
Graphs Cannot Be Indexed in Polynomial
Time for Sub-quadratic Time String

Matching, Unless SETH Fails

Massimo Equi(B) , Veli Mäkinen , and Alexandru I. Tomescu

Department of Computer Science, University of Helsinki, Helsinki, Finland
{massimo.equi,veli.makinen,alexandru.tomescu}@helsinki.fi

Abstract. The string matching problem on a node-labeled graph G =
(V, E) asks whether a given pattern string P has an occurrence in G, in
the form of a path whose concatenation of node labels equals P . This is
a basic primitive in various problems in bioinformatics, graph databases,
or networks, but only recently proven to have a O(|E||P |)-time lower
bound, under the Orthogonal Vectors Hypothesis (OVH). We consider
here its indexed version, in which we can index the graph in order to
support time-efficient string queries.

We show that, under OVH, no polynomial-time indexing scheme of
the graph can support querying P in time O(|P |+ |E|δ|P |β), with either
δ < 1 or β < 1. As a side-contribution, we introduce the notion of linear
independent-components (lic) reduction , allowing for a simple proof of
our result. As another illustration that hardness of indexing follows as a
corollary of a lic reduction, we also translate the quadratic conditional
lower bound of Backurs and Indyk (STOC 2015) for the problem of
matching a query string inside a text, under edit distance. We obtain an
analogous tight quadratic lower bound for its indexed version, improving
the recent result of Cohen-Addad, Feuilloley and Starikovskaya (SODA
2019), but with a slightly different boundary condition.

Keywords: Exact pattern matching · Indexing · Orthogonal vectors ·
Complexity theory · Reductions · Lower bounds · Edit distance ·
Graph query

1 Introduction

1.1 Background

The String Matching in Labeled Graphs (SMLG) problem is defined as follows.

Problem 1 (SMLG).

This work was partially funded by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement
No. 851093, SAFEBIO) and by the Academy of Finland (grants No. 309048, 322595,
328877).
c© Springer Nature Switzerland AG 2021
T. Bureš et al. (Eds.): SOFSEM 2021, LNCS 12607, pp. 608–622, 2021.
https://doi.org/10.1007/978-3-030-67731-2_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67731-2_44&domain=pdf
http://orcid.org/0000-0001-8609-0040
http://orcid.org/0000-0003-4454-1493
http://orcid.org/0000-0002-5747-8350
https://doi.org/10.1007/978-3-030-67731-2_44

Graphs Cannot Be Indexed in Polynomial Time 609

Input: A directed graph G = (V,E, �), where � : V → Σ is a function assigning
to every node v ∈ V a label �(v) over an alphabet Σ, and a pattern string
P ∈ Σ+.
Output: True if and only if there is a path1 (v1, v2, . . . , v|P |) in G such that
P [i] = �(vi) holds for all 1 ≤ i ≤ |P |.

This is a natural generalization of the problem of matching a string inside
a text, and it is a primitive in various problems in computational biology,
graph databases, and graph mining (see references in Equi et al. [19]). In
genome research, the very first step of many standard analysis pipelines of high-
throughput sequencing data is nowadays to align sequenced fragments of DNA
on a labeled graph (a so-called pangenome) that encodes all genomes of a pop-
ulation [17,25,34,40].

The SMLG problem can be solved in time O(|V |+|E||P |) [7] in the comparison
model. On acyclic graphs, bitparallelism can be used for improving the time to
O(|V | + |E|�|P |/w�) [39] in the RAM model with word size w = Θ(log |E|). It
remained an open question whether a truly sub-quadratic time algorithm for
it exists. However, the recent conditional lower bounds by Backurs and Indyk
[10] for regular expression matching imply that the SMLG problem cannot be
solved in sub-quadratic time, unless the so-called Orthogonal Vectors Hypothesis
(OVH) is false. This result was strengthened by Equi et al. [19] by showing
that the problem remains quadratic under OVH even for directed acyclic graphs
(DAGs) that are deterministic, in the sense that for every node, the labels of its
out-neighbors are all distinct.

As mentioned above, in real-world applications one usually considers the
indexed version of the SMLG problem. Namely, we are allowed to index the
labeled graph so that we can query for pattern strings in possibly sub-quadratic
time. This setting is motivated by the fact that typically the large input graph
is static (e.g. a pangenome graph), while new query patterns are produced con-
tinuously (e.g. genome fragments from sequencing).

In the case when the graph is just a labeled (directed) path, then the prob-
lem asks about indexing a text string, which is a fundamental problem in string
matching. There exists a variety of indexes constructable in linear time support-
ing linear-time queries [18]. The same holds also when the graph is a tree [23].
A trivial indexing scheme for arbitrary graphs is to enumerate all the possibly
exponentially many paths of the graph and index those as strings. So a natu-
ral question is whether we can at least index the graph in polynomial time to
support sub-quadratic time queries. Note that the conditional lower bound for
the online problem naturally refutes the possibility of an index constructable in
linear time to support sub-quadratic time queries. Even before the OVH-based
reductions, another weak lower bound was known to hold conditioned on the
Set Intersection Conjecture (SIC) [12,29,38] (see also Table 1). Recent results
[28] also underlined the link between OV and SIC, and presented an index for
1 Notice that if we further require that the path repeats no node (i.e. is a simple path)

then SMLG becomes NP-hard, since the Hamiltonian path problem can be easily
reduced to it, see e.g. [19].

610 M. Equi et al.

Table 1. Upper bounds (first four rows) and conditional lower bounds for indexed
SMLG on a graph G = (V, E) and a pattern P . In this table, W is the maximum
length of a node label, f(·) is an arbitrary function, N is the total length of an elastic
degenerate string and n is the number of degenerate symbols. Recall that it is NP-
complete to decide whether a given graph is a Wheeler graph, while for all the other
graph types recognition is not harder than indexing.

Graph Indexing time Query time Reference, Year

Path O(|E|) O(|P |) Classical [18]
Tree O(|E|) O(|P |) [23], 2009
Wheeler graph O(|E|) O(|P |) [24,42], 2014
Segment
repeat-free
founder block
graph

O(W |E|) O(|P |) [35], 2020

DAG O(|E|α), α < 2 f(|P |) impossible under SIC [12], 2013
Arbitrary
graph

O(|E|) O(|P | + |E|δ|P |β), δ + β < 2
impossible under OVH

[10], 2016

Deterministic
DAG

O(|E|) O(|P | + |E|δ|P |β), δ + β < 2
impossible under OVH

[19], 2019

Elastic
degenerate
string

O(Nα) O(nδ|P |β), δ < 1 or β < 1
impossible under OVH

[26], 2020

Deterministic
DAG

O(|E|α) O(|P | + |E|δ|P |β), δ + β < 2
impossible under OVH

Theorem 2

Arbitrary
graph

O(|E|α) O(|P | + |E|δ|P |β), δ < 1 or
β < 1 impossible under OVH

Theorem 3

OV which is polynomial in the number of the vectors, but exponential in their
length.

The connections to SIC and to OVH constrain the possible construction and
query time tradeoffs for SMLG, but they are yet not strong enough to prove the
impossibility of building an index in polynomial time such that queries could
be sub-quadratic, or even take time say O(|P | + |E|1/2|P |2). This would be a
significant result. In fact, given the wide applicability of this problem, there
have been many attempts to obtain such indexing schemes. Sirén, Välimäki,
and Mäkinen [42] proposed an extension of the Burrows-Wheeler transform [15]
for prefix-sorted graphs. Standard indexing techniques [22,30,37] can be applied
on such generalized Burrows-Wheeler transform to support linear-time pattern
search, but the size of the transform can be exponential in the worst case. There
have been some advances in making the approach more practical [25,34,41], but
the exponential bottleneck has remained.

The concept of prefix-sorted graphs was later formalized into a more gen-
eral concept of Wheeler graphs [24]: Conceptually these are a class of graphs

Graphs Cannot Be Indexed in Polynomial Time 611

that admit a generalization of the Burrows-Wheeler transform, and thus a lin-
ear size index in the size of the graph supporting string search in linear time
in the size of the query pattern. Gibney and Thankachan showed that Wheeler
graph recognition problem is NP-complete [27]. Alanko et al. [5] gave polynomial
time solutions on some special cases and improved the prefix-sorting algorithm
to work in near-optimal time in the size of the output. Another special type of
DAGs, called Degenerate String, [6,31] and its Elastic variant [32], have recently
received more attention due to improvements on the online approaches [8,11] for
performing string matching. They might be thought of being a promising candi-
date for indexing thanks to their relatively constrained structure. Nevertheless,
this type of DAGs has been proved to be hard to index [26], as we discuss below
in more detail.

Mäkinen et al. [35] recently showed that another special graph class, segment
repeat-free founder block graphs, not directly characterized by the Wheeler prop-
erty, can be indexed in linear time for linear-time queries. Without these special
conditions on graphs, the indexing problem is still widely open.

In this paper we refute the existence of a polynomial indexing scheme for
graphs able to provide sub-quadratic [before it said “linear”] time queries, under
OVH. Our result holds even for deterministic DAGs with labels from a binary
alphabet.

We should note that the results of this paper, via the preprint version of this
work [20], have already been used by Gibney [26] while the current paper was
under review. In particular, Gibney proved that no index built in polynomial
time can provide subquadratic-time queries for elastic degenerate strings, by
using our Theorem 5 as [26, Lemma 1]. Even if an elastic degenerate string can
be represented as a labeled DAG, our direct approach implies a stronger hardness
result on DAGs. Namely, hardness holds also for DAGs labeled using a binary
alphabet, and in which the total degree2 is at most 3.

Table 1 and Fig. 1 summarize the complexity landscape of indexed SMLG.

1.2 Results

In the Orthogonal Vectors (OV) problem we are given two sets X,Y ⊆ {0, 1}d

such that |X| = |Y | = N and d = ω(logN), and we need to decide whether there
exists x ∈ X and y ∈ Y such that x and y are orthogonal, namely, x · y = 0.
OVH states that for any constant ε > 0, no algorithm can solve OV in time
O(N2−εpoly(d)).

Notice that OVH [43] is implied by the better known Strong Exponential
Time Hypothesis (SETH) [33], which states that for any constant ε > 0, no
algorithm can solve CNF-SAT in time O(2(1−ε)n), where n is the number of
Boolean variables. Hence, all our lower bounds hold also under SETH.

Our results are obtained using a technique used for example in the field
of dynamic algorithms, see e.g. [2,4]. Recall the reduction from k-SAT to OV
from [43]: the n variables of the formula φ are split into two groups of n/2

2 The total degree is the sum of in-degree and out-degree of a node.

612 M. Equi et al.

β

1

1

2

2

O(|E|1|P |1) algorithm

(a) α = 1

β

1

1

2

2

O(|E|1|P |1) algorithm

(b) α R

Fig. 1. The dashed areas of the plots represent the forbidden values of δ and β for
O(|P | + |E|δ|P |β)-time queries, under OVH. Figure 1a shows the lower bound that
follows from the online case [10,19], and holds for α = 1. Figure 1b depicts our lower
bound (tight, thanks to the online O(|E||P |)-time algorithm from [7]) from Theorem 3.
In addition, these hold for any value of α.

variables each, all partial 2n/2 Boolean assignments are generated for each group,
and these induce two sets X and Y of size N = 2n/2 each, such that OV returns
‘yes’ on X and Y if and only if φ is satisfiable. Suppose one could index X in
polynomial time to support O(M2−εpoly(d))-time queries for any set Y of M
vectors, for some ε > 0. One now can adjust the splitting of the variables based
on the hypothetical ε: the first part (corresponding to X) has nδε variables, and
the other part (corresponding to Y) has n(1 − δε) variables. We can choose a
δε depending on ε such that querying each vector in Y against the index on X
takes overall time O(2n(1−γ)), for some γ > 0, contradicting SETH.

In this paper, instead of employing this technique inside the reduction for
indexed SMLG (as done in previous applications of this technique), we formalize
the reason why it works through the notion of a linear independent-component
reduction (lic). Such a reduction allows to immediately argue that if a problem
A is hard to index, and we have a lic reduction from A to B, then also B is hard
to index (Lemma 1). Since OV is hard to index, it follows simply as a corollary
that any problem to which OV reduces is hard to index. In order to get the best
possible result for SMLG, we also show that a generalized version of OV is hard
to index (Theorem 5). Thus, we upgrade the idea of an “adjustable splitting”
of the variables from a technique to a directly transferable result, once a lic
reduction is shown to exist.

Examples of problems to which a lic reduction could be applied are those that
arise from computing a distance between two elements. Popular examples are
edit distance, dynamic time warping distance (DTWD), Frechet distance, longest
common subsequence. All these problems have been shown to require quadratic
time to be solved under OVH. The reductions proving these lower bounds for
DTWD [1,14] and Frechet distance [13] are lic reductions, hence these problems
automatically obtain a lower bound also for their indexed version.

Graphs Cannot Be Indexed in Polynomial Time 613

On the other hand, the reductions for edit distance [9] and longest common
subsequence [1,14] would need to be slightly tweaked to make the definition of lic
reduction apply. Nevertheless, the features that are preventing these reductions
from being lic concern only the size of the gadgets used and not their structural
properties. Hence, we are confident that the modifications needed to such gadgets
require only a marginal effort.

Moreover, the common indexed variation of the edit distance asks to build
a data structure for a long string T such that one can decide if a given query
string P is within edit distance κ from a substring of T . It suffices to observe
that, in the reduction of Backurs and Indyk [9] from OV to edit distance, this
problem is utilized as an intermidiate step, and up to this point their reduction
is indeed a lic reduction (Sect. 2.2). Hence, we immediately obtain the following
result.

Theorem 1. For any α, β, δ > 0 such that β + δ < 2, there is no algorithm
preprocessing a string T in time O(|T |α), such that for any pattern string P we
can find a substring of T at minimum edit distance with P , in time O(|P | +
|T |δ|P |β), unless OVH is false.

For δ = 1 and β = 1 this lower bound is tight because there exists a matching
online algorithm [36]. Theorem 1 also complements the recent result of Cohen-
Addad, Feuilloley and Starikovskaya [16], stating that an index built in poly-
nomial time cannot support queries for approximate string matching in O(|T |δ)
time, for any δ < 1, unless SETH is false. However, the boundary condition is
different, since in their case κ = O(log |T |), while in our case κ = Θ(|P |).

Our approach for the SMLG problem is similar. In Sect. 3 we revisit the reduc-
tion from [19] and observe that it is a lic reduction. As such, we can immediately
obtain the following result.

Theorem 2. For any α, β, δ > 0 such that β + δ < 2, there is no algorithm
preprocessing a labeled graph G = (V,E, �) in time O(|E|α) such that for any
pattern string P we can solve the SMLG problem on G and P in time O(|P | +
|E|δ|P |β), unless OVH is false. This holds even if restricted to a binary alphabet,
and to deterministic DAGs in which the sum of out-degree and in-degree of any
node is at most three.3

For δ = 1 and β = 1 this lower bound is tight because there exists a matching
online algorithm [7]. However, this bound does not disprove a hypothetical poly-
nomial indexing algorithm with query time O(|P |+|E|δ|P |2), for some 0 < δ < 1.
Since graphs in practical applications are much larger than the pattern, such an
algorithm would be quite significant. However, when the graph is allowed to have
cycles, we also show that this is impossible under OVH.

3 We implicitly assumed here that the graph G is the part of the input to be indexed.
By exchanging G and P it trivially holds that we also cannot polynomially index a
pattern string P to support fast queries in the form of a labeled graph.

614 M. Equi et al.

Theorem 3. For any α, β, δ > 0, with either β < 1 or δ < 1, there is no
algorithm preprocessing a labeled graph G = (V,E, �) in time O(|E|α) such that
for any pattern string P we can solve the SMLG problem on G and P in time
O(|P | + |E|δ|P |β), unless OVH is false.

We obtain Theorem 3 by slightly modifying the reduction of [19] with the
introduction of certain cycles, that allow for query patterns of length longer
than the graph size. The theorem statement could be made slightly stronger by
retaining some of the constrain on the graph that we had in Theorem 2, but we
leave these details for the extended version of this work. See Sect. 3 for a brief
discussion. We leave as open question whether the lower bound from Theorem 3
holds also for DAGs. See Sect. 3 for technical details on the difficulties of this
special case.

Open Problem 1 Does there exist α, β, δ > 0, with β < 1 or δ < 1, and an
algorithm preprocessing a labeled (deterministic) DAG G = (V,E, �) in time
O(|E|α) such that for any pattern string P we can solve the SMLG problem on
G and P in time O(|P | + |E|δ|P |β)?

2 Formalizing the Technique

2.1 Linear Independent-Components Reductions

All problems considered in this paper are such that their input is naturally
partitioned in two. For a problem P , we will denote by PX × PY the set of all
possible inputs for P . For a particular input (px, py) ∈ PX × PY , we will denote
by |px| and |py| the length of each of px and py, respectively. Intuitively, px

represents what we want to build the index on, while py is what we want to
query for. We start by formalizing the concept of indexability.

Definition 1 (Indexability). Problem P is (I,Q)-indexable if for every px ∈
PX we can preprocess px in time I(|px|) such that for every py ∈ PY we can
solve P on (px, py) in time Q(|px|, |py|).

We further refine this notion into that of polynomial indexability, by specify-
ing the degree of the polynomial costs of building the index and of performing
the queries.

Definition 2 (Polynomial indexability). Problem P is (α, δ, β)-polynomi-
ally indexable with parameter k if P is (I,Q)-indexable and I(|px|) =
O(kO(1)|px|α) and Q(|px|, |py|) = O(kO(1)(|py| + |px|δ|py|β)). If this holds only
when k = O(1), then we say that P is (α, δ, β)-polynomially indexable.

The introduction of parameter k is needed to be consistent with OVH, since
when proving a lower bound conditioned on OVH, the reduction is allowed to be
polynomial in the vector dimension d. As we will see, we will set k = d.

We now introduce linear independent-components reductions, which we show
below in Lemma 1 to maintain (α, δ, β)-polynomial indexability.

Graphs Cannot Be Indexed in Polynomial Time 615

Definition 3 (lic reduction). Problem A has a linear independent-compo-
nents (lic) reduction with parameter k to problem B, indicated as A ≤k

lic B, if
the following two properties hold:

i) Correctness: There exists a reduction from A to B modeled by functions
rx, ry and s. That is, for any input (ax, ay) for A, we have rx(ax) = bx,
ry(ay) = by, (bx, by) is a valid input for B, and s solves A given the output
B(bx, by) of an oracle to B, namely s(B(r(ax), r(ay))) = A(ax, ay).

ii) Parameterized linearity: Functions rx, ry and s can be computed in linear
time in the size of their input, multiplied by kO(1).

Lemma 1. Given problems A and B and constants α, β, δ > 0, if A ≤k
lic B

holds, and B is (α, δ, β)-polynomially indexable, then A is (α, δ, β)-polynomially
indexable with parameter k.

Proof. Let ax ∈ AX be the first input of problem A. The linear independent-
components reduction computes the first input of problem B as bx = rx(ax)
in time O(kO(1)|ax|). This means that |bx| = O(kO(1)|ax|), since the size of the
data structure that we build with the reduction cannot be greater than the time
spent for performing the reduction itself. Problem B is (α, δ, β)-polynomially
indexable, hence we can build an index on bx in time O(|bx|α) in such a way
that we can perform queries for every by in time O(|bx|δ|by|β). Now given any
input ay for A we can compute its corresponding by = ry(ay) via the reduc-
tion in time O(kO(1)|ay|) and answer a query for it using the index that we
built on bx. Again, notice that |by| = O(kO(1)|ay|). The cost for such a query is
O(kO(1)|ay|+ |bx|δ|by|β) = O(kO(1)|ay|+kO(1)|ax|δ|ay|β). Notice that the index-
ing time is O(|bx|α) = O(kO(1)|ax|α). Hence A is (α, δ, β)-polynomially indexable
with parameter k. �	

2.2 Conditional Indexing Lower Bounds

We begin by stating, with our formalism, a known strengthening of the hardness
of indexing reduction presented at the beginning of Sect. 1.2 (note that it also
follows as a special case of Theorem 5 below).

Theorem 4 (Folklore). If OV is (α, δ, β)-polynomially indexable with param-
eter d, and β + δ < 2, then OVH fails.

The value of a parameterized lic reduction can now be apprehended: once a
parameterized lic reduction is found, the indexing lower bound follows directly.

Corollary 1. Any problem P such that OV ≤d
lic P holds is not (α, δ, β)-

polynomially indexable, for any α, β, δ > 0, with β + δ < 2, unless OVH is
false.

Proof. Assume by contradiction that P is (α, δ, β)-polynomially indexable.
Apply Lemma 1 to prove that OV is (α, δ, β)-polynomially indexable with param-
eter d, and β + δ < 2; this contradicts Theorem 4. �	

616 M. Equi et al.

For a simple and concrete application of Corollary 1, consider the following
problem, where ed(S1, S2) denotes the edit distance between string S1 and S2.

Problem 2 (PATTERN).

Input: Two strings T and P .
Output: min

S substring of T
ed(S, P).

Backurs and Indyk [9] reduce OV to PATTERN by constructing a string T
based solely on the first input X to OV and a string P based solely on the second
input Y to OV, such that if there are two orthogonal vectors then the answer to
PATTERN on T and P is below a certain value, and if there are not, then the
answer is equal to another specific value. Each of T and P can be constructed
in time O(dO(1)N) = O(dO(1)(dN)). This is a lic reduction with parameter d.
Directly applying Corollary 1, we obtain Theorem 1.

2.3 Indexing Generalized Orthogonal Vectors

Corollary 1 will suffice to prove Theorem 2. However, to prove that no query time
O(|E|δ|P |β) is possible for any δ < 1, we need a strengthening of Theorem 4. As
such, we introduce the generalized (N,M)-Orthogonal Vectors problem:

Problem 3 ((N,M)-OV).

Input: Two sets X,Y ⊆ {0, 1}d, such that |X| = N and |Y | = M .
Output: True if and only if there exists (x, y) ∈ X × Y such that x · y = 0.

The theorem below is the desired generalization of Theorem 4, since it
implies, for example, that we cannot have O(N1/2M2)-time queries after
polynomial-time indexing. To the best of our efforts, we could not find a proof
of this result in the literature, and hence we give one here. It is based on the
same idea of an “adjustable splitting” of the vectors, a part of which is indexed,
while the other part is queried. However, some technical subtleties arise from the
combination of all parameters α, δ, β. Moreover, we care to take into account also
the case α ≤ 1. In this way we rule out special cases like, for instance, δ < α ≤ 1,
which would leave the door open for efficient algorithms when |E|
 |P |.
Theorem 5. If (N,M)-OV is (α, δ, β)-polynomially indexable with parameter
d, and either δ < 1 or β < 1, then OVH fails. That is, under OVH, we cannot
support O(NδMβ)-time queries for (N,M)-OV, for either δ < 1 or β < 1, even
after polynomial-time preprocessing.

Proof. Let X and Y be the input for OV and assume that their size is n. We
partition set X into subsets of N vectors each, and set Y into subsets of M
vectors each. Each pair of vector sets (Xi, Yj) in which Xi is such a subset of X
and Yj is such a subset of Y constitutes an instance of (N,M)-OV. Solving all

Graphs Cannot Be Indexed in Polynomial Time 617

the (Xi, Yj) instances clearly solves the original problem.4 Given a pair (Xi, Yj),
since we are assuming that (N,M)-OV is (α, δ, β)-polynomially indexable with
parameter d, we can build an index on Xi in O(dO(1)(dNα)) time and answer a
query for Yj in O(dO(1)(dN)δ(dM)β) time. Hence, by building a new index for
every Xi and querying every Yj we can cover all the pairs. Since we build � n

N �
indexes and we perform � n

N �� n
M � queries, one for each pair (Xi, Yj), the total

cost for solving the original OV problem is:

O
(
dO(1)

(
(dN)α

n

N
+ (dN)δ(dM)β

n

N

n

M

))
(1)

=O
(
dO(1)

(
Nα−1n + N δ−1Mβ−1n2

))
. (2)

In order to achieve a contradiction with OVH, we need such time com-
plexity to be subquadratic in the original OV instance. Namely, it should be
O(dO(1)(n2−ε′

+ n2−ε)), for some ε, ε′ > 0. Clearly, it must also hold 1 ≤ N ≤ n
and 1 ≤ M ≤ n, and N and M should be integers. Putting all together, we want
that for every n ∈ N, α, δ, β > 0 such that either δ < 1 or β < 1 there exists
ε′, ε > 0, N and M such that:

(a) Nα−1n = O(n2−ε′
) (b) N δ−1Mβ−1n2 = O(n2−ε)

(c) N ∈ N, M ∈ N (d) 1 ≤ N ≤ n, 1 ≤ M ≤ n

The solutions to this system differ depending on the values of α, δ and β. In
Table 2 we present an exhaustive list of solutions for any choice of these param-
eters. The complete analysis on how to find the range of possible solutions to
the system is presented in preprint version of this work [21].

Table 2. The solutions to the system for any given value of α, δ and β.

α β δ N M ε′ ε

α < 2 β < 1 Any δ 1 n 1 1 − β

β ≥ 1 δ < 1 n 1 2 − α 1 − δ

α ≥ 2 β < 1 Any δ 1 n 1 1 − β

β ≥ 1 δ < 1 �n 1
2(α−1) � 1 1

2
1−δ

2(α−1)

We conclude that depending on α, δ and β we find ourselves into one of the
listed cases and thus we can always find valid values for ε, ε′, N and M that lead
to an algorithm for OV running in time O(n2−ε + n2−ε′

), contradicting OVH. �	
Corollary 2. Any problem P such that (N,M)-OV ≤d

lic P holds is not (α, δ, β)-
polynomially indexable, for any α, β, δ > 0, with either β < 1 or δ < 1, unless
OVH is false.
4 The idea of splitting the two sets into smaller groups was also used in [3] to obtain

a fast randomized algorithm for OV, based on the polynomial method, and therein
the groups always had equal size.

618 M. Equi et al.

3 Indexing Labeled Graphs for String Matching

We are now left to prove Theorem 2 and Theorem 3. While the former can be
obtained solely applying the concept of lic reduction, the latter requires more
attention.

Recall the following conditional lower bound for SMLG from Equi et al. [19].

Theorem 6 ([19]). For any ε > 0, SMLG on labeled deterministic DAGs cannot
be solved in either O(|E|1−ε |P |) or O(|E| |P |1−ε) time unless OVH fails. This
holds even if restricted to a binary alphabet, and to deterministic DAGs in which
the sum of out-degree and in-degree of any node is at most three.

In order to prove Theorem 2 it is enough to check the structure of the reduc-
tion used to prove Theorem 6 in [19].

Proof (Theorem 2). Given an OV instance with sets X and Y , the reduction
from [19] builds a graph G using solely X, and a pattern P using solely Y ,
both in linear time O(dN), such that P has a match in G if and only if there
exists a pair of orthogonal vectors. 5 This shows that the two conditions of the
linear independent-components reduction property hold, thus OV ≤d

lic SMLG.
We conclude the proof by directly applying Corollary 1. �	

Next, we show that constraint β + δ < 2 can be dropped from Theorem 2
when we are indexing non-deterministic graphs with cycles. The idea is that if
we allow (N,M)-OV instances with M > N , then the reduction from [19] no
longer holds, because the pattern P is too large to fit inside the DAG G. As
such, we need to make a minor adjustment to G.

Proof (Theorem 3). Given an (N,M)-OV instance with sets X and Y , we first
show how it is possible to modify the reduction form [19] to fit an arbitrarily long
pattern into the graph. The desired lower bound will then follow by applying
the lic reduction.

The pattern that we use is the same pattern P of the original reduction,
which is built over alphabet Σ = {b, e, 0, 1}, has length |P | = O(dM), and
can be built in O(dM) time from the second set of vectors Y = {y1, . . . , yM}.
Namely, we define P = bbPy1e bPy2e . . . bPyM

ee, where Pyi
is a string of length

d that is associated with each yi ∈ Y , for 1 ≤ i ≤ M . The h-th symbol of Pyi
is

either 0 or 1, for each h ∈ {1, . . . , d}, such that Pyi
[h] = 1 if and only if yi[h] = 1.

The graph G′ that we need to make our new reduction work is depicted in
Fig. 2 and we now discuss how it can be built. Starting from the first set of
vectors X, we define the directed graph GW = (VW , EW , LW), which can be
built in O(dN) time and consists of N connected components G

(j)
W , one for each

vector xj ∈ X. Each component G
(j)
W can be constructed so that the following

holds.

5 Originally [19] P and G were built on X and Y , respectively. Since it is immaterial
for correctness, we assumed the opposite here to keep in line with the notation.

Graphs Cannot Be Indexed in Polynomial Time 619

b G
(1)
U1

e · · · b G
(1)
W

e b · · · e b G
(n)
W

e

eG
(n)
U1

(partial)
v1nh

b G
(1)
U2

e · · · b G
(n)
U2

e · · · b G
(2n−2)
U2

e

b b b b

e e e

e e e

G =

· · ·
· · ·

Fig. 2. Non-deterministic graph G′. We add the dashed thick edges, absent in the
acyclic graph from [19], to handle (N, M)-OV instances with M > N .

Lemma 2 ([19]). Subpattern bPyi
e has a match in GW if and only if there

exist xj ∈ X such that xi · yj = 0.

In addition, we need a universal gadget GU = (VU , EU , LU) of 2N − 2 com-
ponents G

(k)
U . We build such components in the same way as in [19], and for

the correctness of the current proof it suffices to know that each component can
match any subpattern Pyi

. Let us now build the same final graph G as in [19]
by using two instances GU1 and GU2 of GU and merging the first one of these
with GW . The resulting graph G has total size O(dN) and corresponds to the
one shown in Fig. 2 without the dashed edges. Note that every path from a pair
of consecutive b-nodes to a pair of consecutive e-nodes passes through a G

(j)
W

component. Indeed, this graph satisfies the following property.

Lemma 3 ([19]). Pattern P has a match in G if and only if a subpattern bPxi
e

of P has a match in the underlying subgraph GW of GU1W .

From graph G we then build final graph G′ with the addition of an edge
from the e-node to the right of G

(1)
U1 back to the b-node to the left of G

(1)
U1, and

likewise from the e-node to the right of G
(2N−2)
U2 back to the b-node to the left

of G
(2N−2)
U2 . This final graph G′ is the one of Fig. 2.

The intuition on how the reduction works is that a prefix of P is handled by
the “top” universal gadgets GU1, a possible matching a subpattern Pyi

of P by
one of the “middle” gadgets G

(j)
W , and a suffix of P by the “bottom” universal

gadgets, because P has a bb prefix and an ee suffix. Our new edges allow to
accommodate (N,M)-OV instances with M > N .

Formally, we need to prove that Lemma 3 holds also if considering G′ and
the case N �= M .

Proof (Lemma 3 for G′, N �= M). For the (⇒) implication, we follow the same
logic as in [19] and we observe that pattern P needs to start a match only by
using a pair of consecutive b-nodes and such a match can be completed only
by using a pair of consecutive e-nodes after having matched a G

(j)
W component.

Hence we can use Lemma 2 to ensure that there exists a pair of orthogonal
vectors. The (⇐) implication is easier: if a subpattern bPxi

e of P has a match
in the underlying subgraph GW then we can match the prefix of P preceding

620 M. Equi et al.

bPxi
e in GU since every subpattern bPxi′e, 1 ≤ i′ < i, can be matched in the

G
(i)
U1 components. Observe that if N < M then there might not be enough such

components to match all the subpatterns of |P |. In that case, our newly added
backward edges can be used to match the component G

(1)
U1 multiple times. The

N > M case poses no problem. The same reasoning applies to the subpatterns
bPxi′′e, i < i′′ ≤ M , constituting the suffix of |P |. Such subpatterns can be
matched in GU2 possibly exploiting our backward edge. �	

Since Lemma 3 still holds, we conclude that the reduction using graph
G′ works for any value of N and M . Hence, applying Corollary 2, we obtain
Theorem 3. �	

As a final note, we informally describe how some of the features of Theorem 2
could be kept also in Theorem 3. We leave a more detailed and formal discussion
for the extended version of this work.

Remark 1. The statement of Theorem 3 holds even if restricted to a binary
alphabet, and to DAGs in which the sum of out-degree and in-degree of any
node is at most three. Hence, with respect to Theorem 2, we have to drop only
determinism. Indeed, the two additional edges that we added to build our final
graph G′ respect the degree constraint. Moreover, applying the same transfor-
mation as in [19], the theorem holds even when we are restricted to use a binary
alphabet.

References

1. Abboud, A., Backurs, A., Williams, V.V.: Tight hardness results for LCS and other
sequence similarity measures. In: FOCS 2015, Berkeley, CA, USA, pp. 59–78 (2015)

2. Abboud, A., Rubinstein, A., Williams, R.R.: Distributed PCP theorems for hard-
ness of approximation in P. In: IEEE 58th Annual Symposium on Foundations of
Computer Science (FOCS), Berkeley, CA, USA, pp. 25–36. IEEE (2017)

3. Abboud, A., Williams, R., Yu, H.: More applications of the polynomial method to
algorithm design. In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, San Diego, California, pp. 218–230 (2015)

4. Abboud, A., Williams, V.V.: Popular conjectures imply strong lower bounds for
dynamic problems. In: IEEE 55th Annual Symposium on Foundations of Computer
Science, Philadelphia, PA, USA, pp. 434–443 (2014)

5. Alanko, J., D’Agostino, G., Policriti, A., Prezza, N.: Regular languages meet prefix
sorting. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, Salt Lake City, UT, USA, pp. 911–930 (2020)

6. Alzamel, M., et al.: Degenerate string comparison and applications. In: Parida, L.,
Ukkonen, E. (eds.) 18th International Workshop on Algorithms in Bioinformat-
ics (WABI 2018). Leibniz International Proceedings in Informatics (LIPIcs), vol.
113, pp. 21:1–21:14. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany (2018)

7. Amir, A., Lewenstein, M., Lewenstein, N.: Pattern matching in hypertext. In:
Dehne, F., Rau-Chaplin, A., Sack, J.-R., Tamassia, R. (eds.) WADS 1997. LNCS,
vol. 1272, pp. 160–173. Springer, Heidelberg (1997). https://doi.org/10.1007/3-
540-63307-3_56

https://doi.org/10.1007/3-540-63307-3_56
https://doi.org/10.1007/3-540-63307-3_56

Graphs Cannot Be Indexed in Polynomial Time 621

8. Aoyama, K., et al.: Faster online elastic degenerate string matching. In: Annual
Symposium on Combinatorial Pattern Matching (CPM 2018), Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik (2018)

9. Backurs, A., Indyk, P.: Edit Distance Cannot Be Computed in Strongly Sub-
quadratic Time (Unless SETH is False). In: Proceedings of the Forty-Seventh
Annual ACM Symposium on Theory of Computing, New York, USA, pp. 51–58
(2015)

10. Backurs, A., Indyk, P.: Which regular expression patterns are hard to match? In:
IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), New
Brunswick, NJ, USA, pp. 457–466. IEEE (2016)

11. Bernardini, G., Gawrychowski, P., Pisanti, N., Pissis, S.P., Rosone, G.: Even faster
elastic-degenerate string matching via fast matrix multiplication. In: Baier, C.,
Chatzigiannakis, I., Flocchini, P., Leonardi, S. (eds.) 46th International Colloquium
on Automata, Languages, and Programming, ICALP 2019, July 9–12, 2019, Patras,
Greece. LIPIcs, vol. 132, pp. 21:1–21:15. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2019)

12. Bille, P.: Personal Communication at Dagstuhl Seminar on Indexes and Compu-
tation over Compressed Structured Data (2013)

13. Bringmann, K.: Why walking the dog takes time: frechet distance has no strongly
subquadratic algorithms unless seth fails. In: IEEE 55th Annual Symposium on
Foundations of Computer Science, pp. 661–670. IEEE (2014)

14. Bringmann, K., Kunnemann, M.: Quadratic conditional lower bounds for string
problems and dynamic time warping. In: IEEE 56th Annual Symposium on Foun-
dations of Computer Science, Washington, USA, pp. 79–97. IEEE (2015)

15. Burrows, M., Wheeler, D.: A block sorting lossless data compression algorithm.
Tech. Rep. 124, Digital Equipment Corporation (1994)

16. Cohen-Addad, V., Feuilloley, L., Starikovskaya, T.: Lower bounds for text indexing
with mismatches and differences. In: Proceedings of the Thirtieth Annual ACM-
SIAM Symposium on Discrete Algorithms, San Diego, USA, pp. 1146–1164 (2019)

17. Consortium, T.C.P.G.: Computational pan-genomics: status, promises and chal-
lenges. Briefings in Bioinform. 19(1), 118–135 (2018)

18. Crochemore, M., Rytter, W.: Jewels of Stringology. World Scientific (2002)
19. Equi, M., Grossi, R., Mäkinen, V., Tomescu, A.I.: On the complexity of string

matching for graphs. In: 46th International Colloquium on Automata, Languages,
and Programming (ICALP 2019), Patras, Greece, pp. 55:1–55:15 (2019)

20. Equi, M., Grossi, R., Tomescu, A.I., Mäkinen, V.: On the complexity of exact
pattern matching in graphs: determinism and zig-zag matching. arXiv e-prints
arXiv:1902.03560 (2019)

21. Equi, M., Mäkinen, V., Tomescu, A.I.: Graphs cannot be indexed in polyno-
mial time for sub-quadratic time string matching, unless seth fails. arXiv e-prints
arXiv:2002.00629 (2020)

22. Ferragina, P., Manzini, G.: Indexing compressed texts. J. ACM 52(4), 552–581
(2005)

23. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Compressing and index-
ing labeled trees, with applications. J. ACM 57(1), 4:1–4:33 (2009)

24. Gagie, T., Manzini, G., Sirén, J.: Wheeler graphs: a framework for BWT-based
data structures. Theor. Comput. Sci. 698, 67–78 (2017)

25. Garrison, E., et al.: Variation graph toolkit improves read mapping by representing
genetic variation in the reference. Nat. Biotechnol. 36, 875 (2018)

http://arxiv.org/abs/1902.03560
http://arxiv.org/abs/2002.00629

622 M. Equi et al.

26. Gibney, D.: An efficient elastic-degenerate text index? not likely. In: Boucher, C.,
Thankachan, S.V. (eds.) SPIRE 2020. LNCS, vol. 12303, pp. 76–88. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-59212-7_6

27. Gibney, D., Thankachan, S.V.: On the hardness and inapproximability of recog-
nizing Wheeler graphs. In: ESA 2019, Munich/Garching, Germany, pp. 51:1–51:16
(2019)

28. Goldstein, I., Lewenstein, M., Porat, E.: Orthogonal vectors indexing. In: ISAAC
2017, Dagstuhl, Germany, pp. 40:1–40:12 (2017)

29. Goldstein, I., Lewenstein, M., Porat, E.: On the hardness of set disjointness and
set intersection with bounded universe. In: ISAAC 2019, Shanghai, China. LIPIcs,
vol. 149, pp. 7:1–7:22 (2019)

30. Grossi, R., Vitter, J.: Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. SIAM J. Comput. 35(2), 378–407 (2006)

31. Grossi, R., et al.: On-line pattern matching on similar texts. In: CPM 2017. vol.
78, p. 1. Schloss Dagstuhl-Leibniz-Zentrum für Informatik GmbH (2017)

32. Iliopoulos, C.S., Kundu, R., Pissis, S.P.: Efficient pattern matching in elastic-
degenerate texts. In: Drewes, F., Martín-Vide, C., Truthe, B. (eds.) LATA 2017.
LNCS, vol. 10168, pp. 131–142. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-53733-7_9

33. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci.
62(2), 367–375 (2001)

34. Kim, D., Paggi, J.M., Park, C., Bennett, C., Salzberg, S.L.: Graph-based genome
alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol.
37(8), 907–915 (2019)

35. Mäkinen, V., Cazaux, B., Equi, M., Norri, T., Tomescu, A.I.: Linear time con-
struction of indexable founder block graphs. In: WABI 2020, Pisa, Italy. LIPIcs,
vol. 172, pp. 7:1–7:18 (2020). https://doi.org/10.4230/LIPIcs.WABI.2020.7

36. Masek, W.J., Paterson, M.S.: A faster algorithm computing string edit distances.
J. Comput. Syst. Sci. 20(1), 18–31 (1980)

37. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comput. Surv.
39(1), 2 (2007)

38. Patrascu, M., Roditty, L.: Distance oracles beyond the Thorup-Zwick bound. SIAM
J. Comput. 43(1), 300–311 (2014)

39. Rautiainen, M., Mäkinen, V., Marschall, T.: Bit-parallel sequence-to-graph align-
ment. Bioinformatics 35(19), 3599–3607 (2019)

40. Schneeberger, K., et al.: Simultaneous alignment of short reads against multiple
genomes. Genome Biol. 10, R98 (2009)

41. Sirén, J.: Indexing variation graphs. In: ALENEX 2017, Barcelona, Spain, pp. 13–
27 (2017)

42. Sirén, J., Välimäki, N., Mäkinen, V.: Indexing graphs for path queries with appli-
cations in genome research. IEEE/ACM Trans. Comput. Biol. Bioinform. 11(2),
375–388 (2014)

43. Williams, R.: A new algorithm for optimal 2-constraint satisfaction and its impli-
cations. Theor. Comput. Sci. 348(2–3), 357–365 (2005)

https://doi.org/10.1007/978-3-030-59212-7_6
https://doi.org/10.1007/978-3-319-53733-7_9
https://doi.org/10.1007/978-3-319-53733-7_9
https://doi.org/10.4230/LIPIcs.WABI.2020.7

	Graphs Cannot Be Indexed in Polynomial Time for Sub-quadratic Time String Matching, Unless SETH Fails
	1 Introduction
	1.1 Background
	1.2 Results

	2 Formalizing the Technique
	2.1 Linear Independent-Components Reductions
	2.2 Conditional Indexing Lower Bounds
	2.3 Indexing Generalized Orthogonal Vectors

	3 Indexing Labeled Graphs for String Matching
	References

