
Finding an Optimal Alphabet Ordering for Lyndon1

Factorization is Hard2

Daniel Gibney3

Department of Computer Science, University of Central Florida, USA4

https://www.cs.ucf.edu/~dgibney/5

daniel.gibney@ucf.edu6

Sharma V. Thankachan7

Department of Computer Science, University of Central Florida, USA8

http://www.cs.ucf.edu/~sharma/9

sharma.thankachan@ucf.edu10

Abstract11

This work establishes several strong hardness results on the problem of finding an ordering on a12

string’s alphabet that either minimizes or maximizes the number of factors in that string’s Lyndon13

factorization. In doing so, we demonstrate that these ordering problems are sufficiently complex14

to model a wide variety of ordering constraint satisfaction problems (OCSPs). Based on this, we15

prove that (i) the decision versions of both the minimization and maximization problems are NP-16

complete, (ii) for both the minimization and maximization problems there does not exist a constant17

approximation algorithm running in polynomial time under the Unique Game Conjecture and (iii)18

there does not exist an algorithm to solve the minimization problem in time poly(|T |) · 2o(σ logσ) for19

a string T over an alphabet of size σ under the Exponential Time Hypothesis (essentially the brute20

force approach of trying every alphabet order is hard to improve significantly).21

2012 ACM Subject Classification22

Keywords and phrases Lyndon Factorization, String Algorithms, Burrows-Wheeler Transform23

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2324

© John Q. Public and Joan R. Public;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.cs.ucf.edu/~dgibney/
mailto:daniel.gibney@ucf.edu
http://www.cs.ucf.edu/~sharma/
mailto:sharma.thankachan@ucf.edu
https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Finding an Optimal Alphabet Ordering for Lyndon Factorization is Hard

1 Introduction25

A Lyndon word is a string that is lexicographically strictly smallest among all of its cyclic shifts.26

Letting ◦ denote concatenation, the Lyndon factorization of a string T is the partitioning27

of T into Lyndon words T1, T2, . . ., Tf that are lexicographically non-increasing and T =28

T1 ◦ T2 ◦ . . . ◦ Tf . For example, the Lyndon factorization of 0, 1, 0, 0, 2, 1, 1, 0, 0, 1, 0, 1, 1, 2 is29

(0, 1)(0, 0, 2, 1, 1)(0, 0, 1, 0, 1, 1, 2), assuming the usual ordering, 0 < 1 < 2.30

Lyndon words and Lyndon factorization are well-studied, and play an important role31

in string algorithms [1, 2, 10, 24, 28, 30], algebra and combinatorics [7, 17, 25], and data32

compression [12, 18, 20, 34, 35]. As an example, it was shown in [29] that local suffixes inside33

each Lyndon factor can be sorted independently and then merged to construct a string’s34

suffix array. As another example, Lyndon factorization is used in both the construction35

of a string’s bijective Burrows-Wheeler transform (BBWT) [13] and in performing pattern36

matching on indexes built from the string’s BBWT [3], where the number of steps used37

to locate occurrences of a pattern P depends on the number of Lyndon factors within a38

particular suffix of P . Because of such applications, it would be beneficial to be able to39

control the number of factors in the Lyndon factorization of a string. Unfortunately, the40

Lyndon factorization of a string is fixed and unique under a fixed ordering of its alphabet41

[26]. However, it can vary under different alphabet orderings. For instance, if we change the42

alphabet ordering to 2 < 0 < 1 in our example above, we obtain the Lyndon factorization43

(0, 1), (0), (0), (2, 1, 1, 0, 0, 1, 0, 1, 1), (2). This leads to the following problems:44

I Problem 1 (Lyndon Factor Minimization - Decision Version). Given an integer A and text45

T over alphabet Σ, does there exist an ordering on Σ such that the number of Lyndon factors46

of T is at most A?47

I Problem 2 (Lyndon Factor Maximization - Decision Version). Given an integer A and text48

T over alphabet Σ, does there exist an ordering on Σ such that the number of Lyndon factors49

of T is at least A?50

We will also consider the optimization variants of these problems. The objective cost51

of a solution is the number of factors in its Lyndon factorization. In particular, for the52

minimization problem, a λ-approximation for λ > 1, is a polynomial-time algorithm that53

outputs an alphabet ordering where the number of factors is at most λ times the minimum54

possible number of factors over all possible alphabet orderings. Similarly, for the maximization55

problem, a λ-approximation for λ < 1, is a polynomial-time algorithm that outputs an56

alphabet ordering where the number of factors is at least λ times the maximum number of57

possible factors over all possible alphabet orderings.58

These problems were first considered by Clare and Daykin, who proposed a polynomial-59

time greedy algorithm that can be adjusted to provide either a small number of factors or60

a large number of factors [8]. Through experiments, the authors showed that the number61

of factors can be significantly affected by their algorithm. Another approach that uses62

evolutionary algorithms to find alphabet orderings to optimize the number of Lyndon factors63

was considered in [9] and in [27]. Again, it was shown that there is often a significant effect on64

the number of factors, which can be controlled by the use of different fitness functions within65

the evolutionary algorithms. These techniques, although appearing to have a significant66

impact on the number of factors, do not provide any approximation guarantee. Motivated67

by this, and by other alphabet ordering hardness results presented in [4], we present the first68

set of hardness results on these problems.69

I Theorem 1. The decision version of Lyndon Factor Minimization is NP-complete.70

Daniel Gibney, Sharma V. Thankachan 23:3

I Theorem 2. Under the Exponential Time Hypothesis, the optimization version of Lyndon71

Factor Minimization cannot be solved in time poly(|T |) · 2o(σ logσ).72

I Theorem 3. Under the Unique Games Conjecture, the optimization version of Lyndon73

Factor Minimization does not admit a λ-approximation for any constant λ > 1.74

I Theorem 4. The decision version of Lyndon Factor Maximization is NP-complete.75

I Theorem 5. Under the Unique Games Conjecture, the optimization version of Lyndon76

Factor Maximization does not admit a λ-approximation for any constant λ < 1.77

We will prove these theorems in Section 3.1, Section 3.2, Section 3.3, Section 4.1, and Section78

4.2, respectively. We leave open whether it is possible to have a result similar to Theorem 279

for Lyndon Factor Maximization.80

Our main line of attack is to model ordering constraint satisfaction problems (OCSPs), a81

subject of extensive research in its own right [5, 6, 15, 16, 31, 33]. In these problems, the82

task is to find a linear ordering on a set of variables subject to some additional constraints.83

Our work shows that a solver for these Lyndon factorization problems would be powerful84

enough to solve difficult OCSP instances. Our results make use of strings that allow us to85

model different constraint satisfaction problems and thus prove our hardness results.86

2 Preliminaries87

We denote the concatenation of the strings u and v using the ‘◦’ symbol, writing their88

concatenation as u ◦ v. However, we omit ‘◦’ where the concatenation is clear from context89

and it would be cumbersome to use. Throughout this paper, we will use ‘<’ and ‘>’ to refer90

to alphabet order between symbols, the lexicographic order between strings, and the usual91

ordering between real numbers. Again, context will make it clear which type of order is92

meant. A suffix of a string T is a string v such that T = u ◦ v for some string u. The suffix93

array SA[·] of a string T [1, n] is a length n array where SA[i] is equal to the starting index94

of the ith lexicographically smallest suffix of T . The inverse suffix array ISA[·] is defined as95

the length n array such that i = ISA[SA[i]], i.e., the position in the lexicographic order of96

the suffix starting at index i.97

The Lyndon factorization (defined in Section 1) of a string can be computed in linear98

time. This can be done using the well known Duval’s algorithm [11], or by using the inverse99

suffix array, ISA, which can be constructed in linear time [22]. Lemma 6 makes it clear why100

the latter technique works.101

I Lemma 6 (Theorem 2.2 [29]). The starting index, i, of a suffix in T that is lexicographically102

smaller than any suffix starting at index j < i is an index where a Lyndon factor begins.103

We will use this observation to construct strings that model constraints that occur in an104

ordering constraint satisfaction problem (OCSP). The definition of an OCSP used here is105

less general than the one given in [14], but still sufficient for our purposes.106

I Definition 7. An OCSP of arity k is specified by a set Λ ⊆ Sk where Sk is the set of107

permutations of {1, 2, ..., k}. An instance of such an OCSP consists of a set of variables,108

V = {x1, . . . , xn}, and m constraints, C1, . . ., Cm, each of which is an ordered k-tuple of109

V . The objective is to find a global ordering σ of V that maximizes
∑m
i=1 χΛ(σ|Ci

), where110

σ|Ci
∈ Sk is the ordering of the k elements of Ci induced by the global ordering σ, and111

χΛ(σ|Ci
) = 1 if σ|Ci

∈ Λ and 0 otherwise. If χΛ(σ|Ci
) = 1, we say that Ci is satisfied.112

CVIT 2016

23:4 Finding an Optimal Alphabet Ordering for Lyndon Factorization is Hard

Note that m ≤ n!/(n − k)! ≤ nk. Additionally, we will only consider OCSP instances113

where each variable appears in at least two constraints. Under this last assumption, we can114

relate the number of variables, n, to the number of clauses, m.115

I Lemma 8. For OCSPs with arity k constraints, n variables, and m constraints, where116

every variable appears in at least two clauses, n ≤ k
2m.117

Proof. Since every variable appears in at least two constraints,118

2n ≤
n∑
i=1

(the number of times variable xi appears in total) = km. J119

One of the simplest OCSPs is the Maximum Acyclic Subgraph Problem (MAS), where120

k = 2, making constraints of the form (xi, xj), and where Λ contains only the identity121

permutation that orders xi < xj . The dual minimization problem of MAS is known as122

Feedback Arc Set (FAS). In this problem, the cost of a solution is the number of constraints123

being violated, instead of the number of constraints being satisfied. The problem is otherwise124

identical. The following hardness result for FAS is used when proving Theorem 3.125

I Lemma 9 ([14]). Conditioned on the Unique Games Conjecture, for every constant C > 1,126

it is NP-hard to find a C-approximation for FAS.127

The Unique Games Conjecture is described in [21]. We will use the term Unique-Games-hard128

to refer to problems that, conditioned on the Unique Games conjecture, are NP-hard.129

We can always assume that at least half of the constraints in an instance of MAS can130

be satisfied. To see this, take an arbitrary ordering of the variables. Either this ordering131

or its reversal must satisfy at least m/2 constraints. This is just a specific instance of a132

more general result. We can always assume our optimal solution satisfies at least |Λ|m/k!133

constraints. Since the expected number of constraints satisfied by a random ordering on the134

variables is |Λ|m/k!, we know the maximum number of constraints satisfied by any ordering135

is bounded below by this quantity. It turns out, however, that finding a solution that does136

better than this expected value is computationally difficult. We give a simplified statement137

of the main result in [14], maintaining only the pertinent details for our problem.138

I Theorem 10 ([14]). For an OCSP with arity k, for every constant ε > 0, it is Unique-139

Games-hard to find an ordering for the variables that achieves a ratio of satisfied constraints140

over total constraints that is at least |Λ|/k! + ε.141

Our results also make use of the OCSP known as the Betweenness Problem. In this problem142

k = 3 and Λ is of size two. For a constraint (xi, xj , xk) to be satisfied either xi < xj < xk143

or xk < xj < xi. For example, the ordering x4 < x5 < x3 < x2 < x1 satisfies the constraint144

(x1, x2, x5), but not the constraint (x4, x2, x5). By applying Theorem 10 to the Betweenness145

problem, we obtain that it is Unique-Games-hard to achieve a ratio of satisfied constraints146

to total constraints better than 2/3! = 1/3.147

For hardness under the Exponential Time Hypothesis (ETH) [19], we will use a result by148

Kim and Gonçalves appearing in [23]. An Arity k Permutation CSP as defined in [23] is a149

OCSP where Λ consists of only the identity permutation, i.e., a constraint (xi1 , xi2 . . . , xij),150

is satisfied iff it is ordered xi1 < xi2 < . . . < xij , and constraints up to arity k are allowed.151

This is different from our definition of OCSPs, where all constraints are of exactly arity k.152

The differences between these two definitions are accommodated for whenever Lemma 11 is153

used. In [23] the authors prove the following.154

I Lemma 11 ([23]). Assuming ETH, there is no 2o(n logn)-algorithm for Arity 4 Permutation155

CSP (and thus for Arity k Permutation CSP, k ≥ 4).156

Daniel Gibney, Sharma V. Thankachan 23:5

3 Hardness of Lyndon Factor Minimization157

The first reduction is from the Betweenness problem to the Lyndon Factor Minimization158

Problem. It is used to demonstrate NP-completeness. An alternative proof can be done with159

a reduction from MAS. Our reasoning for choosing one over the other is we believe that the160

Betweenness problem provides a good initial illustration of the power of a hypothetical solver161

to these Lyndon factorization problems. It also provides a warm-up for the techniques used162

in Section 3.2. Moreover, we will use a reduction from MAS as a short proof to illustrate163

NP-completeness for the maximization problem, before introducing a more involved reduction164

to prove an inapproximability result.165

3.1 NP-Completeness of Lyndon Factor Minimization166

We are given as input an instance φ of the Betweenness problem consisting of n variables167

x1, x2, . . ., xn and m constraints C1, C2, . . ., Cm. Let F (T) denote the number of Lyndon168

factors of a string T under the alphabet ordering currently under consideration. We will use169

FT (T1) to denote the number of Lyndon factors of T starting within the first occurrence170

of the substring T1 of T . The subscript T is to remind us that the factors starting in T1171

are sensitive to the other symbols in T . By a run of a symbol, we mean a maximal unary172

substring containing that symbol.173

I Lemma 12. Let T be any string of the form T = T1 ◦ (x0)α ◦ (xγ1 xγ2 . . . xγn)β where T1174

is over the alphabet {x0, . . . , xn}, α is greater than the length of any run of x0 in T1, γ is175

greater than the length of any run of any symbol other than x0 in T1, and β > 1. If x0 is the176

smallest symbol in the ordering, then F (T) ≤ FT (T1) + 1.177

Proof. If T1 does not end with an x0, then the first x0 in the (x0)α marks the start of a new178

Lyndon factor in T since (x0)α is lexicographically smaller than any preceding suffix. Then179

this factor includes the remaining suffix of T . In this case F (T) = FT (T1) + 1. If T1 contains180

a suffix consisting of only x0’s, then a new Lyndon factor must start at the first of these x0’s,181

and again this factor contains the remaining suffix of T . In this case, F (T) = FT (T1). J182

I Lemma 13. Let T be defined as in Lemma 12. If x0 is not the smallest symbol in the183

ordering, F (T) ≥ β − 1.184

Proof. In this case, the smallest symbol must be one of x1, . . . , xn. Suppose the smallest is xi.185

Then the first symbol in the first xγi marks the beginning of a Lyndon factor. This factor is of186

the form xγi x
γ
i+1 . . . xγn x

γ
1 . . . xγi−1 and is repeated at least β − 1 times. In particular, the187

suffix xγi+1 . . . xγn is preceded by β − 1 factors of the form xγi x
γ
i+1 . . . xγn x

γ
1 . . . xγi−1. J188

Lemmas 12 and 13 will be useful in proving that x0 must be smallest in an optimal189

ordering. We now introduce our constraint gadgets.190

I Lemma 14. Let x0 be the smallest symbol in T . For i, j, k > 0, consider the first instance191

of a substring S of T where192

S = xη0 xj x
η
0 xi x

η
0 xj x

η
0 xi x

η
0 xk x

η
0 xi x

η
0 xi x

η
0 xj x

η
0 xj x

η
0 xj193

and η is larger than the length of any run of x0 preceding S in T , and S is immediately followed194

by the run xη+1
0 . The symbols in this first instance of S, make up three complete Lyndon195

factors if xj is ordered between xi and xk, and four complete Lyndon factors otherwise.196

CVIT 2016

23:6 Finding an Optimal Alphabet Ordering for Lyndon Factorization is Hard

Proof. Since the number of times x0 is repeated is more than the length of any previous197

run, it must be the case that a new factor begins at the start of S. The six possible cases198

and their corresponding factorizations are:199

x0 < xi < xj < xk : (xη0 xj), (x
η
0 xi x

η
0 xj x

η
0 xi x

η
0 xk), (xη0 xi x

η
0 xi x

η
0 xj x

η
0 xj x

η
0 xj)

x0 < xi < xk < xj : (xη0 xj), (x
η
0 xi x

η
0 xj), (x

η
0 xi x

η
0 xk), (xη0 xi x

η
0 xi x

η
0 xj x

η
0 xj x

η
0 xj)

x0 < xj < xi < xk : (xη0 xj x
η
0 xi x

η
0 xj x

η
0 xi x

η
0 xk x

η
0 xi x

η
0 xi), (x

η
0 xj), (x

η
0 xj), (x

η
0 xj)

x0 < xk < xi < xj : (xη0 xj), (x
η
0 xi x

η
0 xj), (x

η
0 xi), (x

η
0 xk x

η
0 xi x

η
0 xi x

η
0 xj x

η
0 xj x

η
0 xj)

x0 < xj < xk < xi : (xη0 xj x
η
0 xi x

η
0 xj x

η
0 xi x

η
0 xk x

η
0 xi x

η
0 xi), (x

η
0 xj), (x

η
0 xj), (x

η
0 xj)

x0 < xk < xj < xi : (xη0 xj x
η
0 xi), (x

η
0 xj x

η
0 xi), (x

η
0 xk x

η
0 xi x

η
0 xi x

η
0 xj x

η
0 xj x

η
0 xj)

200

Notice that only in the first and last orderings where the constraint is satisfied are there201

three factors. The other cases have four. J202

For each constraint Ct = (xi, xj , xk) in the instance φ of the Betweenness problem, where203

1 ≤ t ≤ m, we construct the gadget from Lemma 14,204

S(Ct) := xt0 xj x
t
0 xi x

t
0 xj x

t
0 xi x

t
0 xk x

t
0 xi x

t
0 xi x

t
0 xj x

t
0 xj x

t
0 xj .205

We next define S(φ) := S(C1) ◦ S(C2) ◦ . . . ◦ S(Cm) ◦ (x0)m+1 ◦ (x2
1 x2

2 . . . x2
n)β where206

β = 3m+ 3.207

I Lemma 15. The string S(φ) has an alphabet ordering yielding at most 3m+ 1 Lyndon208

factors iff there exists a variable ordering satisfying all constraints in φ.209

Proof. Assuming there exists a constraint satisfying variable ordering for φ, make x0 the210

smallest symbol and order the remaining symbols x1, . . . , xn according to the variable ordering.211

By Lemma 14, each of the substrings S(Ct) for 1 ≤ t ≤ m contributes three factors, and by212

the analysis in Lemma 12 the remaining suffix contributes one additional factor. This creates213

3m+ 1 factors in total.214

Conversely, assume that no variable ordering exists that satisfies the constraints. If x0 is215

the smallest symbol, then at least one S(Ct) gadget contributes four factors while the others216

contribute at least three. The remaining suffix contributes one factor making the number of217

factors at least 4 + 3(m− 1) + 1 = 3m+ 2. If x0 is not the smallest symbol, then by Lemma218

13, the number of factors is at least β − 1 = (3m+ 3)− 1 = 3m+ 2. J219

Since determining if there exists a variable ordering satisfying all constraints in an instance220

of the Betweenness problem is NP-hard [32], determining whether there exists an alphabet221

order where there are at most 3m+ 1 Lyndon factors is NP-hard as well. With a symbol222

ordering as a polynomial sized certificate, the problem is clearly in NP, proving Theorem 1.223

3.2 ETH Hardness of Lyndon Factor Minimization224

Here we reduce Arity 4 Permutation CSP to Lyndon Factor Minimization. Assume for the225

moment that x0 is the smallest symbol, and that each substring S(Ct) (yet to be defined) is226

followed by a run of x0 longer than any run of x0 that precedes it.227

For an arity 2 constraint Ct = (xi, xj), we construct a string using the symbols x0,228

xi, and xj that has either 3 or 4 factors depending on the ordering on the variables. We229

will demonstrate which orderings create which factorizations. The string we construct is230

Daniel Gibney, Sharma V. Thankachan 23:7

S(Ct) = xt0 xi x
t
0 xi x

t
0 xi x

t
0 xj x

t
0 xi x

t
0 xi, which has the factorizations for different231

orderings,232

Ordering Factorization # factors233

xi < xj : (xt0 xi xt0 xi xt0 xi xt0 xj)(xt0 xi)(xt0 xi) 3234

xj < xi : (xt0 xi)(xt0 xi)(xt0 xi)(xt0 xj xt0 xi xt0 xi) 4235236

Slightly more involved are the strings to model arity 3 constraints Ct = (xi, xj , xk),237

S(Ct) = xt0 xi x
t
0 xi x

t
0 xj x

t
0 xi x

t
0 xi x

t
0 xk x

t
0 xi x

t
0 xj x

t
0 xi x

t
0 xi., where238

Ordering Factorization # factors239

xi < xj < xk : (xt0 xi xt0 xi xt0 xj xt0 xi xt0 xi xt0 xk xt0 xi xt0 xj)(xt0 xi)(xt0 xi) 3240

xi < xk < xj : (xt0 xi xt0 xi xt0 xj)(xt0 xi xt0 xi xt0 xk xt0 xi xt0 xj)(xt0 xi)(xt0 xi) 4241

xj < xi < xk : (xt0 xi)(xt0 xi)(xt0 xj xt0 xi xt0 xi xt0 xk xt0 xi)(xt0 xj xt0 xi xt0 xi) 4242

xk < xi < xj : (xt0 xi xt0 xi xt0 xj)(xt0 xi)(xt0 xi)(xt0 xk xt0 xi xt0 xj xt0 xi xt0 xi) 4243

xj < xk < xi : (xt0 xi)(xt0 xi)(xt0 xj xt0 xi xt0 xi xt0 xk xt0 xi)(xt0 xj xt0 xi xt0 xi) 4244

xk < xj < xi : (xt0 xi)(xt0 xi)(xt0 xj xt0 xi xt0 xi)(xt0 xk xt0 xi xt0 xj xt0 xi xt0 xi) 4245246

The most involved is the gadget for an arity 4 constraint Ct = (xi, xj , xk, xh),247

S(Ct) = xt0 xi x
t
0 xj x

t
0 xi x

t
0 xk x

t
0 xi x

t
0 xj x

t
0 xi x

t
0 xh x

t
0 xj x

t
0 xi x

t
0 xk x

t
0 xi x

t
0 xj x

t
0 xi248

which has the following factorizations depending on the ordering given to its symbols,249

Ordering (‘<’ omitted) Factorization #
xi, xj , xk, xh : (xt0 xi xt0 xj xt0 xi xt0 xk xt0 xi xt0 xj xt0 xi xt0 xh xt0 xj xt0 xi xt0 xk)(xt0 xi xt0 xj)(xt0 xi) 3

xi, xj , xh, xk : (xt0 xi xt0 xj xt0 xi xt0 xk)(xt0 xi xt0 xj xt0 xi xt0 xh xt0 xj xt0 xi xt0 xk)(xt0 xi xt0 xj)(xt0 xi) 4

xi, xk, xj , xh : (xt0 xi xt0 xj)(xt0 xi xt0 xk xt0 xi xt0 xj xt0 xi xt0 xh xt0 xj)(xt0 xi xt0 xk xt0 xi xt0 xj)(xt0 xi) 4

xi, xh, xj , xk : (xt0 xi xt0 xj xt0 xi xt0 xk)(xt0 xi xt0 xj)(xt0 xi xt0 xh xt0 xj xt0 xi xt0 xk xt0 xi xt0 xj)(xt0 xi) 4

xi, xk, xh, xj : (xt0 xi xt0 xj)(xt0 xi xt0 xk xt0 xi xt0 xj xt0 xi xt0 xh xt0 xj)(xt0 xi xt0 xk xt0 xi xt0 xj)(xt0 xi) 4

xi, xh, xk, xj : (xt0 xi xt0 xj)(xt0 xi xt0 xk xt0 xi xt0 xj)(xt0 xi xt0 xh xt0 xj xt0 xi xt0 xk xt0 xi xt0 xj)(xt0 xi) 4

xj , xi, xk, xh : (xt0 xi)(xt0 xj xt0 xi xt0 xk xt0 xi xt0 xj xt0 xi xt0 xh)(xt0 xj xt0 xi xt0 xk xt0 xi)(xt0 xj xt0 xi) 4

xj , xi, xh, xk : (xt0 xi)(xt0 xj xt0 xi xt0 xk xt0 xi)(xt0 xj xt0 xi xt0 xh xt0 xj xt0 xi xt0 xk xt0 xi)(xt0 xj xt0 xi) 4

xk, xi, xj , xh : (xt0 xi xt0 xj)(xt0 xi)(xt0 xk xt0 xi xt0 xj xt0 xi xt0 xh xt0 xj xt0 xi)(xt0 xk xt0 xi xt0 xj xt0 xi) 4

xh, xi, xj , xk : (xt0 xi xt0 xj xt0 xi xt0 xk)(xt0 xi xt0 xj)(xt0 xi)(xt0 xh xt0 xj xt0 xi xt0 xk xt0 xi xt0 xj xt0 xi) 4

xk, xi, xh, xj : (xt0 xi xt0 xj)(xt0 xi)(xt0 xk xt0 xi xt0 xj xt0 xi xt0 xh xt0 xj xt0 xi)(xt0 xk xt0 xi xt0 xj xt0 xi) 4

xh, xi, xk, xj : (xt0 xi xt0 xj)(xt0 xi xt0 xk xt0 xi xt0 xj)(xt0 xi)(xt0 xh xt0 xj xt0 xi xt0 xk xt0 xi xt0 xj xt0 xi) 4

xj , xk, xi, xh : (xt0 xi)(xt0 xj xt0 xi xt0 xk xt0 xi xt0 xj xt0 xi xt0 xh)(xt0 xj xt0 xi xt0 xk xt0 xi)(xt0 xj xt0 xi) 4

xj , xh, xi, xk : (xt0 xi)(xt0 xj xt0 xi xt0 xk xt0 xi)(xt0 xj xt0 xi xt0 xh xt0 xj xt0 xi xt0 xk xt0 xi)(xt0 xj xt0 xi) 4

xk, xj , xi, xh : (xt0 xi)(xt0 xj xt0 xi)(xt0 xk xt0 xi xt0 xj xt0 xi xt0 xh xt0 xj xt0 xi)(xt0 xk xt0 xi xt0 xj xt0 xi) 4

xh, xj , xi, xk : (xt0 xi)(xt0 xj xt0 xi xt0 xk xt0 xi)(xt0 xj xt0 xi)(xt0 xh xt0 xj xt0 xi xt0 xk xt0 xi xt0 xj xt0 xi) 4

xk, xh, xi, xj : (xt0 xi xt0 xj)(xt0 xi)(xt0 xk xt0 xi xt0 xj xt0 xi xt0 xh xt0 xj xt0 xi)(xt0 xk xt0 xi xt0 xj xt0 xi) 4

xh, xk, xi, xj : (xt0 xi xt0 xj)(xt0 xi)(xt0 xk xt0 xi xt0 xj xt0 xi)(xt0 xh xt0 xj xt0 xi xt0 xk xt0 xi xt0 xj xt0 xi) 4

xj , xk, xh, xi : (xt0 xi)(xt0 xj xt0 xi xt0 xk xt0 xi xt0 xj xt0 xi xt0 xh)(xt0 xj xt0 xi xt0 xk xt0 xi)(xt0 xj xt0 xi) 4

xj , xh, xk, xi : (xt0 xi)(xt0 xj xt0 xi xt0 xk xt0 xi)(xt0 xj xt0 xi xt0 xh xt0 xj xt0 xi xt0 xk xt0 xi)(xt0 xj xt0 xi) 4

xk, xj , xh, xi : (xt0 xi)(xt0 xj xt0 xi)(xt0 xk xt0 xi xt0 xj xt0 xi xt0 xh xt0 xj xt0 xi)(xt0 xk xt0 xi xt0 xj xt0 xi) 4

xh, xj , xk, xi : (xt0 xi)(xt0 xj xt0 xi xt0 xk xt0 xi)(xt0 xj xt0 xi)(xt0 xh xt0 xj xt0 xi xt0 xk xt0 xi xt0 xj xt0 xi) 4

xk, xh, xj , xi : (xt0 xi)(xt0 xj xt0 xi)(xt0 xk xt0 xi xt0 xj xt0 xi xt0 xh xt0 xj xt0 xi)(xt0 xk xt0 xi xt0 xj xt0 xi) 4

xh, xk, xj , xi : (xt0 xi)(xt0 xj xt0 xi)(xt0 xk xt0 xi xt0 xj xt0 xi)(xt0 xh xt0 xj xt0 xi xt0 xk xt0 xi xt0 xj xt0 xi) 4

250

251

CVIT 2016

23:8 Finding an Optimal Alphabet Ordering for Lyndon Factorization is Hard

The string construction for the overall reduction is almost identical to the one for φ in252

Section 3.1. We only need to select β to be slightly different. We let β = 4m + 3. This253

is enough to ensure that in an optimal solution x0 must be the smallest symbol. If x0 is254

smallest, in the worst-case, when all constraints are not satisfied, there are at most 4m+ 1255

Lyndon factors. If x0 is not smallest, as shown in Lemma 13, the number of factors is at256

least β − 1 = 4m+ 2. Then, with x0 as the minimum, each ordering on x1, . . ., xn gives us257

3s+ 4(m− s) + 1 = 4m+ 1− s factors, where s is the number of satisfied constraints when258

using the corresponding variable ordering in φ. Therefore, an optimal ordering for the n259

variables of φ is obtained by an order on the (n+ 1) symbols which minimizes the number of260

Lyndon factors in the string. This combined with Lemma 11 proves Theorem 2.261

3.3 Inapproximability of Lyndon Factor Minimization262

We will perform an approximation preserving reduction from FAS to Lyndon Factor Minim-263

ization. Recall that for FAS the arity k of the constraints is 2, so that constraints are of the264

form (xi, xj) and Λ consists of the identity permutation. In other words, the constraint is265

only satisfied if xi < xj . The cost of the solution will be the number of violated constraints,266

which we wish to minimize. Our gadget for constraint Ct = (xi, xj) will be267

S(Ct) = (xt0 xi) ◦ (xt0 xj)α−1
268

where α > 1 will be chosen later. The whole string for our reduction will be269

T = S(φ) = S(C1) ◦ S(C2) ◦ . . . ◦ S(Cm) ◦ (x0)m+1 ◦ (x2
1 x

2
2 . . . x2

n)β270

where β = αm+ 3. By Lemma 13, if x0 is not smallest, then F (T) ≥ β − 1. We consider271

next what happens in our constraint gadgets when x0 is smallest.272

I Lemma 16. If x0 is smallest and xi < xj then FT (S(Ct)) = 1.273

Proof. Since xt0 is the longest run of x0 seen so far, the start of S(Ct) marks the smallest274

suffix seen so far when traversing T from left to right. Then, since xj > xi, the start of all275

substrings of the form xt0 xj do not mark the start of the smallest suffix seen so far. J276

I Lemma 17. If x0 is smallest and xj < xi then FT (S(Ct)) = α.277

Proof. Again, since xt0 is the longest run of x0 seen so far, the start of S(Ct) marks the278

smallest suffix seen so far when traversing T from left to right. However, now the start of279

each substring of the form xt0 xj marks the start of the smallest suffix seen so far (recall after280

the last xt0 xj there will be a longer run of x0 than has been seen before). Hence, there are281

α− 1 additional factors created. J282

I Lemma 18. Any alphabet ordering where x0 is smallest has fewer factors than an alphabet283

ordering where x0 is not the smallest.284

Proof. If x0 is smallest, F (T) = s+α(m−s)+1 where s is the number of satisfied constraints285

and the +1 arises from the last factor, (x0)m+1 ◦ (x2
1 x

2
2 . . . x2

n)β . Because α > 1, this is286

upper bounded by the case when s = 0 so that F (T) ≤ αm+ 1. On the other hand, if x0 is287

not smallest F (T) ≥ β − 1 = αm+ 2. J288

Daniel Gibney, Sharma V. Thankachan 23:9

Henceforth, we only need to worry about the case when x0 is the smallest. Our aim is to289

show that a constant approximation algorithm for Lyndon Factor Minimization allows us to290

construct a constant approximation algorithm for FAS. If our hypothetical approximation291

algorithm for Lyndon Factor Minimization ever returned a solution where x0 is not smallest,292

we add the additional step of replacing that solution with any solution where x0 is smallest,293

obtaining a solution that performs even better. Then our modified algorithm maintains being294

an approximation algorithm for Lyndon Factor Minimization (perhaps with an even smaller295

approximation factor).296

Let s∗F denote the number of constraints satisfied in an optimal solution of φ for FAS and297

let s∗L denote the number of constraints in φ satisfied by the variable ordering obtained from298

our optimal, factor minimizing, alphabet order for the corresponding instance of Lyndon299

Factor Minimization. Also, let s denote the actual number of constraints satisfied by the300

variable ordering obtained from our approximate factor minimizing alphabet order for the301

corresponding instance of Lyndon Factor Minimization. A λ-approximation for Lyndon302

Factor Minimization with λ > 1 gives the following set of inequalities:303

s∗L + α(m− s∗L) + 1 ≤ s+ α(m− s) + 1 ≤ λ(s∗L + α(m− s∗L) + 1).304

Which can be equivalently written as305

(m− s∗L) + s∗L + 1
α

≤ (m− s) + s+ 1
α
≤ λ(m− s∗L) + λ

s∗L + 1
α

. (1)306

We will show that by taking α large enough we can ensure s∗L = s∗F .307

I Lemma 19. With α = 2(m+ 1) + 1, we have that s∗L = s∗F .308

Proof. The cost of a solution of φ is of the form m − s∗F . The solution for φ we get from309

mapping our solution for Lyndon factorization back to φ must have at least as many violated310

constraints as the optimal solution for φ, i.e., m − s∗L ≥ m − s∗F , and so s∗F ≥ s∗L. Let us311

suppose for the sake of contradiction that s∗F ≥ s∗L + 1. This implies m− s∗L − (m− s∗F) ≥ 1.312

Then, using in addition that s∗
F +1
α ≤ m+1

α ≤ 1
2 , we obtain313

s∗F + 1
α

− s∗L + 1
α

≤ 1
2 < 1 ≤ m− s∗L − (m− s∗F),314

which implies that315

m− s∗F + s∗F + 1
α

< m− s∗L + s∗L + 1
α

.316

Or, written more naturally as the cost of a Lyndon Factor Minimization Problem’s solution,317

s∗F + α(m− s∗F) + 1 < s∗L + α(m− s∗L) + 1.318

But then this implies that the ordering on x1, . . . , xn that is used to obtain the optimal319

solution for φ creates fewer Lyndon factors than our supposedly optimal solution for Lyndon320

Factor Minimization, a contradiction. J321

Let us now upper bound m − s (our approximate solution cost when the solution is322

mapped back to FAS) in terms of λ(m− s∗F). Combining the inequalities in (1) with Lemma323

19, and the fact that s∗F = s∗L ≤ m when α = 2(m+ 1) + 1, we get that324

m− s ≤ m− s+ s+ 1
α
≤ λ(m− s∗L) + λ

s∗L + 1
α

≤ λ
(
m− s∗F + 1

2

)
.325

CVIT 2016

23:10 Finding an Optimal Alphabet Ordering for Lyndon Factorization is Hard

The case where m = s∗F can easily be solved in polynomial time, so we can consider that326

check added to our hypothetical solution as well. Hence, we assume m− s∗F ≥ 1 > 1/2 and,327

m− s∗F ≤ m− s ≤ λ
(
m− s∗F + 1

2

)
< λ(m− s∗F +m− s∗F) = 2λ(m− s∗F).328

We have shown that a λ approximation for Lyndon Factor Minimization allows us to obtain,329

at worst, a 2λ approximation for FAS. Moreover, the α value we need to do this is polynomial330

in m so that the whole reduction is done in polynomial time. This polynomial time constant331

approximation algorithm is better then what is allowed by Lemma 9 under the Unique Games332

Conjecture. This completes the proof of Theorem 3.333

4 Hardness of Lyndon Factor Maximization334

Our approach will be similar to the one taken for minimization. First, we introduce335

some gadgetry for the NP-completeness proof that is later expanded upon to create an336

inapproximability result. As of now, the authors have not yet found gadgets to establish the337

same ETH hardness for the maximization problem.338

4.1 NP-Completeness of Lyndon Factor Maximization339

We perform a reduction from the dual of FAS, the Maximum Acyclic Subgraph Problem340

(MAS). Recall MAS is identical to FAS except for the cost of a solution now being the number341

of constraints satisfied, which we wish to maximize. For constraint Ct = (xi, xj), we define342

our constraint gadget as S(Ct) = xt+1
0 xj x

t+1
0 xi (note the reversal of i and j). The entire343

string formed by our instance φ of FAS is344

T = S(φ) = (x0 x1 x2 . . . xn) ◦ S(C1) ◦ S(C2) ◦ . . . ◦ S(Cm) ◦ (x0)m.345

I Lemma 20. If x0 is not the smallest symbol in the ordering, then F (T) ≤ n+m.346

Proof. Suppose xi 6= x0 is the smallest symbol. Then the first Lyndon factor starting with347

xi occurs in the prefix (x0 x1 . . . xn). Subsequent Lyndon factors must begin with xi. The348

prefix contributes at most n factors and there are at most m remaining occurrences of xi. J349

I Lemma 21. In an ordering where x0 is smallest, F (T) = 2s+ (m− s) + 1 +m, where s350

is the number of constraints satisfied in MAS by the ordering given to x1, . . ., xn.351

Proof. For a substring S(Ct), if Ct = (xi, xj) is not satisfied (i.e., xi > xj) then FT (S(Ct)) =352

1. If it is satisfied (i.e., xi < xj) then FT (S(Ct)) = 2. The prefix x0 x1 x2 . . . xn contributes353

exactly one additional factor. The suffix (x0)m contributes m factors. J354

I Lemma 22. Any ordering where x0 is the smallest has more factors than an ordering355

where x0 is not the smallest.356

Proof. By Lemma 8, we can assume that n ≤ m. Then by Lemma 20, we have that if357

x0 is not smallest, F (T) ≤ n + m ≤ 2m. By Lemma 21, if x0 is smallest then F (T) =358

2s+ (m− s) + 1 +m = s+ 2m+ 1 > 2m. J359

The value F (T) is maximized by an alphabet order which has the largest possible number360

of satisfied constraints, say s∗. This gives (s∗+ 2m+ 1) Lyndon factors. Clearly, this solution361

also provides an ordering satisfying the maximum number of constraints in our MAS instance.362

Since MAS is NP-hard, we have shown Lyndon Factor Maximization is NP-hard as well. The363

Daniel Gibney, Sharma V. Thankachan 23:11

decision problem is in NP using the ordering on x1 . . . xn as a polynomial sized certificate,364

and this remains NP-hard as it could be used to solve the optimization problem. This365

completes the proof of Theorem 4.366

4.2 Inapproximability of Lyndon Factor Maximization367

First, let us describe the OCSP from which we are reducing. Let k > 1 be the arity of the368

constraints, which we will specify later. Each constraint will be satisfied iff the variables369

in that constraint have one of the (k − 1)! orderings where the last variable is ordered370

first, i.e., for constraint (xi1 , xi2 , . . . , xik−1 , xik), the ordering over those variables will have371

xik < xij for j ∈ [1, k − 1]. According to Theorem 10, it is Unique-Games-Hard to find an372

approximation which beats |Λ|m/k! = (k − 1)!m/k! = m/k constraints being satisfied.373

Our constraint gadget is of the form374

S(Ct) = (xt+1
0 xi1) ◦ (xt+1

0 xi2) ◦ . . . ◦ (xt+1
0 xik−1) ◦ (xt+1

0 xik)α375

and our overall string constructed from our instance φ of OCSP is376

T := S(φ) = (x0 x1 x2 . . . xn) ◦ S(C1) ◦ S(C2) ◦ . . . ◦ S(Cm) ◦ (x0), where α = mn.377

378 I Lemma 23. If x0 is not smallest then F (T) ≤ n+m.379

Proof. Let xi 6= x0 be the smallest symbol instead. Then the prefix (x0 x1 x2 . . . xn)380

contributes at most n factors, and each remaining factor must begin with xi. We will show381

that there is at most 1 factor starting in each constraint gadget. For a given constraint382

containing xi, if xi 6= xik this is immediate. On the other hand, if xi = xik then only its383

first occurrence can form a smaller suffix of T than those preceding it. In more detail, since384

x0 > xi = xik , we have xik (xt0 xik)α−1x0 < xik (xt0 xik)α−2x0 < xik (xt0 xik)α−3x0 <385

Note that this is the reason for the final x0 appended to T . J386

I Lemma 24. If x0 is smallest, and in constraint Ct = (xi1 . . . xik) the symbol xik is smallest387

among xi1 . . . xik , then FT (S(Ct)) ≥ α.388

Proof. Since xt+1
0 xik < xt+1

0 xij for j ∈ [1, k − 1], and the string following S(Ct) is either389

xt+2
0 (or x0 then the empty string), the start of each run of x0 in the substring (xt+1

0 xik)α390

marks the start of a suffix smaller than any of those preceding it. J391

I Lemma 25. If x0 is the smallest in the ordering, then F (T) ≥ αs + 1 where s is the392

number clauses in φ satisfied by the ordering given to x1 . . ., xn. This is larger than the393

number of factors from any ordering where x0 is not the smallest.394

Proof. By Lemma 24, when x0 is the smallest each of the satisfied constraint gadgets395

contributes at least α factors. In addition, the lone x0 symbol at the end of T forms its own396

factor. For the second statement, we can always assume our approximate solution satisfies at397

least 1 constraint, hence s ≥ 1 and αs + 1 ≥ mn + 1 > m + n, which by Lemma 23 is an398

upper bound on the number of factors when x0 is not smallest. J399

From here we only need to consider when x0 is smallest, for the same reasoning as given400

in Section 3.3. Now, suppose we have a λ-approximation with λ < 1 for Lyndon Factor401

Maximization. Let s∗L be the number of constraint gadgets satisfied from our optimal solution402

of Lyndon factor maximization, and s the number from the approximate solution. Then,403

λ(αs∗L + 1 + y∗L) ≤ αs+ 1 + y ≤ αs∗L + 1 + y∗L404

CVIT 2016

23:12 Finding an Optimal Alphabet Ordering for Lyndon Factorization is Hard

where y∗L represents the number of additional factors contributed beyond αs∗L + 1 and y405

represents the number of factors beyond αs + 1 for our approximate solution. We can406

equivalently write the above expression as407

λs∗L

(
1 + 1

αs∗L
+ y∗L
αs∗L

)
≤ s

(
1 + 1

αs
+ y

αs

)
≤ s∗L

(
1 + 1

αs∗L
+ y∗L
αs∗L

)
. (2)408

I Lemma 26. For all s ∈ [1,m], and for the corresponding y value as described above,409

1 ≤
(

1 + 1
αs

+ y

αs

)
≤ 3.410

Proof. We first bound y from above. Any factor in a constraint gadget begins at the start of411

a run x0. In a satisfied constraint gadget, there are k− 1 such runs outside of the (xt+1
0 xik)α412

substring. Hence, each satisfied constraint gadget contributes at most k−1 additional factors413

beyond α. A constraint gadget that is not satisfied, i.e., has xij < xik for some j 6= k, has414

the gadget’s last factor beginning at the start of the substring (xt+1
0 xij). This implies the415

substring (xt+1
0 xik)α does not split into different factors. Therefore, an unsatisfied constraint416

gadget again contributes at most k − 1 factors. Because of this, the m constraint gadgets417

contribute at most k additional factors in total and y ≤ m(k − 1). Finally, α = mn, hence418

y

αs
≤ y

α
≤ m(k − 1)

α
≤ mn

α
= 1 and 1

αs
≤ 1
α

= 1
nm
≤ 1. J419

Let s∗C be the number of constraints satisfied in an optimal solution to φ. Like in Section420

3.3, we know that s ≤ s∗C and s∗L ≤ s∗C , Using Lemma 26 we can easily make them differ by421

at most a constant factor.422

I Lemma 27. Using the definitions above, it holds that s∗C ≤ 3s∗L.423

Proof. For the sake of contradiction, assume instead that s∗C > 3s∗L. Applying the ordering424

given by the optimal solution of φ to the symbols x1, . . . , xn, and letting y∗C be defined as425

above but for s∗C , we have426

s∗C

(
1 + 1

αs∗C
+ y∗C
αs∗C

)
> s∗C > 3s∗L ≥ s∗L

(
1 + 1

αs∗L
+ y∗L
αs∗L

)
427

However, this implies αs∗C + 1 + y∗C > αs∗L + 1 + y∗L. Thus, s∗L couldn’t have been the number428

of constraints satisfied in an optimal solution to our Lyndon Factor Maximization instance,429

since using whichever ordering was used for the solution to φ would have given us more430

factors, a contradiction. J431

By Lemma 27, we have 1
3s
∗
C ≤ s∗L. Multiplying both sides by λ/3, we obtain λ

9 s
∗
C ≤ λ

3 s
∗
L.432

By Lemma 26 and our starting inequality in (2) we also have that433

λs∗L ≤ λs∗L
(

1 + 1
αs∗L

+ y∗L
αs∗L

)
≤ s

(
1 + 1

αs
+ y

αs

)
≤ 3s.434

From which we obtain λ
3 s
∗
L ≤ s. Combining these inequalities with the fact that s ≤ s∗C , we435

get λ
9 s
∗
C ≤ s ≤ s∗C . That is, a λ-approximation algorithm for Lyndon Factor Maximization436

provides at least a λ/9 -approximation algorithm for this set of OCSP problems.437

To finish the proof of Theorem 5, suppose for the sake of contradiction there exists438

a λ-approximation algorithm for Lyndon factor maximization for some constant λ < 1.439

Consider the set of OCSPs problems described in beginning of Section 4.2 with arity k such440

that 1/k < λ/9. With our reduction, we obtain a polynomial-time algorithm that can find441

a solution with approximation ratio better than |Λ|/k! = 1/k, proving the Unique Games442

Conjecture false by Theorem 10.443

Daniel Gibney, Sharma V. Thankachan 23:13

References444

1 Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima, Masayuki Takeda, and445

Kazuya Tsuruta. The "runs" theorem. SIAM J. Comput., 46(5):1501–1514, 2017. doi:446

10.1137/15M1011032.447

2 Hideo Bannai, Juha Kärkkäinen, Dominik Köppl, and Marcin Piatkowski. Constructing the448

bijective BWT. CoRR, abs/1911.06985, 2019. URL: http://arxiv.org/abs/1911.06985,449

arXiv:1911.06985.450

3 Hideo Bannai, Juha Kärkkäinen, Dominik Köppl, and Marcin Piatkowski. Indexing the451

bijective BWT. In 30th Annual Symposium on Combinatorial Pattern Matching, CPM 2019,452

June 18-20, 2019, Pisa, Italy, pages 17:1–17:14, 2019. doi:10.4230/LIPIcs.CPM.2019.17.453

4 Jason W. Bentley, Daniel Gibney, and Sharma V. Thankachan. On the complexity of bwt-runs454

minimization via alphabet reordering. In 28th Annual European Symposium on Algorithms,455

ESA 2020, September 7-9, 2020, Pisa, Italy (Virtual Conference), pages 15:1–15:13, 2020.456

doi:10.4230/LIPIcs.ESA.2020.15.457

5 Moses Charikar, Venkatesan Guruswami, and Rajsekar Manokaran. Every permutation CSP458

of arity 3 is approximation resistant. In Proceedings of the 24th Annual IEEE Conference on459

Computational Complexity, CCC 2009, Paris, France, 15-18 July 2009, pages 62–73, 2009.460

doi:10.1109/CCC.2009.29.461

6 Moses Charikar, Konstantin Makarychev, and Yury Makarychev. On the advantage over462

random for maximum acyclic subgraph. In 48th Annual IEEE Symposium on Foundations463

of Computer Science (FOCS 2007), October 20-23, 2007, Providence, RI, USA, Proceedings,464

pages 625–633, 2007. doi:10.1109/FOCS.2007.47.465

7 Kuo Tsai Chen, Ralph H Fox, and Roger C Lyndon. Free differential calculus, iv. the quotient466

groups of the lower central series. Annals of Mathematics, pages 81–95, 1958.467

8 Amanda Clare and Jacqueline W. Daykin. Enhanced string factoring from alphabet orderings.468

Inf. Process. Lett., 143:4–7, 2019. doi:10.1016/j.ipl.2018.10.011.469

9 Amanda Clare, Jacqueline W. Daykin, Thomas Mills, and Christine Zarges. Evolutionary470

search techniques for the lyndon factorization of biosequences. In Proceedings of the Genetic471

and Evolutionary Computation Conference Companion, GECCO 2019, Prague, Czech Republic,472

July 13-17, 2019, pages 1543–1550, 2019. doi:10.1145/3319619.3326872.473

10 Maxime Crochemore and Dominique Perrin. Two-way string matching. J. ACM, 38(3):651–675,474

1991. doi:10.1145/116825.116845.475

11 Jean-Pierre Duval. Génération d’une section des classes de conjugaison et arbre des mots de lyn-476

don de longueur bornée. Theor. Comput. Sci., 60:255–283, 1988. doi:10.1016/0304-3975(88)477

90113-2.478

12 Isamu Furuya, Yuto Nakashima, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki479

Takeda. Lyndon factorization of grammar compressed texts revisited. In Gonzalo Navarro,480

David Sankoff, and Binhai Zhu, editors, Annual Symposium on Combinatorial Pattern Match-481

ing, CPM 2018, July 2-4, 2018 - Qingdao, China, volume 105 of LIPIcs, pages 24:1–24:10.482

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.CPM.2018.24.483

13 Joseph Yossi Gil and David Allen Scott. A bijective string sorting transform. CoRR,484

abs/1201.3077, 2012. URL: http://arxiv.org/abs/1201.3077, arXiv:1201.3077.485

14 Venkatesan Guruswami, Johan Håstad, Rajsekar Manokaran, Prasad Raghavendra, and Moses486

Charikar. Beating the random ordering is hard: Every ordering CSP is approximation resistant.487

SIAM J. Comput., 40(3):878–914, 2011. doi:10.1137/090756144.488

15 Venkatesan Guruswami and Yuan Zhou. Approximating bounded occurrence ordering csps. In489

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques490

- 15th International Workshop, APPROX 2012, and 16th International Workshop, RANDOM491

2012, Cambridge, MA, USA, August 15-17, 2012. Proceedings, pages 158–169, 2012. doi:492

10.1007/978-3-642-32512-0_14.493

CVIT 2016

https://doi.org/10.1137/15M1011032
https://doi.org/10.1137/15M1011032
https://doi.org/10.1137/15M1011032
http://arxiv.org/abs/1911.06985
http://arxiv.org/abs/1911.06985
https://doi.org/10.4230/LIPIcs.CPM.2019.17
https://doi.org/10.4230/LIPIcs.ESA.2020.15
https://doi.org/10.1109/CCC.2009.29
https://doi.org/10.1109/FOCS.2007.47
https://doi.org/10.1016/j.ipl.2018.10.011
https://doi.org/10.1145/3319619.3326872
https://doi.org/10.1145/116825.116845
https://doi.org/10.1016/0304-3975(88)90113-2
https://doi.org/10.1016/0304-3975(88)90113-2
https://doi.org/10.1016/0304-3975(88)90113-2
https://doi.org/10.4230/LIPIcs.CPM.2018.24
http://arxiv.org/abs/1201.3077
http://arxiv.org/abs/1201.3077
https://doi.org/10.1137/090756144
https://doi.org/10.1007/978-3-642-32512-0_14
https://doi.org/10.1007/978-3-642-32512-0_14
https://doi.org/10.1007/978-3-642-32512-0_14

23:14 Finding an Optimal Alphabet Ordering for Lyndon Factorization is Hard

16 Johan Håstad. Some optimal inapproximability results. In Proceedings of the Twenty-Ninth494

Annual ACM Symposium on the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997,495

pages 1–10, 1997. doi:10.1145/258533.258536.496

17 Christophe Hohlweg and Christophe Reutenauer. Lyndon words, permutations and trees.497

Theor. Comput. Sci., 307(1):173–178, 2003. doi:10.1016/S0304-3975(03)00099-9.498

18 Tomohiro I, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. Faster499

lyndon factorization algorithms for SLP and LZ78 compressed text. Theor. Comput. Sci.,500

656:215–224, 2016. doi:10.1016/j.tcs.2016.03.005.501

19 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst.502

Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.503

20 Juha Kärkkäinen, Dominik Kempa, Yuto Nakashima, Simon J. Puglisi, and Arseny M. Shur.504

On the size of lempel-ziv and lyndon factorizations. In Heribert Vollmer and Brigitte Vallée,505

editors, 34th Symposium on Theoretical Aspects of Computer Science, STACS 2017, March506

8-11, 2017, Hannover, Germany, volume 66 of LIPIcs, pages 45:1–45:13. Schloss Dagstuhl -507

Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.STACS.2017.45.508

21 Subhash Khot. On the unique games conjecture. In 46th Annual IEEE Symposium on509

Foundations of Computer Science (FOCS 2005), 23-25 October 2005, Pittsburgh, PA, USA,510

Proceedings, page 3, 2005. doi:10.1109/SFCS.2005.61.511

22 Dong Kyue Kim, Jeong Seop Sim, Heejin Park, and Kunsoo Park. Linear-time construction512

of suffix arrays. In Combinatorial Pattern Matching, 14th Annual Symposium, CPM 2003,513

Morelia, Michocán, Mexico, June 25-27, 2003, Proceedings, pages 186–199, 2003. doi:10.514

1007/3-540-44888-8_14.515

23 Eun Jung Kim and Daniel Gonçalves. On exact algorithms for the permutation CSP. Theor.516

Comput. Sci., 511:109–116, 2013. doi:10.1016/j.tcs.2012.10.035.517

24 Manfred Kufleitner. On bijective variants of the burrows-wheeler transform. In Proceedings of518

the Prague Stringology Conference 2009, Prague, Czech Republic, August 31 - September 2,519

2009, pages 65–79, 2009. URL: http://www.stringology.org/event/2009/p07.html.520

25 Pierre Lalonde and Arun Ram. Standard lyndon bases of lie algebras and enveloping algebras.521

Transactions of the American Mathematical Society, 347(5):1821–1830, 1995.522

26 M. Lothaire. Combinatorics on words, volume 17. Cambridge university press, 1997.523

27 Lily Major, Amanda Clare, Jacqueline W. Daykin, Benjamin Mora, Leonel Jose Peña Gamboa,524

and Christine Zarges. Evaluation of a permutation-based evolutionary framework for lyndon525

factorizations. In Parallel Problem Solving from Nature - PPSN XVI - 16th International526

Conference, PPSN 2020, Leiden, The Netherlands, September 5-9, 2020, Proceedings, Part I,527

pages 390–403, 2020. doi:10.1007/978-3-030-58112-1_27.528

28 Sabrina Mantaci, Antonio Restivo, Giovanna Rosone, and Marinella Sciortino. Sorting suffixes529

of a text via its lyndon factorization. In Jan Holub and Jan Zdárek, editors, Proceedings of530

the Prague Stringology Conference 2013, Prague, Czech Republic, September 2-4, 2013, pages531

119–127. Department of Theoretical Computer Science, Faculty of Information Technology,532

Czech Technical University in Prague, 2013. URL: http://www.stringology.org/event/533

2013/p11.html.534

29 Sabrina Mantaci, Antonio Restivo, Giovanna Rosone, and Marinella Sciortino. Suffix array535

and lyndon factorization of a text. J. Discrete Algorithms, 28:2–8, 2014. doi:10.1016/j.jda.536

2014.06.001.537

30 Marcin Mucha. Lyndon words and short superstrings. In Proceedings of the Twenty-Fourth538

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana,539

USA, January 6-8, 2013, pages 958–972, 2013. doi:10.1137/1.9781611973105.69.540

31 Alantha Newman. Cuts and orderings: On semidefinite relaxations for the linear ordering541

problem. In Approximation, Randomization, and Combinatorial Optimization, Algorithms542

and Techniques, 7th International Workshop on Approximation Algorithms for Combinatorial543

Optimization Problems, APPROX 2004, and 8th International Workshop on Randomization544

https://doi.org/10.1145/258533.258536
https://doi.org/10.1016/S0304-3975(03)00099-9
https://doi.org/10.1016/j.tcs.2016.03.005
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.4230/LIPIcs.STACS.2017.45
https://doi.org/10.1109/SFCS.2005.61
https://doi.org/10.1007/3-540-44888-8_14
https://doi.org/10.1007/3-540-44888-8_14
https://doi.org/10.1007/3-540-44888-8_14
https://doi.org/10.1016/j.tcs.2012.10.035
http://www.stringology.org/event/2009/p07.html
https://doi.org/10.1007/978-3-030-58112-1_27
http://www.stringology.org/event/2013/p11.html
http://www.stringology.org/event/2013/p11.html
http://www.stringology.org/event/2013/p11.html
https://doi.org/10.1016/j.jda.2014.06.001
https://doi.org/10.1016/j.jda.2014.06.001
https://doi.org/10.1016/j.jda.2014.06.001
https://doi.org/10.1137/1.9781611973105.69

Daniel Gibney, Sharma V. Thankachan 23:15

and Computation, RANDOM 2004, Cambridge, MA, USA, August 22-24, 2004, Proceedings,545

pages 195–206, 2004. doi:10.1007/978-3-540-27821-4_18.546

32 Jaroslav Opatrny. Total ordering problem. SIAM J. Comput., 8(1):111–114, 1979. doi:547

10.1137/0208008.548

33 Prasad Raghavendra. Optimal algorithms and inapproximability results for every csp? In549

Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British550

Columbia, Canada, May 17-20, 2008, pages 245–254, 2008. doi:10.1145/1374376.1374414.551

34 Kazuya Tsuruta, Dominik Köppl, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and552

Masayuki Takeda. Grammar-compressed self-index with lyndon words. CoRR, abs/2004.05309,553

2020. URL: https://arxiv.org/abs/2004.05309, arXiv:2004.05309.554

35 Yuki Urabe, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. On the555

size of overlapping lempel-ziv and lyndon factorizations. In Nadia Pisanti and Solon P. Pissis,556

editors, 30th Annual Symposium on Combinatorial Pattern Matching, CPM 2019, June 18-20,557

2019, Pisa, Italy, volume 128 of LIPIcs, pages 29:1–29:11. Schloss Dagstuhl - Leibniz-Zentrum558

für Informatik, 2019. doi:10.4230/LIPIcs.CPM.2019.29.559

CVIT 2016

https://doi.org/10.1007/978-3-540-27821-4_18
https://doi.org/10.1137/0208008
https://doi.org/10.1137/0208008
https://doi.org/10.1137/0208008
https://doi.org/10.1145/1374376.1374414
https://arxiv.org/abs/2004.05309
http://arxiv.org/abs/2004.05309
https://doi.org/10.4230/LIPIcs.CPM.2019.29

	Introduction
	Preliminaries
	Hardness of Lyndon Factor Minimization
	 NP-Completeness of Lyndon Factor Minimization
	ETH Hardness of Lyndon Factor Minimization
	Inapproximability of Lyndon Factor Minimization

	Hardness of Lyndon Factor Maximization
	NP-Completeness of Lyndon Factor Maximization
	Inapproximability of Lyndon Factor Maximization

