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Abstract

We show that the Closest Vector Problem in the `p norm (CVPp) cannot be solved in 2(1−ε)n

time for all p /∈ 2Z and ε > 0 (assuming SETH). In fact, we show that the same holds even
for (1) the approximate version of the problem (assuming a gap version of SETH); and (2)
CVPp with preprocessing, in which we are allowed arbitrary advice about the lattice (assuming
a non-uniform version of SETH). For “plain” CVPp, the same hardness result was shown in
[Bennett, Golovnev, and Stephens-Davidowitz FOCS 2017] for all but finitely many p /∈ 2Z,
where the set of exceptions depended on ε and was not explicit. For the approximate and
preprocessing problems, only very weak bounds were known prior to this work.

We also show that the restriction to p /∈ 2Z is in some sense inherent. In particular, we show
that no “natural” reduction can rule out even a 23n/4-time algorithm for CVP2 under SETH.
For this, we prove that the possible sets of closest lattice vectors to a target in the `2 norm have
quite rigid structure, which essentially prevents them from being as expressive as 3-CNFs.
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1 Introduction

A lattice L is the set of all integer linear combinations of linearly independent basis vectors
b1, . . . , bn ∈ Rd,

L = L(b1, . . . , bn) :=
{
z1b1 + · · ·+ znbn : zi ∈ Z

}
.

We call n the rank of the lattice L and d the dimension or the ambient dimension of the lattice.
The two most important computational problems on lattices are the Shortest Vector Problem

(SVP) and the Closest Vector Problem (CVP). Given a basis for a lattice L ⊂ Rd, SVP asks us to
compute the minimal length of a non-zero vector in L, and CVP asks us to compute the distance
from some target point t ∈ Rd to the lattice. Typically, we define length and distance in terms of
the `p norm for some 1 ≤ p ≤ ∞, given by

‖x‖p := (|x1|p + |x2|p + · · ·+ |xd|p)1/p

for finite p and
‖x‖∞ := max

1≤i≤d
|xi| .

In particular, the case where p = 2 corresponds to the Euclidean norm, which is the most important
and best-studied in this context. We write SVPp and CVPp for the respective problems in the `p
norm. CVP is known to be at least as hard as SVP (in any norm, under an efficient reduction that
preserves the rank and approximation factor) [GMSS99] and appears to be significantly harder.

In the past decade, these problems have taken on still more importance, as their hardness
underlies the security of most post-quantum public-key cryptography schemes, while the schemes
that are currently used for most practical applications are not secure against quantum computers.
Recent rapid progress in quantum computing (e.g., [A+19]) has therefore created a rush to switch to
lattice-based cryptography in many applications. Indeed, for this reason, lattice-based cryptography
is in the process of standardization for widespread use [NIS16].

Given the obvious importance of these problems, they have been studied quite extensively.
However, in spite of much effort algorithmic progress has stalled for CVP. The fastest algorithm for
CVP2 runs in 2n+o(n) time [ADS15]—even for arbitrarily large constant approximation factors—and
there are fundamental reasons that our current techniques cannot do better.1 For arbitrary p,
the fastest known exact algorithm is still Kannan’s nO(n)-time algorithm from over thirty years
ago [Kan87]. For constant-factor approximation and arbitrary p, Blömer and Naewe [BN09] gave a
2O(d)-time algorithm, which was later improved to 2O(n) time by Dadush [Dad12], and a 4(1+ε)d-time
algorithm for p =∞ by Aggarwal and Mukhopadhyay [AM18].

While we have known for decades that CVPp is NP-hard [vEB81], even to approximate [DKRS03],
such coarse hardness results are insufficient to rule out, e.g., a 2n/20-time algorithm or even a 2

√
n-

time algorithm. If such algorithms were found, they would have innumerable positive applications,
but they would also render current lattice-based cryptographic constructions broken in practice.
Even a small improvement beyond 2n time would have major consequences.

1There are only two algorithms that solve CVP2 in its exact form in time 2O(n) [MV13, ADS15], and both of
them involve enumeration over all 2n cosets of L modulo 2L. (These cosets arise naturally in this context, and
they play a large role in Section 6.) There are other approaches that achieve constant-factor approximation in time
2O(n), but the constant in the exponent is significantly larger. The situation for SVP is far more dynamic. See,
e.g., [BDGL16, AS18b].
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In [BGS17], we therefore initiated the study of the fine-grained hardness of CVP in an effort
to explain this lack of algorithmic progress and to give evidence for the quantitative security of
lattice-based cryptography. We showed that there is no 2(1−ε)n-time algorithm for CVPp assuming
the Strong Exponential Time Hypothesis (SETH, a widely believed conjecture in complexity theory,
defined in Section 2), but we were only able to prove this lower bound explicitly for odd integers p
(and p =∞). For other values of p, our result was much weaker. For every ε > 0, we showed that
there are at most finitely many p /∈ 2Z with a 2(1−ε)n-time algorithm for CVPp (assuming SETH).
In particular, for any specific value of p /∈ (2Z + 1) ∪ {∞}, we could not rule out such an algorithm.
(We did, however, rule out 2o(n)-time algorithms for all p.)

Furthermore, our results were far weaker for two important variants of the problem. First,
for the near-exact version of the problem (i.e., the problem of approximating CVPp up to some
constant factor), we were only able to rule out 2o(n)-time algorithms. Second, our lower bounds
were quite weak for the problem of CVPp with preprocessing (CVPPp), an offline-online variant of
CVPp where an unbounded-time preprocessing algorithm may perform arbitrary preprocessing on
the lattice L in a way that helps an online query algorithm to find a closest lattice vector to a given
target t ∈ Rd. In [BGS17], we were only able to rule out a 2o(

√
n)-time algorithm for this problem.

It therefore remained plausible that much faster algorithms could exist for CVPPp than for CVPp
or for constant-factor approximate CVPp. Such algorithms would, for example, lead to very strong
attacks on certain lattice-based cryptographic schemes.

In follow-up work, we used the main result of [BGS17] to prove strong lower bounds for
SVP [AS18a] and also for SIVP [AC19]. However, these works inherited some of the deficiencies
described above. Specifically, the strongest hardness results in both works only applied to odd
integers p ∈ (2Z + 1) (and p =∞) and some non-explicit set of additional p.

1.1 Our results

Our first main result is an extension of the main result in [BGS17] to all p except for the even
integers, and to CVPPp and approximate CVPp. (See Table 1. In the introduction, we informally
refer to an “approximate variant of SETH” as Gap-SETH. See Definition 2.7 for a formal definition
due to Manurangsi [Man19].)

Theorem 1.1 (Informal). For every 1 ≤ p ≤ ∞ with p /∈ 2Z, there is no 2(1−ε)n-time algorithm for
CVPp for any constant ε > 0 unless SETH is false. The same conclusion holds for CVPPp unless
non-uniform SETH is false.

Furthermore, for every 1 ≤ p ≤ ∞ with p /∈ 2Z and constant ε > 0, there is no 2(1−ε)n-time
algorithm for γε-approximate CVPp for some γε > 1 unless Gap-SETH is false.

As in [BGS17], our result is actually a bit stronger than the above. SETH-based hardness only
requires a reduction from k-SAT to CVPp, but we show a reduction from Max-k-SAT, and even
from weighted Max-k-SAT.

In fact, we also rule out 2o(n)-time algorithms for CVPPp under a weaker complexity-theoretic
assumption: the (non-uniform) Exponential Time Hypothesis. This weaker lower bound under a
weaker assumption holds for all p 6= 2—including even integers p ≥ 4.

Theorem 1.1 also yields immediate similar improvements to the hardness of SVPp and SIVPp,
i.e., to the results of [AS18a, AC19]. In particular, by the main results in [AC19], the 2n hardness
for CVPp and its approximate variant immediately extends to SIVPp. The results for SVPp are
rather complicated, as they vary with p in complex ways [AS18a], but our results imply extensions
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of [AS18a] to more values of p than were known previously. See Appendix A for a complete statement
of the result.

The restriction that p is not an even integer is unfortunate, especially because we are most
interested in the case when p = 2. But, this seems inherent. (In fact, it is known that `2 is “the
easiest norm” in a certain precise sense [RR06].) Indeed, in [BGS17], we already showed that our
specific techniques are insufficient to prove hardness for p ∈ 2Z.

Here, we also rule out a far more general class of techniques for p = 2, which we call “natural
reductions.” These are reductions with a bijection between witnesses. Specifically, a reduction from
a k-SAT formula φ to CVPp over a lattice with basis B is natural if there is a fixed (not necessarily
efficient) mapping f : {0, 1}n → Zn′ such that Bf(z) is a closest lattice vector if and only if x is a
satisfying assignment (assuming that φ is satisfiable). We also mention here the fact that natural
reductions cannot prove better than 2n hardness for 1 < p <∞. We include a simple proof of this
fact in Section 1.3.

Theorem 1.2 (Informal). There is no natural reduction from 3-SAT on n variables to CVP2 on a
lattice with rank n′ ≤ 4(n− 2)/3. In particular, no natural reduction can rule out even a 23n/4-time
algorithm for CVP2 under SETH.

Furthermore, for any 1 < p <∞, there is no natural reduction from 3-SAT on n variables to
CVPp on a lattice with rank n′ < n. In particular, no natural reduction can rule out a 2n-time
algorithm for CVPp under SETH for 1 < p <∞.

Notice that we even rule out reductions from 3-SAT to CVP. To prove SETH-hardness, we
would need to show a reduction from k-SAT for all constant k ≥ 3.

Behind (the non-trivial p = 2 part of) Theorem 1.2 are two new techniques. First is a new result
concerning the structure of the closest lattice vectors to a target point in the `2 norm. Specifically,
we show that the structure of the closest vectors is quite rigid modulo 2L. Second is a new and
tighter proof of Szemerédi’s cube lemma for the boolean hypercube. We expect both of these results
to be of independent interest.

1.2 Our reductions

The high-level idea behind our reductions (and those of [BGS17]) is as follows. The reduction is
given as input a list φ1, . . . , φm of k-clauses on n boolean variables x1, . . . , xn, where k ≥ 2 is some
constant. We wish to construct some basis B ∈ Rd×n and target t ∈ Rd such that for any z ∈ Zn,
‖Bz − t‖pp for z ∈ Zn is small if and only if z ∈ {0, 1}n represents an assignment that satisfies all of
the φi.

To that end, for each φi, we wish to find a matrix Φi ∈ Rd′×n and target ti ∈ Rd′ such that
‖Φiz − ti‖pp is small if and only if zj1 , . . . , zjk ∈ {0, 1} represents an assignment that satisfies φi. If
we could find such matrices, we could take

B :=



Φ1

Φ2
...

Φm

2αIn


∈ Rmd

′×n t :=



t1

t2
...
tm

α1


, (1)
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Problem Upper bounds Lower bounds
Exact Approximate Exact Approximate

CVPp
p /∈ 2Z nO(n) 2O(n) 2(1−ε)n* 2(1−ε)n

p 6= 2 nO(n) 2O(n) 2Ω(n) 2Ω(n)

p = 2 2n+o(n) 2n+o(n) 2Ω(n) 2Ω(n)

CVPPp
p /∈ 2Z nO(n) 2O(n) 2(1−ε)n —
p 6= 2 nO(n) 2O(n) 2Ω(n) —
p = 2 2n+o(n) 2n+o(n) 2Ω(

√
n) —

Table 1: A summary of known quantitative upper and lower bounds under various assumptions
on the complexity of CVPp and CVPPp for p ∈ [1,∞]. New results appear in blue (with a star
next to the one result that is only novel for some p). Upper bounds for the approximate problems
are for any constant approximation factor γ > 1, while lower bounds are for some small, explicit
approximation factor γ > 1 depending on p (and, in the case of CVPp for p /∈ 2Z, also on ε > 0).
The 2(1−ε)n-time lower bounds are based on SETH (or Gap-SETH or non-uniform SETH), while the
2Ω(
√
n)-time and 2Ω(n)-time lower bounds are based on ETH (or Gap-ETH or non-uniform ETH).

where α1 ∈ Rn is the vector whose coordinates are all α. Then, ‖Bz − t‖pp =
∑
i ‖Φiz − ti‖pp will

be small if and only if z ∈ {0, 1}n corresponds to a satisfying assignment. (By taking α to be
sufficiently large, we can guarantee that any closest vectors must be of the form Bz for z ∈ {0, 1}n.)

Since Φi{0, 1}n− ti = {Φiz− ti : z ∈ {0, 1}n} is a parallelepiped, and since the most important
case (corresponding to k-SAT) is when all but one point in this set is long and all others are short, we
call such objects isolating parallelepipeds, as we explain below. The difficult step in these reductions
is therefore to find isolating parallelepipeds Φi, ti.

Finding isolating parallelepipeds. We say that a parallelepiped Φ{0, 1}k − t is a (p, k)-
isolating parallelepiped if all ‖Φz − t‖p = 1 for non-zero z ∈ {0, 1}k and ‖Φ0− t‖p = ‖t‖p > 1. (We
think of the vertex −t as “isolated” from the others. See Figure 1.) To find isolating parallelepipeds,
we construct a family of parallelepipeds parameterized by α1, . . . , α2k ≥ 0 and t∗ ∈ R. This family
has the useful property that the norms ‖Φz − t‖pp are linear in the αi for fixed t∗. (In [BGS17], we
used a less general family of parallelepipeds.)

So, finding isolating parallelepipeds essentially reduces to showing that a certain system of linear
equations has a solution. (We actually need a non-negative solution, but we ignore this technical
issue in the introduction.) To that end, we study the matrix Hk,p(t∗) ∈ R2k×2k corresponding to
this system of linear equations and try to show that its determinant is non-zero for some computable
choice of t∗. To do this, we observe that Hk,p(t∗) satisfies the recurrence

Hk,p(t∗) =
(
Hk−1,p(t∗ − 1) Hk−1,p(t∗ + 1)
Hk−1,p(t∗ + 1) Hk−1,p(t∗ − 1)

)
.

(It is this recurrence that makes this family more useful than the less general family in [BGS17].)
This makes showing that det(Hk,p(t∗)) is non-zero susceptible to a proof by induction on k.
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0 v1

v2 v1 + v2

t∗

(0, 0)

(1, 1)

(2, 2)

(k, k)

t∗

· · ·

Figure 1: (p, k)-isolating parallelepipeds for p = 2, k = 2 (left) and p = 1, k ≥ 1 (right). On the left,
the vectors v1, v2, and v1 + v2 are all at the same distance from t∗, while 0 is strictly farther away.
On the right is the degenerate parallelepiped generated by k copies of the vector (1, 1). The vectors
(i, i) are all at the same `1 distance from t∗ for 1 ≤ i ≤ m, while (0, 0) is strictly farther away. The
(scaled) unit balls centered at t∗ are shown in red, while the parallelepipeds are shown in black.
(Figure taken from [BGS17].)

To that end, we use a formula for the determinant of block matrices of this form to show by
induction that det(Hk,p(t∗)) is equal to the product of 2k functions of t∗. These functions are in
turn each non-zero R-linear combinations of functions of the form (t∗ + β)p for distinct β ∈ R. (The
determinant is actually a piecewise combination of such functions, but we ignore this here.) We
prove that such functions are R-linearly independent if (and only if) either p ≥ k or p /∈ Z. Therefore,
the functions cannot be identically zero for such p, which in turn implies that det(Hk,p(t∗)) is not
identically zero as a function of t∗, as needed. We finish the proof by noting that det(Hk,p(t∗)) is
(piecewise) analytic so that its zeros must be isolated, and it therefore has a computable non-zero
point.

By combining this construction with our previous work, we completely characterize the values
of p and k for which (p, k)-isolating parallelepipeds exist. Namely, the only case not handled by the
construction above is the case where p ∈ {1, . . . , k − 1}. In this case, [BGS17] showed that such
parallelepipeds exist for odd p but cannot exist for even p < k. (We provide a full proof of this latter
claim in Lemma 6.1.) So, (p, k)-isolating parallelepipeds exist if and only if p /∈ {2i : i < k/2}.

As a corollary, we show a reduction from (weighted Max-)k-SAT on n variables to a CVPp
instance with rank n for all p /∈ {2i : i < k/2}. In particular, we prove that CVPp is SETH-hard
for all p /∈ 2Z.

Hardness of CVPPp. We next show how to extend the hardness result above from CVPp to
the Closest Vector Problems with Preprocessing in the `p norm (CVPPp). Namely, we show that
CVPPp is 2n-hard assuming (non-uniform) SETH for all p /∈ 2Z. To do this, we define an enhanced
notion of an isolating parallelepiped, that we call an on-off-isolating parallelepiped (this is analogous
to what [SV19] does for codes). An on-off-isolating parallelepiped is an isolating parallelepiped Φ, t∗
together with a target toff such that ‖Φz − toff‖p is constant for all z ∈ {0, 1}k.
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To use these objects to reduce (Max-)k-SAT on n variables to a CVPPp instance with rank n,
we must reduce k-SAT to CVPp with a fixed basis matrix Bn,k ∈ Rd×n. We use the matrix

Bn,k :=


Φ1
...

ΦM


consisting of the on-off-isolating parallelepipeds for each possible k-clause on n variables, stacked on
top of each other, where M := 2k

(n
k

)
. Given a k-SAT formula {φi1 , . . . , φim}, we create the target

t :=


t1
...
tM


such that ti = toff if φi /∈ {φi1 , . . . , φim} and otherwise ti = t∗. (We are oversimplifying a bit here.
In our actual construction, we must shift toff in a way depending on which literals in the clause are
negated. See Section 4.) I.e., we use toff to “turn off” the clauses that do not appear in our SAT
instance.

Finally, we show that (p, k)-on-off-isolating parallelepipeds exist if and only if (p, k+ 1)-isolating
parallelepipeds exist. To transform a (p, k + 1)-isolating parallelepiped Φ := (Φ′,φk+1), t∗ into a
(p, k)-on-off-isolating parallelepiped, we simply take Φ′, t∗, and toff := t−φk+1. A simple calculation
shows that ‖Φ′z − toff‖p = 1 for all z ∈ {0, 1}k and ‖Φ′z − t∗‖p = 1 for all non-zero z ∈ {0, 1}k, as
needed.

Hardness of approximation. To prove hardness of approximation, we must show how to
reduce approximate Max-k-SAT instance with n variables to an approximate CVPp instance with
rank n. The 2n-hardness of approximate CVPp described in Theorem 1.1 then follows from the
recent Gap-SETH conjecture of Manurangsi [Man19].

The construction shown in Eq. (1) is insufficient to prove hardness of approximation because
the presence of the “identity matrix gadget” 2αIn forces the closest vector to be within distance
roughly αn1/p to the target. As a result, all SAT instances yield a CVPp instance with distp(t,L) ∈
(r, (1 +O(1/n))r) for some radius r ≈ αn1/p.

To reduce to approximate CVPp, we therefore need to somehow remove this gadget, which we do
by extending isolating parallelepipeds to “isolating lattices.” Specifically, we show how to construct
a basis Φ ∈ Rd∗×k and target vector t∗ ∈ Rd∗ such that Φz is a closest lattice vector to t∗ if and only
if z ∈ {0, 1}k and z corresponds to a satisfying assignment of the k-CNF φ. I.e., while previously
the satisfying assignments corresponded exactly to the closest vectors to t∗ in the parallelepiped
Φ{0, 1}k, now the satisfying assignments must correspond exactly to the closest vectors to t∗ in the
entire lattice ΦZk. This eliminates the need for the identity matrix gadget.

Again, we show how to convert any isolating parallelepiped into a full isolating lattice. The main
idea is simply to “append an identity matrix gadget” to the isolating parallelepiped directly, rather
than appending it to the full basis as in Eq. (1). Namely, we convert an isolating parallelepiped Φ, t∗
into an isolating lattice Φ′, t′ by appending a scaled identity matrix 2αIk to the bottom of Φ, and a
constant vector (α, α, . . . , α)T to the bottom of t∗. By setting α to be large enough, we ensure that
any non-binary combination of vectors in Φ′ will be far from t′. By “putting the identity matrix in
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the parallelepiped,” rather than in the whole basis, we are able to obtain an approximation factor
that depends only on k (and the Gap-k-SAT approximation factor) and not on n.

1.3 Impossibility of natural reductions for p = 2
In [BGS17], we showed that the technique described above cannot work for even integers p < k.
Specifically, we showed that isolating parallelepipeds do not exist in this case. However, this still
left open the possibility of some other (potentially even simple) reduction from k-SAT to CVPp for
even integers p—perhaps even for p = 2. Here, we show that a very large class of reductions cannot
work for p = 2. Behind these limitations is a new result concerning the structure of the closest
lattice vectors to a target in the Euclidean norm.

Before we define natural reductions and show their limitations, we motivate the definition by
showing a simple limitation that applies for all 1 < p <∞. Specifically, we recall the well-known
fact that for such p, the number of closest lattice vectors to a target is at most 2n′ , where n′ is the
rank of the lattice. (We show the simple proof of this fact below. Notice that 2n closest vectors are
actually achieved by the integer lattice L = Zn′ and the all-halves target vector t = (1/2, . . . , 1/2).)
Therefore, if a reduction maps each satisfying assignment of some 3-SAT formula to a distinct closest
lattice vector, the rank n of the resulting lattice must be at least log2 S, where S is the number of
satisfying assignments. (Here, and below, we only consider the YES case, when there exists at least
one satisfying assignment.) Since the number of satisfying assignments can be as large as 2n, where
n is the number of variables in the input instance, we must have n′ ≥ n.

Our specific reductions described above actually map each assignment z ∈ {0, 1}n to a very
simple lattice vector: Bz. I.e., z is a satisfying assignment if and only if ‖Bz − t‖2 = r. This
suggests the following generalization of this type of reduction.

We call a reduction natural if there exists a map f from assignments x ∈ {0, 1}n to coordinate
vectors z ∈ Zn′ such that whenever the input 3-SAT formula is satisfiable, ‖Bz − t‖2 = dist2(t,L)
if and only if z = f(x) for some satisfying assignment x ∈ {0, 1}n. (We do not require f , or even
the reduction itself, to be efficiently computable.) Our reductions described above then correspond
to the special case when n = n′ and f is the identity map.

Closest vectors mod two. To rule out such reductions for n′ < 4n/3, we study the algebraic
and combinatorial properties of the set SL,t of closest vectors in a lattice L ⊂ Rn to some target
vector t. To motivate our techniques, let us first recall the well-known simple proof of the fact
(mentioned above) that the number of closest vectors is at most 2n′ for 1 < p <∞. Consider two
distinct closest vectors y1,y2 ∈ L to some target t. Suppose that y1 + y2 = 2v for some lattice
vector v ∈ L. Then, ‖v − t‖p = ‖(y1 − t)/2 + (y2 − t)/2‖p < ‖y1 − t‖p/2 + ‖y2 − t)‖p/2, where
we have used the strict convexity of the `p norms for 1 < p < ∞. (I.e., the triangle inequality
‖x+ y‖p ≤ ‖x‖p + ‖y‖p is tight for 1 < p < ∞ if and only if y is a scalar multiple of x. Notice
that this is false for p = 1 and p =∞, and in each of these cases it is easy to show that there can
be arbitrarily many closest lattice vectors to a target, even in two dimensions.)

The above proof does not only show that the number of closest vectors is at most 2n′ ; it also
shows that the set SB,t ⊂ Zn′ of coordinates of closest vectors in some basis B have some algebraic
structure. Specifically, there can be at most one element in SB,t in each coset of Zn′/(2Zn′). Here,
a coset is the set 2Zn′ + z of all integer vectors with fixed parity. Notice that two cosets can be
added together to obtain a new coset, (2Zn′ + z1) + (2Zn′ + z2) = 2Zn′ + (z1 + z2), and the above
proof relied crucially on this structure. Of course, under addition, the cosets are isomorphic to the
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vector space of Zn′2 . It is then natural to ask about the structure of TB,t := SB,t mod 2, viewed as a
subset of the hypercube Fn′2 .

Indeed, in Section 6 we show the following curious property of SB,t for p = 2. Let C2 ⊂ Fn′2 be
an affine square mod two (i.e., a two-dimensional affine subspace), and suppose that C2 ⊆ TB,t. Let
C ⊆ SB,t be the elements such that C mod 2 = C2. (As we discussed above, there must be exactly
four such elements.) Then, we show that either (1) the points in C form a parallelogram over the
reals (i.e., they must have the form z1, z1 + z2, z1 + z3, z1 + z2 + z3), or (2) there is some specific
set of four other elements C ′ that must also lie in SB,t.

Studying the image of f . To see how this can be used to rule out natural reductions, consider
the image A := f({0, 1}n) of f and A2 := A mod 2. Suppose that A2 contains an affine square
C2 ⊂ A2, with corresponding set C ⊂ A. Suppose that C is not a parallelogram over the reals, and let
C ′ be the other four elements guaranteed by the above discussion. Then, let E := f−1(C) ⊂ {0, 1}n
and E′ := f−1(C ′) ⊂ {0, 1}n be the corresponding set of assignments. We observe that there exist
3-SAT instances that are satisfied by all elements in E but not all elements in E′. (This can be
accomplished with a single clause.) But, our reduction must map any such instance to a basis B
and a target t such that C ′, C ⊂ SB,t. This contradicts the assumption that f only maps satisfying
assignments to closest vectors.

Therefore, whenever A2 contains an affine square C2, the corresponding set C in A must
be a parallelogram. It follows that any affine 3-cube in A2 must correspond to a 3-dimensional
parallelepiped P in A. Finally, we find a 3-SAT instance satisfied by exactly seven of the eight
elements in f−1(P ). It follows that the reduction must produce a parallelepiped with exactly seven
out of eight points closest to some target. In [BGS17], we already showed that this is impossible.
(We provide a simpler proof in Section 6 as well.)

From this, we conclude that A2 cannot contain any affine 3-cube.

Using additive combinatorics to finish the proof. Above, we observed that the image A2
of f modulo 2 cannot contain any 3-cube. But, we have already observed that |A2| = 2n (i.e., the
closest vectors must be distinct modulo 2). So, A2 ⊆ Fn′2 is some subset of 2n points in Fn′2 that
contains no affine hypercube. By Szemerédi’s cube lemma, we must have n′ ≥ 4n/3, which is what
we wished to prove.

In fact, we only need a special case of Szemerédi’s cube lemma. We provide a simpler proof
of this special case based on the pigeon-hole principle. Though the proof is quite simple, to the
authors’ knowledge it is novel.

1.4 Related work

The most closely related work to this paper is of course [BGS17]. There are two additional papers
showing fine-grained hardness of lattice problems, [AS18a], which showed such results for SVP;
and [AC19], which did the same for SIVP. Both of these works relied on the results in [BGS17], and
our improvements therefore immediately imply better hardness results for both SVP and SIVP.

An additional line of work has shown different kinds of hardness for CVP, SVP, and related
problems. In particular, Bhattacharyya, Ghoshal, Karthik, and Manurangsi showed the parame-
terized hardness of CVP and SVP, as well as the analogous coding problems [BGKM18]. [SV19]
showed tight hardness results for coding problems, using many ideas from [BGS17]. We in turn use
some ideas from [SV19], and particular the idea of on-off-isolating parallelepipeds.

8



Finally, we wish to draw attention to the beautiful Gap-SETH hypothesis of Manurangsi [Man19],
presented here in Definition 2.7. The conjecture is quite natural, and we suspect that it will have
many additional applications in the study of fine-grained hardness of approximation. E.g., it was
already mentioned in [SV19] that something like this Gap-SETH hypothesis would imply strong
hardness of approximation results for coding problems.

1.5 Open questions

The most obvious question that we leave open is, of course, to prove similar hardness results for
CVP2, and more generally, for CVPp for even integers p. In the p = 2 case, we show that any
such proof (via SETH) would have to use an “unnatural reduction.” So, a fundamentally different
approach is needed.2

Another potentially easier problem would be to show hardness of CVPp in terms of the ambient
dimension d, rather than n. Indeed, though there do exist 2O(n)-time constant-factor approximation
algorithms for CVPp, the parameter d is in some sense more natural. (E.g., the original algorithm
of [BN09] runs in time 2O(d), and the algorithm of [AM18] also has its running time in terms of d.)
This problem is potentially easier than the above because for p = 2 we may assume without loss of
generality that n = d.

Of course, another open question is to prove stronger quantitative lower bounds for SVPp, and
in particular for SVP2. While [AS18a] did prove quite strong lower bounds for sufficiently large p,
their bounds for small p and in particular for p = 2 are quite weak.

We also note that CVPp for p 6= 2 has received relatively little attention from an algorithmic
perspective. In particular, there has not been much work trying to optimize the hidden constants
in the exponent in the running times of 2O(n) or 2O(d) of the best known algorithms for constant-
factor approximate CVPp. Our lower bounds provide new motivation for work on this subject. In
particular, we ask whether our lower bounds are tight.

In fact, we do not expect our lower bound to be tight in the case when p = ∞. (Recall that
our limitation in Theorem 1.2 does not apply to p = 1 or p = ∞.) Indeed, because the kissing
number in the `∞ norm is 3n− 1, one might guess that the fastest algorithms for CVP∞ and SVP∞
actually run in time 3n+o(n) or perhaps 3d+o(d). (See [AM18], which more-or-less achieves this.) We
therefore ask whether stronger lower bounds can be proven in this special case.

Finally, we note that our results only apply for exact CVPp or CVPp with a small constant
approximation factor. For cryptographic applications, one is interested in much larger approximation
factors, typically approximation factors polynomial in n. While there are strong complexity-theoretic
barriers to proving hardness in that regime, one might still hope to prove fine-grained hardness results
for larger approximation factors—such as large constants or even superconstant. Indeed, we know
NP-hardness up to an approximation factor of nc/ log logn, but this result is not fine-grained [DKRS03].

2We note that the main reduction in [BGS17] works as a (natural) reduction from weighted Max-2-SAT formulas
on n variables with arbitrary (possibly exponential) weights to CVPp instances of rank n for all p ∈ [1,∞), including
p = 2. So, a 2(1−ε)n-time algorithm for CVP2 would imply a 2(1−ε)n-time algorithm for weighted Max-2-SAT with
arbitrary weights, for which no such algorithm is known (Ryan Williams’ algorithm for Max-2-SAT [Wil05] runs in
W · 2ωn/3+o(n)-time, where W is the largest weight of a clause and ω < 2.374 is the matrix multiplication constant).
So, there is (potentially weak) evidence that there is no 2(1−ε)n-time algorithm for CVP2.
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2 Preliminaries

Throughout this paper, we work with lattice problems over Rd for convenience. As usual, to be
formal we must pick a suitable representation of real numbers and consider both the size of the
representation and the efficiency of arithmetic operations in the given representation. But, we omit
such details throughout to ease readability.

2.1 Lattice problems

Let distp(L, t) := minx∈L ‖x − t‖p denote the `p distance of t to L. We next formally define the
lattice problems that we consider.

Definition 2.1. For any γ ≥ 1 and 1 ≤ p ≤ ∞, the γ-approximate Shortest Vector Problem
with respect to the `p norm (γ-SVPp) is the promise problem defined as follows. Given a lattice L
(specified by a basis B ∈ Rd×n) and a number r > 0, distinguish between a ‘YES’ instance where
there exists a non-zero vector v ∈ L such that ‖v‖p ≤ r, and a ‘NO’ instance where ‖v‖p > γr for
all non-zero v ∈ L.

Definition 2.2. For any γ ≥ 1 and 1 ≤ p ≤ ∞, the γ-approximate Closest Vector Problem with
respect to the `p norm (γ-CVPp) is the promise problem defined as follows. Given a lattice L
(specified by a basis B ∈ Rd×n), a target vector t ∈ Rd, and a number r > 0, distinguish between a
‘YES’ instance where distp(L, t) ≤ r, and a ‘NO’ instance where distp(L, t) > γr.

When γ = 1, we simply refer to the problems as SVPp and CVPp.

Definition 2.3. The Closest Vector Problem with Preprocessing with respect to the `p norm (CVPPp)
is the problem of finding a preprocessing function P and an algorithm Q which work as follows.
Given a lattice L (specified by a basis B ∈ Rd×n), P outputs a new description of L. Given P (L), a
target vector t ∈ Rd, and a number r > 0, Q decides whether distp(L, t) ≤ r.

When we measure the runtime of a CVPP algorithm, we only count the runtime of Q, and not
of the preprocessing algorithm P . We will assume that the runtime of Q is at least the size of the
preprocessing, |P (L)|.

2.2 Isolating parallelepipeds

We recall the definition of an isolating parallelepiped from [BGS17]. See Figure 1.

Definition 2.4. For any 1 ≤ p ≤ ∞ and integer k ≥ 1, we say that V ∈ Rd∗×k and t∗ ∈ Rd∗ define
a (p, k)-isolating parallelepiped if:

1. ‖V x− t∗‖p = 1 for all x ∈ {0, 1}k \ {0},

2. ‖t∗‖p > 1.

We will more generally refer to the set V · {0, 1}k − t∗ for V ∈ Rd∗×k and t∗ ∈ Rd∗ as a
k-parallelepiped. We call a 2-parallelepiped a parallelogram.

10



2.3 k-SAT

A k-SAT formula Φ on n boolean variables x1, . . . , xn is the conjunction ∧mi=1Ci of m clauses, each
of which is a dijunction Ci = ∨ks=1`i,k of k literals. Each literal `i,k is either a variable xj or its
negation ¬xj for some j ∈ [n]. The k-SAT problem is, given a k-SAT formula Φ, to decide whether
there exists an assignment a to the variables of Φ that satisfies Φ, i.e., such that Φ(a) = 1.

We next introduce some notation related to k-SAT. Let Φ be a k-SAT formula on n variables
x1, . . . , xn and m clauses C1, . . . , Cm. Let ind(`) denote the index of the variable underlying a literal
`. I.e., ind(`) = j if ` = xj or ` = ¬xj . Call a literal ` positive if ` = xj and negative if ` = ¬xj
for some variable xj . Given a clause Ci = ∨ks=1`i,s, let Pi := {s ∈ [k] : `i,s is positive} and let
Ni := {s ∈ [k] : `i,s is negative} denote the indices of positive and negative literals in Ci respectively.
Given an assignment a ∈ {0, 1}n to the variables of Φ, let Si(a) denote the indices of literals in
Ci satisfied by a. I.e., Si(a) := {s ∈ Pi : aind(`i,s) = 1} ∪ {s ∈ Ni : aind(`i,s) = 0}. Finally, when
a formula Φ is clear from context, let m+(a) denote the number of clauses of Φ satisfied by the
assignment a, i.e., the number of clauses i for which |Si(a)| ≥ 1.

The value of a k-SAT formula Φ, denoted val(Φ), is the maximum fraction of clauses satisfied
by an assignment to Φ.

Definition 2.5. Given a k-SAT formula Φ and constants 0 ≤ δ ≤ ε ≤ 1, the (δ, ε)-Gap-k-SAT
problem is the promise problem defined as follows. The goal is to distinguish between a ‘YES’
instance in which val(Φ) ≥ ε, and a ‘NO’ instance in which val(Φ) < δ.

2.4 Hardness assumptions

Definition 2.6 (SETH; [IPZ01]). For every ε > 0 there exists a k = k(ε) ∈ Z+ such that no
algorithm solves k-SAT on n variables in 2(1−ε)n time.

In his Ph.D. thesis, Manurangsi [Man19] gave one possible definition of Gap-SETH.

Definition 2.7 (Gap-SETH; [Man19, Conjecture 12.1]). For every ε > 0 there exist k = k(ε) ∈ Z+

and δ = δ(ε) > 0 such that there is no algorithm that can distinguish between a k-SAT formula with
n variables that is satisfiable and one that has value less than 1− δ in 2(1−ε)n time.

We will show that CVPp cannot be approximated to within some factor γε > 1 in 2(1−ε)n

time assuming Gap-SETH. Unfortunately, γε decays as a function of ε. However, our reduction
from Gap-k-SAT to CVPp can be adapted to a reduction from any Gap-k-CSP to CVPp with the
same relevant parameters. (Namely, our reduction maps CSP instances on n variables to CVP(P)
instances of rank n.)

We will also use non-uniform variants of ETH and SETH to prove hardness results about CVPPp.

Definition 2.8 (Non-uniform ETH). There is no family of circuits of size 2o(n) that solves 3-SAT
instances on n variables.

Definition 2.9 (Non-uniform SETH). For every ε > 0 there exists a k = k(ε) ∈ Z+ such that no
family of circuits of size 2(1−ε)n solves k-SAT instances on n variables.

Our results are also quite robust to how we define non-uniform (S)ETH. For example, one of
our main results about the complexity of CVPPp roughly says that assuming non-uniform ETH
(as stated above) there is no subexponential-sized family of circuits that decides CVPPp for p 6= 2.
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However, if we were to change non-uniform ETH to say that there is no 2o(n)-time algorithm using
poly(n) advice, then we would get a corresponding statement for CVPPp: that there is no 2o(n)-time
algorithm for CVPPp using poly(n) advice.

Interestingly, many of our results only depend on weaker versions of these hypotheses, where
we replace an assumption about the hardness of k-SAT with an assumption about the hardness of
Max-k-SAT or even weighted Max-k-SAT.

2.5 Linear algebra

We recall that an affine k-cube in Fn2 is {y0 +
∑
j∈W yj : W ⊆ {1, . . . , k}} for some y0 ∈ Fn2 and

linearly independent y1, . . . ,yk ∈ Fn2 .
We will use the following determinant identity for block matrices.

Fact 2.10. Let A,B ∈ Rn×n for some n ∈ Z+. Then

det
(
A B

B A

)
= det(A−B) · det(A+B) .

We say that functions f0, . . . , fn : R → R are linearly independent over the reals if given
a0, . . . , an ∈ R, the sum

∑n
i=0 aifi(x) is identically zero (is equal to 0 for all x ∈ R) only if

a0 = · · · = an = 0. We say that f ∈ Ck if the first k derivatives of f exist and are continuous,
f ∈ C∞ if f has derivatives of all orders, and that f is analytic if f ∈ C∞ and if the Taylor series
of f expanded around any point x in the domain converges to f in some neighborhood of x. We say
that f ∈ Ck(a, b) if the first k derivatives of f exist and are continuous on the (open) interval (a, b)
(we define f ∈ C∞(a, b) and f being analytic on (a, b) analogously).

Definition 2.11. We define the Wronskian of f0, . . . , fn ∈ Cn(a, b) to be det(M), where M is the
(n+ 1)× (n+ 1) matrix defined by

M :=


f0(x) f1(x) · · · fn(x)
d
dxf0(x) d

dxf1(x) · · · d
dxfn(x)

...
... . . . ...

dn

dxn f0(x) dn

dxn f1(x) · · · dn

dxn fn(x)


for x ∈ (a, b).

Because the derivative is a linear operator, we have the following.

Fact 2.12. Functions f0, . . . , fn are linearly independent over the reals if their Wronskian exists
and is not identically zero on some interval (a, b).

3 Isolating parallelepipeds in `p norms for all non-integer p

Our first new result is a strengthening of a result in [BGS17], which asserts that for every fixed
k ∈ Z+ there exist (p, k)-isolating parallelepipeds for almost every p ∈ [1,∞) \ 2Z, to a result
showing that this is true for every p ∈ [1,∞) \ 2Z. We also show that there exist (p, k)-isolating
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parallelepipeds when k ≤ p. Moreover, we show that one of these conditions is also necessary, and
therefore obtain a complete characterization of values of p and k for which isolating parallelepipeds
exist (such isolating parellelepipeds are computable if p is computable).

Our construction generalizes the approach from [BGS17], and follows the same high-level
structure. We start by showing that it suffices to “define isolating parallelepipeds over {−1, 1}
instead of {0, 1},” i.e., that if there exist V = (v1, . . . , vk) ∈ Rd×k and t∗ ∈ Rd that satisfy
‖V y − t∗‖p = 1 for y ∈ {−1, 1}k \ {−1} and ‖V (−1)− t∗‖p > 1, then there exists a (p, k)-isolating
parallelepiped.

We then define a family of k-parallelepipeds V ∈ R2k×k, t∗ ∈ R2k parameterized by 2k numbers,
αu ≥ 0 for u ∈ {−1, 1}k, and a number t∗. Specifically, the row of V indexed by u ∈ {−1, 1}k

is equal to α
1/p
u · uT and the coordinate of (t∗)u = α

1/p
u · t∗. (Throughout this section, we will

adopt the convention that vectors v ∈ R2k for some k ∈ Z+ are indexed by elements in {−1, 1}k
in lexicographic order. We adopt an analogous convention for rows (resp. columns) of matrices
of the form M ∈ R2k×m (resp. M ∈ Rm×2k) for some m.) Figure 2 shows the form of such a
k-parallelepiped when k = 3.

We observe that for such a family of k-parallelepipeds and y ∈ {−1, 1}k, ‖V y − t∗‖pp =∑
u αu|〈u,y − t∗〉|p. I.e., for fixed y and t∗, ‖V y − t∗‖pp is linear in the values αu. This leads us

to define the 2k × 2k matrix Hk,p(t∗) whose entry in row u and column y is equal to |〈u,y〉 − t∗|p.
Then, for non-negative α = (αu)u∈{−1,1}k , the coordinate of Hk,p(t∗) ·α indexed by y is equal to
‖V y − t∗‖pp.

In order to show that there exist choices of α and t∗ such that V and t∗ form a “{−1, 1} isolating
parallelepiped,” it therefore suffices to find non-negative α such that Hk,p(t∗)·α = (1+ε, 1, 1, . . . , 1)T
for some ε > 0. We then use the following proof strategy for finding such α: (1) Show that for certain
values of k and p, Hk,p(t∗) is non-singular so that we can compute α = Hk,p(t∗)−1 ·(1+ε, 1, 1, . . . , 1)T ,
and (2) show that if we pick ε > 0 to be small enough then α computed this way will be non-negative.

3.1 A parameterized family of parallelepipeds

We recall the following lemma from [BGS17], which says that we can “work over {−1, 1} instead
of {0, 1}” when defining isolating parallelepipeds, which we will do in this section. We include its
short proof for completeness.
Lemma 3.1 ([BGS17, Lemma 4.1]). There is an efficient algorithm that takes as input a matrix
V ∈ Rd∗×k and vector t∗ ∈ Rd∗ such that ‖V y − t∗‖p = 1 for any y ∈ {−1, 1}k \ {−1} and
‖ − V 1 − t∗‖p > 1, and outputs a matrix V ′ ∈ Rd∗×k and vector (t∗)′ ∈ Rd∗ that form a (p, k)-
isolating parallelepiped.
Proof. Define V ′ := 2V and (t∗)′ = V 1k + t∗. Now consider the affine transformation f : Rk → Rk
defined by f(x) := (2x− 1k), which maps {0, 1}k to {±1}k and 0 to −1. Then, for x ∈ {0, 1}k and
y = f(x) = 2x− 1 ∈ {±1}k, we have

‖V ′x− (t∗)′‖p =
∥∥∥V ′y + 1

2 − (t∗)′
∥∥∥
p

=
∥∥∥V ′y2 + V ′

1
2 − (t∗)′

∥∥∥
p

= ‖V y − t∗‖p ,

as needed.

We next define a family of k-parallelepipeds V ∈ R2k×k, t∗ ∈ R2k parameterized by 2k nonnegative
numbers {αu}u∈{−1,1}k , where, for some p ≥ 1, α1/p

u scales the row of V and coordinate of t∗

corresponding to u ∈ {−1, 1}k, and a number t∗.
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V :=


α

1/p
(−1,−1,−1) 0 · · · 0

0 α
1/p
(−1,−1,1) · · · 0

...
... . . . ...

0 0 · · · α
1/p
(1,1,1)

 ·



−1 −1 −1
−1 −1 1
−1 1 −1

1 −1 −1
−1 1 1

1 −1 1
1 1 −1
1 1 1



t∗ :=


α

1/p
(−1,−1,−1) 0 · · · 0

0 α
1/p
(−1,−1,1) · · · 0

...
... . . . ...

0 0 · · · α
1/p
(1,1,1)

 ·



t∗

t∗

t∗

t∗

t∗

t∗

t∗

t∗



Figure 2: V and t∗ of the form defined in Definition 3.2 for k = 3 and p ≥ 1. Lemma 3.1 and
Lemma 3.9 together assert that, for p ∈ [1,∞) where p satisfies either (1) p /∈ Z or (2) p ≥ 3, there
exist {αu}u∈{−1,1}3 and t∗ such that V ′ := 2V , (t∗)′ := V 1 + t∗ form an isolating parallelepiped.

Definition 3.2. For p ∈ [1,∞), k ∈ Z+, α ∈ (R≥0)2k , and t∗ ∈ R, define the matrix V = V (α) ∈
R2k×k and vector t∗ = t∗(α, t∗) ∈ R2k as follows. Set the row of V indexed by u to be α1/p

u · uT ,
and set t∗ := t∗ · (α1/p

u )u∈{−1,1}k .

I.e., V is the matrix whose rows consist of vectors u ∈ {−1, 1}k scaled by corresponding weights
α

1/p
u , and the coordinate of t∗ indexed by u is equal to α1/p

u · t∗. (See Figure 2.) We also define
another matrix, H, which we will use to relate our choice of parameters α and t∗ to the value of
‖V y − t∗‖pp for y ∈ {−1, 1}k.

Definition 3.3. For p ≥ 1 and an integer k ≥ 0, define the matrix Hk,p(t∗) ∈ R2k×2k by
(Hk,p(t∗))u,v := |〈u,v〉 − t∗|p for k ≥ 1, and define H0,p(t∗) := |t∗|p.

We next show that for y ∈ {−1, 1}k, ‖V y − t∗‖pp is equal to the inner product of α with row y
of Hk,p(t∗).

Lemma 3.4. For α ∈ (R≥0)2k and t∗ ∈ R, let V = V (α) and let t∗ = t∗(α, t∗) be as defined in
Definition 3.2. Then

(Hk,p(t∗) ·α)y = ‖V y − t∗‖pp .
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Proof. For y ∈ {−1, 1}k,

(Hk,p(t∗) ·α)y =
∑

u∈{−1,1}k

Hk,p(t∗)y,u · αu

=
∑

u∈{−1,1}k

|〈α1/p
u · u,y〉 − α1/p

u · t∗|p

= ‖V y − t∗‖pp ,

as needed.

3.2 Non-singularity of H with certain parameters

We next show that for every k ∈ Z+ and every p ∈ [1,∞) that satisfies either (1) p /∈ Z or (2) p ≥ k,
there exists t∗ ∈ R such that Hk,p(t∗) is non-singular. To show non-singularity, we start with a
general structural result about det(Hk,p(t∗)) as a function of t∗.

Lemma 3.5. Let k ≥ 0 be an integer. Then det(Hk,p(t∗)) is equal to the product of 2k functions of
the form

k∑
j=0

aj · |t∗ − k + 2j|p (2)

for some a0, a1, . . . , ak ∈ Z with a0 = 1.

Proof. We prove the lemma by induction on k, using the following strengthened induction hypothesis.

Induction hypothesis: For every k ≥ 0, m ≥ 0, and a0, a1, . . . , am ∈ Z with a0 = 1,

det
( m∑
j=0

aj ·Hk,p(t∗ + 2j)
)

is equal to the product of 2k functions of the form

m+k∑
j=0

bj · |t∗ − k + 2j|p ,

with b0, b1, . . . , bm ∈ Z and b0 = 1.

Base case: In the base case where k = 0, we have by definition that det(
∑m
j=0 aj ·Hk,p(t∗+ 2j)) =∑m

j=0 aj · | − 2j − t∗|p =
∑m
j=0 aj · |t∗ + 2j|p, as needed.

Inductive case: We next consider the case where k ≥ 1. Let u = (u1,u
′)T ,v = (v1,v

′)T ∈
{−1, 1}k. If u1 = v1 we then have that 〈u,v〉 = 〈u′,v′〉+ 1, and if u1 6= v1 then 〈u,v〉 = 〈u′,v′〉 − 1
(with 〈u′,v′〉 = 0 if u′,v′ are of length 0). Therefore, we can write Hk,p(t∗) in block form as

Hk,p(t∗) =
(
Hk−1,p(t∗ − 1) Hk−1,p(t∗ + 1)
Hk−1,p(t∗ + 1) Hk−1,p(t∗ − 1)

)
,
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and so
m∑
j=0

aj ·Hk,p(t∗ + 2j) =
(∑m

j=0 aj ·Hk−1,p(t∗ + 2j − 1)
∑m
j=0 aj ·Hk−1,p(t∗ + 2j + 1)∑m

j=0 aj ·Hk−1,p(t∗ + 2j + 1)
∑m
j=0 aj ·Hk−1,p(t∗ + 2j − 1)

)
.

We can therefore apply the block matrix determinant formula from Fact 2.10 to obtain

det
( m∑
j=0

aj ·Hk,p(t∗ + 2j)
)

= det
( m∑
j=0

aj ·Hk−1,p(t∗ + 2j − 1)−
m∑
j=0

aj ·Hk−1,p(t∗ + 2j + 1)
)

· det
( m∑
j=0

aj ·Hk−1,p(t∗ + 2j − 1) +
m∑
j=0

aj ·Hk−1,p(t∗ + 2j + 1)
)
.

Each of the two terms in the product in the above expression is then of the form

det
(m+1∑
j=0

a′j ·Hk−1,p((t∗ − 1) + 2j)
)

(3)

for some a′0, a′1, . . . , a′m+1 ∈ Z with a′0 = 1 (since a0 = 1 by the induction hypothesis). Moreover, by
the induction hypothesis the expression in Equation (3) is equal to the product of 2k−1 functions of
the form

(m+1)+(k−1)∑
j=0

bj · |(t∗ − 1) + 2j − (k − 1)|p =
m+k∑
j=0

bj · |t∗ − k + 2j|p

with b0 = 1. It follows that det(
∑m
j=0 aj ·Hk,p(t∗ + 2j)) is equal to the product of 2k functions of

this form, as needed.

We next show that the function t∗ 7→ det(Hk,p(t∗)) is analytic and not identically zero for certain
k and p. Using the general fact that such functions have isolated roots, this leads to a simple
algorithm for finding t∗ such that det(Hk,p(t∗)) is non-singular for such k and p.

Proposition 3.6. Let k ∈ Z+, and let p ∈ [1,∞) be a value that satisfies either (1) p /∈ Z or (2)
p ≥ k. Then det(Hk,p(t∗)) is analytic and not identically zero as a function of t∗ for t∗ > k.

Proof. We note that functions of the form |t∗ − k + 2j|p for j ∈ {0, 1, . . . , k} satisfy |t∗ − k + 2j|p =
(t∗ − k + 2j)p and are analytic for t∗ > k. By Lemma 3.5, det(Hk,p(t∗)) is a product of 2k linear
combinations of functions of this form (as in Equation (2)). This implies that det(Hk,p(t∗)) is also
analytic for t∗ > k, and moreover that in order to show that det(Hk,p(t∗)) is not identically zero it
suffices to show that each of these linear combination is not identically zero.

Lemma 3.5 further asserts that each of the linear combinations
∑k
j=0 aj · |t∗− k+ 2j|p appearing

as terms in the expansion of det(Hk,p(t∗)) has a0 = 1, and in particular that it is not the all-zeros
combination. So, to show that

∑k
j=0 aj · |t∗ − k + 2j|p is not identically zero, it suffices to show that

the functions |t∗ − k + 2j|p for j ∈ {0, 1, . . . , k} are linearly independent over the reals. Moreover, it
suffices to show that these functions are linearly independent for t∗ > k, and therefore to show that
the functions (t∗ − k + 2j)p for each j are linearly independent, since |t∗ − k + 2j|p = (t∗ − k + 2j)p
for t∗ > k.
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By Fact 2.12, to show that these functions are linearly independent it suffices to show that their
Wronskian W := det(M) with

M = Mp,k(t∗) :=


(p)0 · (t∗ − k)p (p)0 · (t∗ − k + 2)p · · · (p)0 · (t∗ + k)p

(p)1 · (t∗ − k)p−1 (p)1 · (t∗ − k + 2)p−1 · · · (p)1 · (t∗ + k)p−1

...
... . . . ...

(p)k · (t∗ − k)p−k (p)k · (t∗ − k + 2)p−k · · · (p)k · (t∗ + k)p−k


is not identically zero for t∗ > k. Here the notation (p)i denotes the falling factorial function, which
is defined by (p)i := p(p− 1) · · · (p− (i− 1)) for i ≥ 1 and (p)0 := 1.

We note that W is not identically zero if and only if the determinant of M with its rows or
columns multiplied by a non-zero function of t∗ is not identically zero. Accordingly, dividing the ith
row of M (which has rows indexed by i ∈ {0, 1, . . . , k}) by (p)i (which is non-zero because of our
assumptions about p) we obtain

M ′ = M ′p,k(t∗) :=


(t∗ − k)p (t∗ − k + 2)p · · · (t∗ + k)p

(t∗ − k)p−1 (t∗ − k + 2)p−1 · · · (t∗ + k)p−1

...
... . . . ...

(t∗ − k)p−k (t∗ − k + 2)p−k · · · (t∗ + k)p−k

 .

Similarly, dividing the jth column of M ′ (which has columns indexed by j ∈ {0, 1, . . . , k}) by
(t∗ − k + 2j)p−k (which is well-defined and non-zero for t∗ > k) we obtain

M ′′ = M ′′p,k(t∗) :=


(t∗ − k)k (t∗ − k + 2)k · · · (t∗ + k)k

(t∗ − k)k−1 (t∗ − k + 2)k−1 · · · (t∗ + k)k−1

...
... . . . ...

1 1 · · · 1

 ,

which is a Vandermonde matrix up to transposition and reordering of the rows. We can therefore
use the formula for the determinant of a Vandermonde matrix to compute

det(M ′′) = −
∏

0≤i<j≤k

(
(t∗ − k + 2j)− (t∗ − k + 2i)

)
= −

∏
0≤i<j≤k

2(j − i) 6= 0

Hence W is not identically zero, as needed.

Corollary 3.7. For every k ∈ Z+ and every real p ∈ [1,∞) that satisfies either (1) p /∈ Z or (2)
p ≥ k, there exists t∗ such that det(Hk,p(t∗)) 6= 0. Moreover, if p is computable then there is an
algorithm that on input k and p outputs such a t∗.

Proof. The corollary is an immediate consequence of Proposition 3.6 and the fact that an analytic
function that is not identically zero has isolated roots. Indeed, the fact that such a function has
isolated roots implies that the following algorithm must halt (when p is computable). Compute
det(Hk,p(t∗i )) where t∗i = k + 2−i for i = 1, 2, . . ., and output the first t∗i for which det(Hk,p(t∗i )) 6=
0.
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3.3 Finishing the proof

We next prove that the matrix Hk,p(t∗) is stochastic, i.e., that it has 1 = (1, 1, . . . , 1)T as an
eigenvector. This essentially follows from the fact that for arbitrary u1,u2 ∈ {−1, 1}k and uniformly
random v ∼ {−1, 1}k, the distributions 〈u1,v〉 and 〈u2,v〉 are identical, which in turn follows
from the fact that the value of 〈u,v〉 is determined solely by the number of coordinates on which
u,v ∈ {−1, 1}k agree.
Lemma 3.8. For every k ∈ Z+ and every p ∈ [1,∞), Hk,p(t∗) has 1 as an eigenvector with
corresponding eigenvalue

λ =
k∑
j=0

(
k

j

)
|t∗ − k + 2j|p > 0 .

Proof. Fix a row index u ∈ {−1, 1}k. Then

(Hk,p(t∗) · 1)u =
∑

v∈{−1,1}k

|〈u,v〉 − t∗|p =
k∑
j=0

(
k

j

)
|k − 2j − t∗|p =

k∑
j=0

(
k

j

)
|t∗ − k + 2j|p ,

where we have used the fact that 〈u,v〉 = k − 2j if and only if ui 6= vi for exactly j coordinates
i ∈ {1, . . . , k}. Because

∑
v∈{−1,1}k Hk,p(t∗)u,v does not depend on u, we get that (1, 1, . . . , 1)T is

an eigenvector of Hk,p(t∗) with corresponding eigenvalue
∑k
j=0

(k
j

)
|t∗ − k + 2j|p. Each term in this

sum is non-negative, and at most one term is zero. By the assumption that k ≥ 1, the sum has at
least two terms and is therefore positive, as claimed.

If H is non-singular then for any vector b we can solve the linear system Hk,p(t∗) · α = b to
obtain some solution α. In particular, we can set b = (1 + ε, 1, 1, . . . , 1) for some ε > 0 and then
solve for α. The issue with this is that we critically require that our solution α be non-negative,
and a priori there is no guarantee that it will be. However, we next show that by setting ε > 0 to
be sufficiently small we can ensure α will in fact be non-negative.
Lemma 3.9. Let k ∈ Z+, let p ∈ [1,∞) be a number that satisfies either (1) p /∈ Z or (2) p ≥ k.
Then there exists a vector α ∈ (R≥0)2k with the property that

Hk,p(t∗) ·α = 1 + εe1 = (1 + ε, 1, 1, . . . , 1)

for some ε > 0. Moreover, there is an algorithm that, on input k ∈ Z+ and any computable
p ∈ [1,∞) with either (1) p /∈ Z or (2) p ≥ k, outputs such a vector α.
Proof. By Corollary 3.7, there exists t∗ > k such that Hk,p(t∗) is non-singular. Fix such an t∗,
and let α′ := Hk,p(t∗)−1 · e1. By Lemma 3.8, 1 is an eigenvector of Hk,p(t∗) with corresponding
eigenvalue λ =

∑k
j=0

(k
j

)
|t∗ − k + 2j|p > 0. Let

α := 1
λ
·
(
1 + α′

‖α′‖∞

)
.

Then α is non-negative, and Hk,p(t∗) ·α = 1 + εe1, where ε = 1/(λ · ‖α′‖∞) > 0, as needed.

The main result of this section then follows by combining Lemma 3.1, Lemma 3.4, and Lemma 3.9.
Theorem 3.10. For k ∈ Z+ and p ∈ [1,∞) if p satisfies either (1) p /∈ Z or (2) p ≥ k, there exists
a (p, k)-isolating parallelepiped V ∈ R2k×k, t∗ ∈ R2k . Moreover, if p is computable then there is an
algorithm that on input k and p outputs such an isolating parallelepiped.
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3.4 A characterization of isolating parallelepipeds

By combining the new isolating parallelepiped construction for p /∈ Z and p ≥ k and impossibility
results in this paper (Theorem 3.10 and Corollary 6.4, respectively) with the isolating parallelepiped
construction in [BGS17] for odd integer p, we obtain a complete characterization of the values of p
and k for which there exist (p, k)-isolating parallelepipeds.

Theorem 3.11. There exists a (p, k)-isolating parallelepiped for k ∈ Z+ and p ∈ [1,∞) if and only
if p satisfies either (1) p /∈ 2Z or (2) p ≥ k. Moreover, there is an algorithm that on input k ∈ Z+

and any computable p ∈ [1,∞) with either (1) p /∈ 2Z or (2) p ≥ k, outputs V ∈ R2k×k and t∗ ∈ R2k

that define a (p, k)-isolating parallelepiped.

Proof. By Proposition 4.4 and Corollary 4.7 in [BGS17], such parallelepipeds and the corresponding
algorithm exist for odd integers p. Theorem 3.10 shows that such parallelepipeds exist for all p ≥ k
and all p /∈ Z, with corresponding algorithms for computable p. Corollary 6.4 shows that these are
the only cases in which isolating parallelepipeds exist.

The reduction from (weighted Max-)k-SAT to CVPp assuming the existence of computable
(p, k)-isolating parallelepipeds given in [BGS17, Theorem 3.2] immediately implies the following.
(We actually show a strictly stronger reduction in Section 5.)

Corollary 3.12. For every ε > 0 and every computable p ∈ [1,∞) \ 2Z, there is no 2(1−ε)n-time
algorithm for CVPp assuming W-Max-SAT-SETH. In particular, there is no 2(1−ε)n-time algorithm
for CVPp assuming SETH.

We also note that the “in particular” part of the above claim also holds for p =∞ by [BGS17,
Theorem 6.5], but that the reduction given in [BGS17, Theorem 3.2] only works when p is finite.

A natural question to ask is whether Corollary 3.12 can be extended to p ∈ 2Z using a reduction
that does not use isolating parallelepipeds. In Section 6, we give an impossibility result precluding
a much larger class of reductions, which we call “natural reductions.”

4 Hardness of CVPP from on-off isolating parallelepipeds

In this section, we substantially improve the quantitative hardness results from [BGS17] for
CVPPp. [BGS17] showed 2Ω(

√
n)-hardness of CVPPp for all p ∈ [1,∞) assuming non-uniform

ETH, and did not show any additional hardness assuming non-uniform SETH. Here we show
2Ω(n)-hardness of CVPPp for all p 6= 2 (including even integers other than 2) assuming non-uniform
ETH, and 2(1−ε)n-hardness of CVPPp for all p /∈ 2Z assuming non-uniform SETH. We also show
both of these results for p =∞. We do not show any improved hardness for the case where p = 2,
which remains a tantalizing open question.

We show these results by defining a family of geometric gadgets called “(p, k)-on-off isolating
parallepeipeds” that are defined by vectors v1, . . . ,vk and two targets ton and toff, and then showing
that such gadgets exist if and only if “normal” (p, k + 1)-isolating parallepipeds exist. As the name
suggests, (p, k)-on-off isolating parallelepipeds will allow us to “turn clauses on and off.” More
precisely, for a given n and k, we will output a single basis B = (b1, . . . , bn) as preprocessing. Then,
given a k-SAT instance Φ on n variables, we will output a target vector t that uses copies of ton
to “turn on” row blocks in B corresponding to all clauses in Φ, and copies of toff to “turn off” row
blocks in B corresponding to clauses not in Φ.
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The high-level strategy of outputting a basis B that “represents all clauses possible in an
n-variable k-SAT instance” as preprocessing, and then, given a k-SAT instance Φ on n variables, of
“turning on and off clauses” according to whether they appear in Φ using the query target t is the
same as was used in [BGS17, Lemma 6.1]. However, here we use a different framework for turning
on and off clauses, and use it to output bases B of lower rank, leading to improved hardness results.

4.1 On-off isolating parallelepipeds

Definition 4.1 (On-off isolating parallelepiped). For 1 ≤ p ≤ ∞ and k ∈ Z+, we say that
V ∈ Rd∗×k, ton ∈ Rd∗, and toff ∈ Rd∗ define a (p, k)-on-off isolating parallelepiped if:

1. For all x ∈ {0, 1}k \ {0}, ‖V x− ton‖p = 1.

2. ‖V 0− ton‖p = ‖ton‖p > 1.

3. For all x ∈ {0, 1}k, ‖V x− toff‖p = 1.3

We note that the first two conditions are the same as in the definition of “normal” isolating
parallelepipeds (Definition 2.4) with ton taking the role of t∗. As in the case of isolating paral-
lelepipeds, the 2k − 1 close vectors V x for x ∈ {0, 1}k \ {0} to ton correspond to the 2k − 1 possible
satisfying assignments to the variables of a k-clause, and the more distant vector 0 corresponds
to the single falsifying assignment to the variables of a k-clause. The new third condition asserts
that all 2k vectors V x for x ∈ {0, 1}k are equally close to toff, which says that the distance between
V x and toff will be the same regardless of whether the corresponding clause is satisfied or not. In
other words, by using toff in place of ton (or t∗), we will be able to “turn off” a clause so that its
satisfiability is irrelevant.

The following proposition gives a construction of a (p, k)-on-off isolating parallelepiped from a
(p, k+ 1)-isolating parallelepiped and vice-versa, therefore showing that one of these objects exists if
and only if the other one does.

Proposition 4.2. For every p ∈ [1,∞) and integer k ≥ 1, there exists a computable (p, k)-on-off
isolating parallelepiped if and only if there exists a computable (p, k + 1)-isolating parallelepiped.

Proof. Suppose that V = (v1, . . . ,vk+1), t∗ define a (p, k + 1)-isolating parallelepiped. Set V ′ :=
(v1, . . . ,vk), set ton := t∗, and set toff := t∗ − vk+1. It is straightforward to check that V ′, ton, toff
define a (p, k)-on-off isolating parallelepiped.

Suppose that V = (v1, . . . ,vk), ton, toff define a (p, k)-on-off isolating parallelepiped. Set v′i := vi
for i = 1, . . . , k, set v′k+1 := ton − toff, and set t∗ := ton. It is straightforward to check that
V ′ := (v′1, . . . , v′k+1), t∗ define a (p, k + 1)-isolating parallelepiped.

3It is natural to ask whether the given definition of an on-off isolating parallelepiped is sufficiently general. Indeed,
one could define three different radii rgood := ‖V x−ton‖p for x ∈ {0, 1}k \{0}, rbad := ‖ton‖p, and roff := ‖V x−toff‖p

for x ∈ {0, 1}k corresponding to the three cases in the definition (with the requirement that rgood < rbad). However,
given V, ton, toff satisfying these conditions for some rgood, rbad, roff, we can output another (p, k)-on-off isolating
parallelepiped that achieves roff = rgood = 1 simply by appending a coordinate of value |rp

good − rp
off|

1/p to toff if
rgood > roff and to ton if roff > rgood, and then normalizing. So, the definition given is essentially without loss of
generality.
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4.2 Hardness of CVPP from on-off isolating parallelepipeds

The following theorem and corollary together say that, if there exists a (p, k)-on-off isolating
parallelepiped for infinitely many k, then there is no 2(1−ε)n-time algorithm for CVPPp assuming
non-uniform SETH. They are analogous to Theorem 3.2 and Corollary 3.3 in [BGS17], but with
“on-off isolating parallepipeds” in place of “isolating parallelepipeds” and with “CVPP” in place of
“CVP.”4 Theorem 4.3 also leads to 2Ω(n)-hardness of CVPp for all p 6= 2 assuming non-uniform ETH.

Theorem 4.3. If there exists a computable (p, k)-on-off isolating parallelepiped defined by V =
(v1, . . . ,vk) ∈ Rd∗×k, ton ∈ Rd∗, toff ∈ Rd∗ for some p ∈ [1,∞) and k ∈ Z+, then there exist a pair
of polynomial-time algorithms (P,Q) (in analogy to the definition of CVPP) that behave as follows.

1. On input n ∈ Z+, P outputs a basis B ∈ Rd×n of a rank n lattice L, where d = 2k
(n
k

)
d∗ + n.

2. On input a Max-k-SAT instance with n variables, Q outputs a target vector t ∈ Rd and a
distance bound r ≥ 0 such that distp(t,L) ≤ r if and only if the input is a ‘YES’ instance.

Proof. Let M := 2k ·
(n
k

)
= O(nk) be the total possible number of k-clauses on n variables, and

let C1, . . . , CM denote those clauses. By assumption, there exists a (p, k)-isolating parallelepiped
V, ton, toff with ‖ton‖p = 1 + ε for some ε > 0.

The algorithm P constructs the basis B ∈ Rd×n as

B :=


B1
...

BM

2α · In

 ,

for α := M1/p · (1 + ε) and with blocks Bi ∈ Rd∗×n defined by

(Bi)j :=


vs if xj is the sth literal of Ci ,
−vs if ¬xj is the sth literal of Ci ,
0 otherwise ,

for 1 ≤ i ≤M and 1 ≤ j ≤ n.
Given an instance (Φ,W ) of Max-k-SAT with m clauses, the algorithm Q outputs t ∈ Rd defined

by

t :=


t1
...
tM

α · 1

 ,

4However, as a technical difference, the reduction below works as a reduction from MAX-k-SAT (or weighted
MAX-k-SAT with polynomial integer weights), but not as a reduction from weighted MAX-k-SAT with arbitrary
weights as in [BGS17, Theorem 3.2]. This is because the reduction in [BGS17, Theorem 3.2] requires scaling rows of
both the basis matrix and target vector, and now we must output the basis matrix before we know the weights of the
input weighted MAX-k-SAT instance.
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where ti := ton −
∑
s∈Ni

vs if Ci is in Φ and ti := toff −
∑
s∈Ni

vs if Ci is not in Φ for 1 ≤ i ≤ M ,
and

r := ((M − (m−W )) + (m−W ) · (1 + ε)p + n · αp)1/p .

Clearly, both P and Q run in polynomial time. We next analyze for which y ∈ Zn it holds that
‖By−t‖p ≤ r. Note that by the definition of α above, αp = M ·(1+ε)p ≥ (M−(m−W ))+(m−W )·
(1+ε)p for all m and W . Therefore, for y /∈ {0, 1}n, ‖By−t‖pp ≥ αp

∑n
i=1|2yi−1|p ≥ (n+2) ·αp > rp.

So, we only need to analyze the case where y ∈ {0, 1}n.
Consider an assignment y ∈ {0, 1}n to the variables of Φ. Then for 1 ≤ i ≤M such that Ci is

in Φ,

‖Biy − ti‖p =
∥∥∥ ∑
s∈Pi

yind(`i,s) · vs −
∑
s∈Ni

yind(`i,s) · vs −
(
ton −

∑
s∈Ni

vs
)∥∥∥

p

=
∥∥∥ ∑
s∈Pi

yind(`i,s) · vs +
∑
s∈Ni

(
1− yind(`i,s)

)
· vs − ton

∥∥∥
p

=
∥∥∥ ∑
s∈Si(y)

vs − ton
∥∥∥
p
.

By assumption, the last quantity is equal to 1 if |Si(y)| ≥ 1 and is equal to 1 + ε otherwise. A
similar argument shows that for 1 ≤ i ≤M such that Ci is not in Φ,

‖Biy − ti‖p =
∥∥∥ ∑
s∈Si(y)

vs − toff
∥∥∥
p

= 1

regardless of y.
Because |Si(y)| ≥ 1 if and only if Ci is satisfied, it follows that

‖By − t‖pp =
( M∑
i=1
‖Biy − ti‖pp

)
+ n · αp = M − (m−m+(y)) + (m−m+(y)) · (1 + ε)p + n · αp .

Therefore, ‖By − t‖p ≤ r if and only if m+(y) ≥ W , and therefore there exists y such that
‖By − t‖p ≤ r if and only if (Φ,W ) is a ‘YES’ instance of MAX-k-SAT, as needed.

We get the following two corollaries about the hardness of CVPPp assuming (non-uniform,
Max-SAT versions of) SETH and ETH, respectively. Corollary 4.4 asserts that we get the same
2(1−ε)n hardness of CVPPp for p /∈ 2Z that we get for CVPp (assuming non-uniform SETH).

Corollary 4.4. For every p ∈ [1,∞) \ 2Z and ε > 0, there is no 2(1−ε)n-time algorithm for CVPPp
assuming non-uniform Max-SAT-SETH. In particular, there is no 2(1−ε)n-time algorithm for CVPPp
assuming non-uniform SETH.

Proof. Combine Theorem 3.11, Proposition 4.2, and Theorem 4.3.

Finally, Corollary 4.5 asserts that for every p 6= 2, CVPPp takes 2Ω(n)-time assuming ETH. We
emphasize that, interestingly, this lower bound holds for even integers p = 4, 6, . . . greater than 2,
therefore yielding a stronger hardness result for CVPPp for all values of p 6= 2 than what is known
for p = 2.

Corollary 4.5. For every p ≥ 1, p 6= 2, there is no 2o(n)-time algorithm for CVPPp assuming
non-uniform Max-SAT-ETH. In particular, there is no 2o(n)-time algorithm for CVPPp assuming
non-uniform ETH.
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4.3 SETH Hardness of CVPP∞
Finally, we show that CVPP∞ requires 2(1−ε)n-time assuming non-uniform SETH.
Theorem 4.6. For every k ∈ Z+, there exists a pair of polynomial-time algorithms (P,Q) (in
analogy to the definition of CVPP) that behave as follows.

1. On input n ∈ Z+, P outputs a basis B ∈ Rd×n of a rank n lattice L, where d = 2k
(n
k

)
+ n.

2. On input a k-SAT instance with n variables, Q outputs a target vector t ∈ Rd such that
dist∞(t,L) ≤ k/2 if and only if the input is a ‘YES’ instance.

Proof. Let M := 2k ·
(n
k

)
= O(nk) be the total possible number of k-clauses on n variables, and let

C1, . . . , CM denote those clauses.
The algorithm P constructs the basis B ∈ Rd×n as

B :=


bT1
...
bTM
k · In

 ,

and with rows bTi defined by

(Bi)j :=


1 if xj is the sth literal of Ci ,
−1 if ¬xj is the sth literal of Ci ,
0 otherwise ,

for 1 ≤ i ≤M and 1 ≤ j ≤ n.
Given an instance Φ of k-SAT with m clauses, the algorithm Q outputs t ∈ Rd defined by

t :=


t1
...
tM
k
2 · 1

 ,

where ti := (k + 1)/2− |Ni| if Ci is in Φ and ti := k/2− |Ni| if Ci is not in Φ for 1 ≤ i ≤M , and
where r := k/2.

Clearly, both P and Q run in polynomial time. We next analyze for which y ∈ Zn it holds that
‖By − t‖∞ ≤ r = k/2. If y /∈ {0, 1}n, ‖By − t‖∞ ≥ maxi∈[n]|yi · k − k/2| ≥ 3k/2. So, we only need
to analyze the case where y ∈ {0, 1}n.

Consider an assignment y ∈ {0, 1}n to the variables of Φ. Then for 1 ≤ i ≤M such that Ci is
in Φ, ∣∣∣〈bi,y〉 − ti∣∣∣ =

∣∣∣ ∑
s∈Pi

yind(`i,s) −
∑
s∈Ni

yind(`i,s) − ((k + 1)/2− |Ni|)
∣∣∣

=
∣∣∣ ∑
s∈Pi

yind(`i,s) −
∑
s∈Ni

(1− yind(`i,s))− (k + 1)/2
∣∣∣

=
∣∣∣|Si(y)| − (k + 1)/2

∣∣∣.
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It follows that if |Si(y)| = 0 then |〈bi,y〉 − ti| = (k + 1)/2, and otherwise |〈bi,y〉 − ti| ≤ (k − 1)/2.
Because |Si(y)| ≥ 1 if and only if clause Ci is satisfied, it follows that |〈bi,y〉 − ti| ≤ (k − 1)/2 if
and only if clause Ci is satisfied.

A similar argument shows that for 1 ≤ i ≤M such that Ci is not in Φ,

|〈bi,y〉 − ti| = ||Si(y)| − k/2|

regardless of y.
Therefore for y ∈ {0, 1}n, max1≤i≤M |〈bi,y〉 − ti| is less than or equal to k/2 if every clause in Φ

is satisfied, and is greater than (k + 1)/2 if there exists a clause in Φ that is not satisfied. It follows
that

‖By − t‖∞ = max{|〈b1,y〉 − t1|, . . . , |〈bm,y〉 − tm|, k/2} = k/2 = r

if y satisfies Φ, and ‖By − t‖∞ ≥ (k + 1)/2 > r if not. Therefore, there exists y ∈ {0, 1}n that
satisfies Φ if and only if there exists y ∈ {0, 1}n that satisfies ‖By − t‖∞, as needed.

We note that the preceding reduction actually gives mild hardness of approximation for CVPP∞
(depending on k), which is similar to the case for CVP∞ [BGS17, Theorem 6.5].

Corollary 4.7. For every ε > 0, there exists k = k(ε) ∈ Z+ such that there is no 2(1−ε)n-time
algorithm that approximates CVPP∞ to within a factor less than 1 + 1/k assuming non-uniform
SETH. In particular, there is no 2(1−ε)n-time algorithm for CV PP∞ assuming non-uniform SETH.

5 Gap-SETH hardness of CVP

In this section, we show that for all p ∈ [1,∞) \ 2Z and every ε > 0 there exists γ = γ(p, ε) > 1 such
that there is no 2(1−ε)n-time algorithm for γ-approximate CVPp (and CVPPp) assuming Gap-SETH
(Definition 2.7).

The main reduction in [BGS17] reduces k-SAT instances with n variables to CVP instances of
rank n with basis matrix B where closest lattice vectors are guaranteed to be 0-1 combinations of
basis vectors. These 0-1 combinations naturally correspond to boolean assignments to the variables
of the k-SAT formula, which is essential to the analysis of the reduction. That reduction in [BGS17]
enforces the condition that 0-1 combinations of vectors in the basis B are closest to the target t by
appending a scaled identity matrix 2α · In for some large α > 0 to the bottom of another matrix B′,
and appending the “all α” vector α · 1 to the bottom of another vector t′ (the hardness reduction
for CVPPp in Theorem 4.3 also works this way).

Because of the scaled identity matrix appended to the bottom of B′, the ratio between the
distance of 0-1 combinations of basis vectors corresponding to satisfying and unsatisfying assignments
approaches 1 as n approaches infinity, even when k is fixed. This precludes the reduction working
as a reduction from Gap-k-SAT to γ-approximate CVP for γ independent of n. However, in this
section, we show that by appending 2α · Ik, α · 1 to the respective components V = (v1, . . . ,vk),
t∗ of an isolating parallelepiped instead of appending 2α · In, α · 1 to the bottom of B′, t′ lets us
circumvent this issue and therefore prove stronger (conditional) hardness of approximation results
for CVPp.
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5.1 Isolating lattices

The following definition strengthens the notion of an “isolating parallelepiped” to an “isolating
lattice,” which is defined by a basis matrix V ∈ Rd∗×k and a target t∗ ∈ Rd∗ . Like for an isolating
parallelepiped, we require that ‖t∗‖ > ‖V x− t∗‖ = 1 for all non-zero x ∈ {0, 1}k, but for isolating
lattices we also require that ‖V x− t∗‖ > ‖t∗‖ for x /∈ {0, 1}k. We also require V to have linearly
independent columns (so that it forms a basis) rather than allowing it to be arbitrary.

Definition 5.1. For any 1 ≤ p ≤ ∞ and integer k ≥ 1, we say that V ∈ Rd∗×k with full column
rank and t∗ ∈ Rd∗ define a (p, k)-isolating lattice if there exists ε > 0 such that:

1. ‖V x− t∗‖p = 1 for all x ∈ {0, 1}k \ {0},

2. ‖t∗‖p = 1 + ε,

3. ‖V x− t∗‖p > 1 + ε for all x ∈ Zk \ {0, 1}k.

The following proposition shows how to construct a (p, k)-isolating lattice from any (p, k)-isolating
parallelepiped V, t∗. Again, the idea is simply to append a scaled identity matrix to the bottom of
V and a vector whose entries are all the same to the bottom of t∗.

Proposition 5.2. For every p ∈ [1,∞) and k ∈ Z+, there exists a computable (p, k)-isolating lattice
if and only if there exists a computable (p, k)-isolating parallelepiped.

In order to show this, we will use the following claim.

Claim 5.3. Suppose that V = (v1, . . . ,vk), t∗ define a (p, k)-isolating parallelepiped for 1 ≤ p ≤ ∞
and k ≥ 2. Then ‖t∗‖p ≤ 3.

Proof. By the triangle inequality and the definition of an isolating parallelepiped, ‖v1‖p ≤ ‖v2 −
t∗‖p + ‖v1 + v2 − t∗‖p = 2 and so ‖t∗‖p ≤ ‖v1‖p + ‖v1 − t∗‖p ≤ 3.

We note that the above claim is tight for the simple, degenerate 1-dimensional (p, 2)-isolating
paralellepiped where v1 := v2 := 2 and t∗ := 3 (such isolating parallelepipeds were used in [BGS17]).

Proof of Proposition 5.2. Every (p, k)-isolating lattice is already a (p, k)-isolating parallelepiped by
definition. On the other hand, suppose that V , t∗ define a (p, k)-isolating parallelepiped. Then set

V ′ :=
(

V

6 · Ik

)
, t′ :=

(
t∗

3 · 1

)
.

It is straightforward to check that V ′ has full column rank, that ‖V ′x − t′‖pp = k · 3p + 1 for
x ∈ {0, 1}k \ {0}, that k · 3p + 1 < ‖t′‖pp ≤ (k + 1) · 3p (by Claim 5.3), and that ‖V ′x − t′‖pp ≥
(k + 1) · 3p + 9p > (k + 1) · 3p ≥ ‖t′‖pp for x ∈ Zk \ {0, 1}k. Therefore, we can normalize V ′, t′ to
obtain a (p, k)-isolating lattice.
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5.2 Gap-SETH hardness of CVP from isolating lattices

Theorem 5.4. If there exists a computable (p, k)-isolating lattice for some p ∈ [1,∞) and k ∈ Z+,
then there exists a polynomial time reduction from any (1−δ, 1)-Gap-k-SAT instance with n variables
and δ ∈ (0, 1) to a γ-CVPp instance of rank n with γ = γ(p, k, δ) > 1.

Proof. Let Φ be a (1−δ, 1)-Gap-k-SAT instance with n variables and m clauses C1, . . . , Cm. Suppose
that V ∈ Rd∗×k, t∗ ∈ Rd∗ define a (p, k)-isolating lattice, with ‖t∗‖ = 1 + ε for some ε > 0 as in
Definition 5.1.

We define the output γ-CVPp instance (B, t, r) as follows. We set

B :=


B1
...
Bm

 , t :=


t1
...
tm

 ,

with blocks Bi ∈ Rd∗×n defined by

(Bi)j :=


vs if xj is the sth literal of Ci,
−vs if ¬xj is the sth literal of Ci,
0 otherwise

for 1 ≤ i ≤ m and 1 ≤ j ≤ n, and ti := t∗ −
∑
s∈Ni

vs. We set r := m1/p. Clearly, the reduction
runs in polynomial time. The fact that B is full-rank (and hence a lattice basis) follows from the
fact that V is full-rank, assuming without loss of generality that all n variables appear in Φ.

Given y ∈ Zn, let χ(y) ∈ {0, 1}n denote the vector whose ith coordinate is set to 1 if yi ≥ 1 and
is set to 0 otherwise. Fix such a y ∈ Zn. Then

‖Biy − ti‖p =
∥∥∥ ∑
s∈Pi

yind(`i,s) · vs −
∑
s∈Ni

yind(`i,s) · vs −
(
t∗ −

∑
s∈Ni

vs
)∥∥∥

p

=
∥∥∥ ∑
s∈Pi

yind(`i,s) · vs +
∑
s∈Ni

(
1− yind(`i,s)

)
· vs − t∗

∥∥∥
p

≥
∥∥∥ ∑
s∈Pi

χ(y)ind(`i,s) · vs +
∑
s∈Ni

(
1− χ(y)ind(`i,s)

)
· vs − t∗

∥∥∥
p

=
∥∥∥ ∑
s∈Si(χ(y))

vs − t∗
∥∥∥
p
.

(4)

We consider two cases: (1) the case where y ∈ {0, 1}n, and (2) the case where y /∈ {0, 1}n.
In case (1), the inequality in Equation (4) is an equality, and we have that ‖Biy − ti‖p =∥∥∥∑s∈Si(χ(y)) vs− t∗

∥∥∥
p

= ‖
∑
s∈Si(y) vs− t∗‖p, which is equal to 1 if y satisfies Ci (i.e. if |Si(y)| ≥ 1),

and is equal to 1 + ε otherwise. Therefore, for y ∈ {0, 1}n,

‖By − t‖pp =
m∑
i=1
‖Biy − ti‖pp = m+(y) + (m−m+(y)) · (1 + ε)p .

In case (2), the inequality in Equation (4) is strict by the definition of an isolating lattice, and
so we have that ‖Biy − ti‖p > ‖Bi · χ(y)− ti‖p =

∥∥∥∑s∈Si(χ(y)) vs − t∗
∥∥∥
p

for all 1 ≤ i ≤ m.
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It follows that if val(Φ) = 1, then there exists y ∈ {0, 1}n such that ‖By − t‖pp ≤ m = rp, and if
val(Φ) < 1− δ, then for every y ∈ Zn, ‖By − t‖pp ≥ ‖B · χ(y)− t‖pp > δm · (1 + ε)p + (1− δ)m =
(δ(1 + ε)p + (1− δ)) · rp. Therefore, the output is an instance of γ-CVP with

γ = γ(p, k, δ) := (δ · (1 + ε)p + (1− δ))1/p > 1 , (5)

which is a ‘YES’ instance if Φ is a ‘YES’ instance and a ‘NO’ instance if Φ is a ‘NO’ instance, as
needed.

Corollary 5.5. For all p ∈ [1,∞) \ 2Z and every ε > 0 there exists γ = γ(p, ε) > 1 such that there
is no 2(1−ε)n-time algorithm for γ-CVPp assuming Gap-SETH.

Proof. Combine Theorem 3.11, Proposition 5.2, and Theorem 5.4.

Finally, we note that we can extend Theorem 5.4 to give a reduction from arbitrary Gap
Constraint Satisfaction Problems (Gap-CSPs) to CVPp. This leads to a promising approach for
proving even stronger quantitative hardness of approximation results for CVPp via a reduction
from Gap-k-CSPs other than Gap-k-SAT. Namely, it is known that general k-CSPs are hard to
approximate to within much smaller approximation factors than k-SAT [Cha16, AM09, MM17],
and if one were to hypothesize some quantitative hardness of approximation for them then we could
conclude corresponding quantitative hardness of approximation results about CVPp as follows.

For a constraint C : {0, 1}k → {0, 1}, we define a (p, k)-C-isolating lattice V, t∗ as a generalization
of an isolating lattice with conditions (1) and (2) in Definition 5.1 replaced by (1) ‖V x− t∗‖p = 1
when x ∈ C−1(1), and (2) ‖V x− t∗‖p = 1 + ε for some ε > 0 when x ∈ C−1(0), respectively. We
can then use these C-isolating lattices in place of “normal” isolating lattices in Theorem 5.4.

Of course, for this reduction to work, we need to show how to construct C-isolating lattices.
We can easily do this (for p /∈ Z and p ≤ k) by running the argument in Lemma 3.9 with the
complemented truth table of an arbitrary constraint C in place of e1 to obtain a “C-isolating
parallelepiped,” and then using Proposition 5.2 to convert it into a C-isolating lattice. However, it
is not clear how to lower bound the ε that we obtain from this reduction explicitly. (Showing that
this ε, which depends on C, is large enough is necessary for proving quantitative hardness results
with explicit approximation factors.)

6 Limitations

6.1 Impossibility of (p, k)-isolating parallelepipeds for even integer p < k

In [BGS17], we proved that there do not exist (2, 3)-isolating parallelepipeds, and noted that there
are no (p, p+ 1)-isolating parallelepipeds for p ∈ 2Z. Here, we give a simple geometric proof of the
non-existence of (2, 3)-isolating parallelepipeds, and we also prove that there are no (p, p+1)-isolating
parallelepipeds for p ∈ 2Z. This finishes the complete characterization of values of p and k such
that (p, k)-isolating parallelepipeds exist, as presented in Theorem 3.11.

Lemma 6.1. Suppose that V = (v1,v2,v3) ∈ Rd×3, t ∈ Rd, and ‖V x − t‖ = 1 for all x ∈
{0, 1}3 \ {0}. Then ‖t‖ = ‖V x− t‖ for x ∈ {0, 1}3 \ {0}, and hence V, t do not form an isolating
parallelepiped.
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Proof. For p = t− v3, by assumption we have that

‖p‖ = ‖v1 − p‖ = ‖v2 − p‖ = ‖v1 + v2 − p‖ = r .

Let us consider a plane P passing through the points 0,v1 and v2, and let p∗ be the projection
of p onto P . Consider the parallelogram D formed by the points 0,v1,v2 and v1 +v2. These points
lie on a circle around the point p∗. Therefore, D is a cyclic parallelogram, i.e., a rectangle.

Let t∗ be the projection of t onto P . Let ‖v1 − t∗‖ = ‖v2 − t∗‖ = ‖v1 + v2 − t∗‖ = r′. Since
the three points of the rectangle formed by the points 0,v1,v2 and v1 + v2 lie on the circle of
radius r′/2 around the point t∗, the fourth point of this rectangle also lies on this circle. Thus,
‖t‖ = ‖v1 − t‖.

Corollary 6.2. There do not exist (2, k)-isolating parallelepipeds for k ≥ 3.
Lemma 6.3. For every p ∈ 2Z, integers d and k > p, and vectors v1, . . . ,vk, t ∈ Rd, we have∑

S⊆[k]
(−1)|S|

∥∥∥t−∑
i∈S
vi
∥∥∥p
p

= 0 .

Proof. We will use the Multinomial theorem which states that

(x1 + . . .+ xm)n =
∑

a1+...+am=n

(
n

a1, . . . , am

)
m∏
t=1

xat
t ,

where (
n

a1, . . . , am

)
= n!
a1! · · · am! .

Let t = (t1, . . . , td) and for an i ∈ [k],vi = (vi,1, . . . , vi,d). For a set S ∈ [k], and an integer
1 ≤ i ≤ |S|, let Si be the ith element of the set S. Then we have that for p ∈ 2Z,

∑
S⊆[k]

(−1)|S|
∥∥∥t−∑

i∈S
vi
∥∥∥p
p

=
∑
S⊆[k]

(−1)|S|
d∑
j=1

(tj −
|S|∑
i=1

vSi,j)p

=
∑
S⊆[k]

(−1)|S|
d∑
j=1

∑
a0+...+a|S|=p

(
p

a0, . . . , a|S|

)
ta0
j

|S|∏
i=1

vai
Si,j

=
d∑
j=1

∑
a0+...+ak=p

(
p

a0, . . . , ak

)
ta0
j

k∏
i=1

vai
i,j ·

∑
S⊇{i : ai 6=0}

(−1)|S|

=
d∑
j=1

∑
a0+...+ak=p

(
p

a0, . . . , ak

)
ta0
j

k∏
i=1

vai
i,j · (1− 1)k−|{i : ai 6=0}|

= 0 ,

where the last equality follows from |{i : ai 6= 0}| ≤ p < k.

Corollary 6.4. Let p ∈ 2Z. There do not exist (p, k)-isolating parallelepipeds for k > p.
Proof. Suppose towards a contradiction that V = (v1, . . . ,vk) ∈ Rd×k and t ∈ Rd form an isolating
parallelepiped. Then for all x ∈ {0, 1}k \ {0}, ‖V x− t‖ = 1. By Lemma 6.1,

‖t‖pp =
∑

∅6=S⊆[k]
(−1)|S|+1 ‖t−

∑
i∈S

vi‖pp =
∑

∅6=S⊆[k]
(−1)|S|+1 = 1 .
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6.2 Impossibility of natural reductions for p = 2
For a lattice L ⊂ Rd with basis B ∈ Rd×n and target vector t ∈ Rd, let

CVP(t,B) := {z ∈ Zn : ‖Bz − t‖2 = dist2(t,L)}

be the set of the coordinates of closest lattice vectors to t.

Definition 6.5. A natural reduction from 3-SAT to CVP2 is a (not necessarily efficient) reduction
from 3-SAT instances on n variables to CVP2 instances B ∈ Rd×n′ , t ∈ Rd such that there exists
a (not necessarily efficient) function f : {0, 1}n → Zn′ with the following property. If the input
3-SAT instance is satisfiable, then for every x ∈ {0, 1}n, x is a satisfying assignment if and only if
f(x) ∈ CVP(t,B).

The following theorem shows that no natural reduction can rule out a 23n/4-time algorithm for
CVP2 under SETH.

Theorem 6.6. Every natural reduction from 3-SAT on n variables to CVP2 on rank n′ lattices
must have n′ > 4(n− 2)/3.

To prove Theorem 6.6, we study the structure of A := f({0, 1}n) modulo two. In particular,
we will show that A cannot contain any affine 3-cube modulo two. The next lemma is a version
of Szemerédi’s cube lemma for the boolean cube, which shows that any such set must be small
(relative to n′). To the authors’ knowledge, our proof is novel and significantly simpler than that of
prior work (e.g., [CS16, Lemma 3.1]). We also obtain a tighter bound.

Lemma 6.7. Let d ≥ 1 be an integer. Every set S ⊆ Fn2 of size |S| ≥ 2n(1−2−(d−1))+2 contains an
affine subspace of dimension d.

Proof. We prove the result by induction on d. For d = 1, we have |S| ≥ 4, and so the statement is
trivially true since any set with 2 elements contains an affine subspace of dimension 1.

Now we assume the result is true for d = k, and show that it is true for d = k + 1 ≥ 2. Let
S := {x1, . . . ,xN}, where N = |S| ≥ 2n(1−2−k)+2. Consider all

(N
2
)

distinct pairs of elements in S.
By the pigeon-hole principle, at least

M = N(N − 1)
2 · 2n ≥ N2

4 · 2n = 2n(1−2−(k−1))+2

distinct pairs have the same sum, say z0 ∈ Fn2 . Without loss of generality, let these pairs be
(x1,x1 + z0), (x2,x2 + z0), . . . , (xM ,xM + z0).

By the induction hypothesis, there exist z∗, and linearly independent vectors z1, . . . ,zk such
that the set {x1, . . . ,xM} contains every element of the form z∗ +

∑k
i=1 σizi where σi ∈ {0, 1} for

1 ≤ i ≤ k.
This implies that S contains every element of the form z∗ +

∑k
i=0 σizi where σi ∈ {0, 1} for

0 ≤ i ≤ k. To complete the proof, we need to show that z0 is not in the span of z1, . . . ,zk. But
this is immediate from the fact that each of the M pairs above contains distinct elements.

This next lemma shows that the coordinates of closest vectors have some additional structure
modulo two. In particular, if z1, z2, z3, z4 ∈ CVP(t,B) form a square modulo two (i.e., a two-
dimensional affine subspace), then either they form a parallelogram over the reals or there must be
some specific set of four other vectors z′1, z′2, z′3, z′4 ∈ CVP(t,B). We will then use this to argue
that A := f({0, 1}n) cannot contain any affine 3-cubes modulo two.
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Lemma 6.8. For any lattice L ⊂ Rd with rank n ≥ 2 and basis B ∈ Rd×n and any target t ∈ Rd,
suppose that z1, z2, z3, z4 := z1 +z2 +z3−2v ∈ CVP(t,B) are coordinates of distinct closest lattice
vectors with v ∈ Zn. Then z′1, z′2, z′3, z′4 ∈ CVP(t,B) where

z′1 := z2 + z3 − v, z′2 := z1 + z3 − v, z′3 := z1 + z2 − v, z′4 := v .

In particular, C := {z1, z2, z3, z4}∪ {z′1, z′2, z′3, z′4} has size either four or eight, and |C| = 4 if and
only if C = {y0,y0 + y1,y0 + y2,y0 + y1 + y2} for some yi ∈ Zn, i.e., C is a parallelogram.

Proof. By shifting t appropriately, we may assume without loss of generality that z3 = 0. Let
x := Bz1, y := Bz2, and w := Bv. Since 0,x,y,x+ y − 2w are all the same distance from t, we
have

‖x− t‖22 = ‖t‖22 , ‖y − t‖22 = ‖t‖22 , ‖x+ y − 2w − t‖22 = ‖t‖22 .

Recalling the identity ‖u1 − u2‖22 = ‖u1‖22 + ‖u2‖22 − 2〈u1,u2〉, we have

0 = ‖x‖22 − 2〈x, t〉 = ‖y‖22 − 2〈y, t〉 = ‖x+ y − 2w‖22 − 2〈x, t〉 − 2〈y, t〉+ 4〈w, t〉 . (6)

Furthermore, since 0 ∈ CVP(t,L), and since w,x−w,y −w,x+ y −w are lattice vectors, we
must have

‖w − t‖22 ≥ ‖t‖22 , ‖x−w − t‖22 ≥ ‖t‖22 , ‖y −w − t‖22 ≥ ‖t‖22 , ‖x+ y −w − t‖22 ≥ ‖t‖22 .

(Otherwise, there would be a lattice vector closer to t than 0.) Rearranging as above, we have

δ1 := ‖w‖22 − 2〈w, t〉 ≥ 0 ,
δ2 := ‖x−w‖22 − ‖x‖22 + 2〈w, t〉 = ‖x−w‖22 − 2〈x, t〉+ 2〈w, t〉 ≥ 0 ,
δ3 := ‖y −w‖22 − ‖y‖22 + 2〈w, t〉 = ‖y −w‖22 − 2〈y, t〉+ 2〈w, t〉 ≥ 0 ,
δ4 := ‖x+ y −w‖22 − ‖x+ y − 2w‖2 − 2〈w, t〉 = ‖x+ y −w‖22 − 2〈x, t〉 − 2〈y, t〉+ 2〈w, t〉 ≥ 0 ,

where we have used Eq. (6). Then,

δ1 + δ2 + δ3 + δ4 = ‖w‖22 + ‖x−w‖22 + ‖y −w‖22 + ‖x+ y −w‖22
− ‖x‖22 − ‖y‖22 − ‖x+ y − 2w‖22

= 0 .

Since the δi are all non-negative and they sum to zero, they must all be zero. In other words,
z′1, z

′
2, z
′
3, z
′
4 ∈ CVP(t,L) as needed.

Finally, notice that 2z′j = z1 + z2 + z3 + z4 − 2zj . If |C| < 8, then there exists i, j such that
zi = z′j . If i 6= j, then we see that zi +zj = zk +z`, i.e., the zi′ form a parallelogram. Furthermore,
we must have zj = z′i, zk = z′`, and z` = z′k, i.e., |C| = 4. On the other hand, if i = j, then we
have 4zi = z1 + z2 + z3 + z4, which yields a contradiction because then zi lies in the convex hull of
the other vectors, which means that Bzi cannot be distinct vectors equidistant from t.

The next two lemmas show some basic properties about the expressiveness of 3-SAT.

Lemma 6.9. For any k ≥ 1 and non-empty set S ⊆ {0, 1}n with |S| ≤ 2k, there exists a k-CNF on
n variables such that exactly |S| − 1 of the elements in S are satisfying assignments.
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Proof. We show how to find a k-clause that is satisfied by exactly |S| − 1 elements. The proof is by
induction on k. The base case k = 1 is trivial. So, we suppose that the result holds for k − 1. We
assume without loss of generality that the number of strings in S whose first coordinate is one is
between 1 and 2k−1. (I.e., we assume that there are at least as many zeros as ones and that not all
strings are the same on this coordinate.) Let S1 be the set of strings with non-zero first coordinate.
By induction, there is a (k − 1)-clause φ such that exactly |S1| − 1 elements in S1 satisfy φ. Then
φ ∨ ¬x1 is a k-clause satisfied by exactly |S| − 1 elements in S, as needed.

Lemma 6.10. For any non-empty disjoint sets S, T ⊆ {0, 1}n with |S| = 4 and |T | ≥ 2, there
exists a 3-CNF on n variables such that all elements in S are satisfying assignments and at least
one element in T is not a satisfying assignment.

Proof. We will find an assignment of 3 variables that satisfies S, but doesn’t satisfy at least one
element of T .

Define the majority string s ∈ {0, 1}n of S to be such that si = 0, if for at least 2 strings in
S, the i-th coordinate is 0, and si = 1, otherwise. Let t ∈ T \ {s}. Consider a position j where t
differs from s. Set the j-th variable xj = sj . This satisfies at least 2 of the strings in S. Let a, b be
the two strings in S such that aj = bj 6= sj . Note that tj 6= sj , and hence tj = aj = bj . Since t is
different from a and b, there exist positions k and ` such that tk 6= ak and t` 6= b`. We set xk = ak
and x` = b`. Thus, we satisfy every element of S but do not satisfy t.

Finally, we prove Theorem 6.6. To do so, we first use Lemmas 6.8 and 6.10 to argue that if
z1, z2, z3, z4 ∈ A satisfy z1 + z2 + z3 + z4 = 0 mod 2 as in Lemma 6.8, then the zi must form a
parallelogram, where A := f({0, 1}n) is the image of f . We therefore conclude that if z1, . . . ,z8 ∈ A
form an affine 3-cube modulo two, then they must actually form a parallelepiped. From this and
Lemma 6.9, we derive a contradiction by Lemma 6.1. Therefore, A mod 2 cannot contain any affine
3-cube, which means that n′ > 4(n− 2)/3 by Lemma 6.7.

Proof of Theorem 6.6. Let R be a natural reduction from 3-SAT on n variables to CVP2 on rank
n′ lattices. I.e., R maps 3-SAT instances φ to B ∈ Rd×n′ and t ∈ Rd. First, notice that f must be
injective. In particular, if f is not injective, then the reduction cannot possibly be valid because for
every two distinct assignments x,x′ ∈ {0, 1}n, there exists a 3-SAT instance φ that is satisfied by
one but not the other. Let A := f({0, 1}n) ⊂ Zn′ be the image of f .

Suppose that there exist distinct z1 := f(x1), z2 := f(x2), z3 := f(x3), z4 := f(x4) = z1 + z2 +
z3 − 2v ∈ A for some v ∈ Zn′ . Then, for any B, t, if z1, z2, z3, z4 ∈ CVP(t,B), by Lemma 6.8, we
must also have z1, z

′
2, z
′
3, z
′
4 ∈∈ CVP(t,B) as well, where

z′1 := z2 + z3 − v, z′2 := z1 + z3 − v, z′3 := z1 + z2 − v, z′4 := v .

Therefore, by applying R to, e.g., the empty formula ∅, we see that z′1, . . . ,z′4 ∈ A must also lie
in the image of f , i.e., z′j = f(x′j). Again by Lemma 6.8, either the zi form a parallelogram, or
the sets S := {x1, . . . ,x4} and S′ := {x′1, . . . ,x′4} are disjoint. But, if S, S′ are disjoint, then by
Lemma 6.10, there exists a 3-clause φ such that φ(xi) = 1 for all i but there exists a j such that
φ(x′j) = 0. Then, taking B, t = R(φ), we see that z′j /∈ CVP(t,B), a contradiction.

We conclude that any such z1, z2, z3, z4 = z1 + z2 + z3 − 2v ∈ A must form a parallelogram.
I.e., if the zi form an affine subspace mod two, then they form a parallelogram {z1, z2, z3, z4} =
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{y0,y0 +y1,y0 +y2,y0 +y1 +y2}. Now, suppose that A modulo two contains an affine 3-cube. I.e.,
suppose that it contains distinct z1 := f(x1), . . . ,z8 := f(x8) such that zi − y0 −

∑
j∈Wi

yj ∈ 2L
for some distinct Wi ⊆ {1, 2, 3}. Then, by the above, we see that zi = y0 +

∑
j∈Wi

yj . I.e., the zi
form a parallelepiped. But, by Lemma 6.9, there exists a 3-clause φ such that exactly seven out of
the eight xi satisfy φ. Therefore, (B, t) := R(φ) must have ‖Bzi − t‖ = dist(t,BZn′) for seven out
of the eight zi. But, by Lemma 6.1, this is not possible.

Finally, we conclude that A cannot include any affine 3-cube modulo two. Therefore, by
Lemma 6.7, we see that n′ > 4(n− 2)/3.
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A Hardness of SVP

We notice that Theorem 1.1, or more specifically Corollary 3.12, immediately implies an improvement
to the main result in [AS18a]. Specifically, while [AS18a, Theorem 4.3] previously only applied to
some non-explicit set of p, we can now extend it to all p & 2.14 with p /∈ 2Z.

We give the formal statement below for completeness. The proof is essentially identical to the
original. We simply substitute our Corollary 3.12 for the main result from [BGS17] (noting, as

33

http://csrc.nist.gov/groups/ST/post-quantum-crypto/cfp-announce-dec2016.html
http://csrc.nist.gov/groups/ST/post-quantum-crypto/cfp-announce-dec2016.html


2 4 6 8 10
p

1.5

2.0

2.5

3.0

3.5

C_p

2.15 2.16 2.17 2.18 2.19 2.20
p

100

200

300

400

C_p

Figure 3: The value Cp for different values of p > p0. In particular, for p /∈ 2Z, there is no
2n/Cp-time algorithm for SVPp unless SETH is false. The plot on the left shows Cp over a wide range
of p, while the plot on the right shows the behavior when p is close to the threshold p0 ≈ 2.13972.
(Figure taken from [AS18a].)

in [AS18a] that the hard CVPp instance promised by Corollary 3.12 has a particularly nice form).
We also include a plot of Cp in Figure 3, which is taken from [AS18a]. ([AS18a] also proved that
there is no 2o(n)-time algorithm for SVPp for any p assuming Gap-ETH.)

Theorem A.1. For any integer k ≥ 2 and p > p0 with p /∈ 2Z, there is an efficient randomized
reduction from Max-k-SAT on n variables to SVPp on a lattice of rank dCpn+ log2 ne, where

Cp := 1
1− log2Wp

and Wp := min
τ>0

exp(τ/2p)Θp(τ) .

Here, Θp(τ) :=
∑
z∈Z exp(−τ |z|p), and p0 ≈ 2.13972 is the unique solution to the equation Wp0 = 2.

In particular, for every ε > 0 and p > p0 with p /∈ 2Z there is no 2(1−ε)n/Cp-time algorithm for
CVPp unless SETH is false.
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