |Blogn(H
′, s�)| exceeds n ≥ |H ′|, a contradiction.

For (b), we note that once we include a set S�, we remove

all sinks in H ′ \ S� that are adjacent to a sink in S�, which

ensures that any sink in S� is not adjacent to any sink in S�′

for 	′ > 	, thus establishing (b). Finally, for (c), we observe

that when S� is included in the collection, we remove a set

of size at most 2|S�| from H ′, implying that the total number

of sinks in the collection {S�} is at least |H ′|/2, as desired.

Consider any edge (u, v) in H . By Lemma V.1, since u
and v share a predecessor in Gir, it follows that there exist at

least (1+μ)r(1−μ) machines that process both u and v. Let

u be any job in S�. By a repeated application of the lemma

along the shortest path from s� to u, we obtain that s� and u
are processed on at least (1 + μ)r(1− μ)logn ≥ (1 + μ)r/2
machines. By a standard averaging argument, it follows that

there is a machine j� that processes a subset S′� of at least

|S�|/2 of the jobs in S� in σi.

The desired no-duplication schedule, which we denote by

σ̂H then consists of processing S′� and all of its predecessors

in Gir on machine j�, for every 	. Since no two jobs in S�

and S�′ share any predecessors, it follows that no job is

executed on more than one machine, hence ensuring that

σ̂H is indeed a no-duplication schedule. Furthermore, since

the jobs scheduled by σ̂H on a given machine j is a subset

of the jobs scheduled by σi on j, σ̂H completes in a phase.

Finally, since |S′�| ≥ |S�|/2 and | ∪� S�| ≥ |H|/2, it follows

that at least |H|/4 of the sinks are completed in σ̂H . We

thus have obtained a no-duplication schedule that completes

at least 1/4 of the sinks in Gir in one phase, thus completing

the proof of the lemma.

For the general case where there exist jobs that take more

one phase to complete, we extend the above algorithm for

scheduling a given Gt as follows. For each t, we maintain a

843

Authorized licensed use limited to: University of Central Florida. Downloaded on February 24,2021 at 23:09:42 UTC from IEEE Xplore. Restrictions apply.

set Mt of machines on which Gt will be scheduled. Initially,

M0 is the set of all machines. When processing Gt on Mt,

we first mark the jobs in Gt that begin in a phase but end at

a different phase; there is at most one marked job on each

machine in a given phase. We then apply the above algorithm

to all the jobs in Gt. In our schedule, any marked job, if

executed, would be the last job scheduled on the respective

machine. We add an additional delay of ρ so that any marked

jobs that complete in the following phase in σ are completed

in the no-duplication schedule. If a machine works on its

marked job for the next k > 1 phases in σ, then we remove

the machine from consideration for the next k iterations (i.e.,

remove the machine from Mj for t+ 1 ≤ j ≤ t+ k) since

it is not executing any jobs in Gt+1 through Gt+k. This

defines the set Mt+1 of machines on which Gt+1 will be

scheduled, and we repeat the process. This completes the

extension to the general case.

VI. DISCUSSION AND OPEN PROBLEMS

We have presented the first approximation algorithms

for scheduling precedence-constrained jobs of non-uniform

sizes on related machines with a fixed communication delay,

with the objective of minimizing makespan. Using standard

arguments, we can extend our makespan result Theorem 1

to obtain asymptotic approximations for the objective of

weighted completion times [22].

Theorem 4 (Weighted completion time). There is

a polynomial time algorithm, that given an instance

of DAG scheduling with fixed communcation de-

lay and a weight for each job, computes a sched-

ule with weighted completion time at most OPT ·
polylog(n,m) + Wρ, where OPT is the optimal

weighted completion time and W is the sum of

weights of all of the jobs.

We thus obtain a true polylogarithmic-approximation for

weighted completion time as long as at least a constant frac-

tion of the jobs, by weight, take at least one communication

phase to complete. Using Theorem 3, this approximation

ratio result also extends to no-duplication schedules.

Our work leaves several open problems and directions

for future research. Can we improve on the approximation

factor achieved for general schedules? Is there a ω(1) hard-

ness of approximation for the problem? We conjecture that

the integrality gap of the relaxations is Ω(log ρ/ log log ρ).
Improving the current bound and broadening the class of

programs is of interest. Also, there is a gap between the

lower and upper bounds for the duplication advantage. Nar-

rowing this gap, and finding better approximation algorithms

for no-duplication schedules would be useful for scenarios

where job duplication is not a viable option.

We believe the most significant direction for future re-

search is to study the scheduling problem under more gen-

eral communication delay environments. From a practical

standpoint, developing algorithms that account for delays in

a hierarchical network, which may be modeled for instance

by a hierarchically well-separated metric, would be valuable

for many datacenter scheduling problems.

REFERENCES

[1] A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner, R. Larsen,
Y. Zhou, N. Kumar, M. Norouzi, S. Bengio, and J. Dean, “De-
vice placement optimization with reinforcement learning,” in
Proceedings of the 34th International Conference on Machine
Learning, ICML 2017, 2017, pp. 2430–2439.

[2] Y. Gao, L. Chen, and B. Li, “Optimizing device placement for
training deep neural networks,” in International Conference
on Machine Learning, 2018.

[3] A. Mirhoseini, A. Goldie, H. Pham, B. Steiner, Q. V. Le,
and J. Dean, “Hierarchical planning for device placement,”
in International Conference on Learning Representations,
2018. [Online]. Available: https://openreview.net/pdf?id=Hkc-
TeZ0W

[4] C. H. Papadimitriou and M. Yannakakis, “Towards an
architecture-independent analysis of parallel algorithms,”
SIAM journal on computing, vol. 19, no. 2, pp. 322–328,
1990.

[5] D. Bozdag, F. Ozguner, and U. V. Catalyurek, “Compaction of
schedules and a two-stage approach for duplication-based dag
scheduling,” IEEE Transactions on Parallel and Distributed
Systems, vol. 20, no. 6, pp. 857–871, 2009.

[6] I. Casas, J. Taheri, R. Ranjan, L. Wang, and A. Zomaya,
“A balanced scheduler with data reuse and replication for
scientific workflows in cloud computing systems,” Future
Generation Computer Systems, vol. 74, September 2017.

[7] D. Hu and B. Krishnamachari, “Throughput optimized sched-
uler for dispersed computing systems,” in 2019 7th IEEE
International Conference on Mobile Cloud Computing, Ser-
vices, and Engineering (MobileCloud), 2019, pp. 76–84.

[8] I. Song, W. Yoon, E. Jang, and S. Choi, “Task scheduling
algorithm with minimal redundant duplications in homo-
geneous multiprocessor system,” in Grid and Distributed
Computing, T.-h. Kim, H. Adeli, H.-s. Cho, O. Gervasi, S. S.
Yau, B.-H. Kang, and J. G. Villalba, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 238–245.

[9] I. Ahmad and Y.-K. Kwok, “On exploiting task duplication in
parallel program scheduling,” IEEE Transactions on Parallel
and Distributed Systems, vol. 9, no. 9, pp. 872–892, Sep.
1998.

[10] E. Bampis, A. Giannakos, and J.-C. König, “On the com-
plexity of scheduling with large communication delays,”
European Journal of Operational Research, vol. 94, pp. 252–
260, 1996.

[11] S. Darbha and D. P. Agrawal, “Optimal scheduling algorithm
for distributed-memory machines,” IEEE Transactions on
Parallel and Distributed Systems, vol. 9, pp. 87–95, 1998.

844

Authorized licensed use limited to: University of Central Florida. Downloaded on February 24,2021 at 23:09:42 UTC from IEEE Xplore. Restrictions apply.

[12] J. Hoogeveen, J. Lenstra, and B. Veltman, “Three, four, five,
six, or the complexity of scheduling with communication
delays,” Operations Research Letters, vol. 16, no. 3, pp. 129
– 137, 1994.

[13] R. Lepere and C. Rapine, “An asymptotic O(ln ρ/ ln ln ρ)-
approximation algorithm for the scheduling problem with
duplication on large communication delay graphs,” in Annual
Symposium on Theoretical Aspects of Computer Science.
Springer, 2002, pp. 154–165.

[14] A. Munier, “Approximation algorithms for scheduling trees
with general communication delays,” Parallel Computing,
vol. 25, no. 1, pp. 41–48, 1999.

[15] A. Munier and C. Hanen, “Using duplication for scheduling
unitary tasks on m processors with unit communication de-
lays,” Theoretical Computer Science, vol. 178, no. 1, pp. 119
– 127, 1997.

[16] M. A. Palis, J.-C. Liou, and D. S. L. Wei, “Task clustering
and scheduling for distributed memory parallel architectures,”
IEEE Transactions on Parallel and Distributed Systems,
vol. 7, no. 1, pp. 46–55, 1996.

[17] C. Picouleau, Two new NP-complete scheduling problems
with communication delays and unlimited number of proces-
sors. Inst. Blaise Pascal, Univ., 1991.

[18] V. J. Rayward-Smith, “Uet scheduling with unit interproces-
sor communication delays,” Discrete Applied Mathematics,
vol. 18, no. 1, pp. 55–71, 1987.

[19] N. Bansal, “Scheduling open problems: Old and
new,” 2017, mAPSP 2017. [Online]. Available:
http://www.mapsp2017.ma.tum.de/MAPSP2017-Bansal.pdf

[20] P. Schuurman and G. J. Woeginger, “Polynomial time ap-
proximation algorithms for machine scheduling: ten open
problems,” Journal of Scheduling, vol. 2, no. 5, pp. 203–213,
1999.

[21] J. Kulkarni, S. Li, J. Tarnawski, and M. Ye, “Hierarchy-
based algorithms for minimizing makespan under precedence
and communication constraints,” in Proceedings of the For-
tieth Annual ACM-SIAM Symposium on Discrete Algorithms.
SIAM, to appear, 2020.

[22] B. Maiti, R. Rajaraman, D. Stalfa, Z. Svitkina, and
A. Vijayaraghavan, “Scheduling precedence-constrained jobs
on related machines with communication delay,” 2020.
[Online]. Available: https://arxiv.org/abs/2004.10776

[23] F. A. Chudak and D. B. Shmoys, “Approximation algorithms
for precedence-constrained scheduling problems on parallel
machines that run at different speeds,” Journal of Algorithms,
vol. 30, no. 2, pp. 323–343, 1999.

[24] R. L. Graham, “Bounds on multiprocessing timing anoma-
lies,” SIAM J. Appl. Math., vol. 17, p. 416–429, 1969.

[25] J. M. Jaffe, “Efficient scheduling of tasks without full use of
processor resources,” Theoretical Computer Science, vol. 12,
no. 1, p. 1–17, Sep 1980.

[26] L. A. Hall, A. S. Schulz, D. B. Shmoys, and J. Wein,
“Scheduling to minimize average completion time: Off-line
and on-line approximation algorithms,” Mathematics of Op-
erations Research, vol. 22, no. 3, p. 513–544, Aug 1997.

[27] M. Queyranne and M. Sviridenko, “Approximation algorithms
for shop scheduling problems with minsum objective,” Jour-
nal of Scheduling, vol. 5, no. 4, p. 287–305, 2002.

[28] C. Chekuri and R. Motwani, “Precedence constrained
scheduling to minimize sum of weighted completion times
on a single machine,” Discrete Applied Mathematics, vol. 98,
no. 1-2, pp. 29–38, 1999.

[29] S. Li, “Scheduling to minimize total weighted completion
time via time-indexed linear programming relaxations,” in
58th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2017, 2017, pp. 283–294.

[30] J. K. Lenstra and A. H. G. R. Kan, “Complexity of scheduling
under precedence constraints,” Operations Research, vol. 26,
no. 1, pp. 22–35, 1978.

[31] N. Bansal and S. Khot, “Optimal long code test with one free
bit,” 2009 50th Annual IEEE Symposium on Foundations of
Computer Science, pp. 453–462, Oct 2009.

[32] O. Svensson, “Conditional hardness of precedence con-
strained scheduling on identical machines,” Proceedings of
the 42nd ACM symposium on Theory of computing - STOC
’10, p. 745–754, 2010.

[33] A. Bazzi and A. Norouzi-Fard, “Towards tight lower bounds
for scheduling problems,” Lecture Notes in Computer Science,
p. 118–129, 2015.

[34] B. Veltman, B. J. Lageweg, and J. Lenstra, “Multiprocessor
scheduling with com-munication delays.parallel computing,”
Parallel Computing, vol. 16, pp. 173–182, 1990.

[35] S. Davies, J. Kulkarni, T. Rothvoss, J. Tarnawski, and
Y. Zhang, “Scheduling with communication delays via
LP hierarchies and clustering,” 2020. [Online]. Available:
https://arxiv.org/abs/2004.09682

[36] J.-J. Hwang, Y.-C. Chow, F. D. Anger, and C.-Y. Lee,
“Scheduling precedence graphs in systems with interprocessor
communication times,” SIAM Journal on Computing, vol. 18,
no. 2, pp. 244–257, 1989.

[37] Y. Su, X. Ren, S. Vardi, A. Wierman, and Y. He,
“Communication-aware scheduling of precedence-
constrained tasks,” ACM SIGMETRICS Performance
Evaluation Review, vol. 47, pp. 21–23, 12 2019.

[38] A. Munier and J.-C. König, “A heuristic for a scheduling
problem with communi-cation delays,” Operations Research,
vol. 45, no. 1, pp. 145–147, 1997.

[39] B. Awerbuch and D. Peleg, “Sparse partitions,” in Proceed-
ings of the 31st Annual IEEE Symposium on Foundations of
Computer Science, 1990, pp. 503–513.

[40] N. Linial and M. Saks, “Low diameter graph decompositions,”
Combinatorica, vol. 13, pp. 441–454, 1993.

[41] D. Peleg, Distributed Computing: A Locality-Sensitive Ap-
proach. Philadelphia, PA: SIAM, 2000.

845

Authorized licensed use limited to: University of Central Florida. Downloaded on February 24,2021 at 23:09:42 UTC from IEEE Xplore. Restrictions apply.

