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Abstract—Attempts to prove the intractability of the Min-
imum Circuit Size Problem (MCSP) date as far back as the
1950s and are well-motivated by connections to cryptography,
learning theory, and average-case complexity. In this work,
we make progress, on two fronts, towards showing MCSP is
intractable under worst-case assumptions.

While Masek showed in the late 1970s that the version of
MCSP for DNF formulas is NP-hard, extending this result to
the case of depth-3 AND/OR formulas was open. We show that
determining the minimum size of a depth-d formula computing
a given Boolean function is NP-hard under quasipolynomial-
time randomized reductions for all constant d ≥ 2. Our
approach is based on a method to “lift” depth-d formula lower
bounds to depth-(d+1). This method also implies the existence
of a function with a 2Ωd(n

1/5) additive gap between its depth-d
and depth-(d+ 1) formula complexity.

We also make progress in the case of general, unrestricted
circuits. We show that the version of MCSP where the input
is a partial function (represented by a string in {0, 1, ?}∗) is
not in P under the Exponential Time Hypothesis (ETH).

Intriguingly, we formulate a notion of lower bound state-
ments being (P/poly)-recognizable that is closely related
to Razborov and Rudich’s definition of being (P/poly)-
constructive. We show that unless there are subexponential-
sized circuits computing SAT, the lower bound statements used
to prove the correctness of our reductions cannot be (P/poly)-
recognizable.

Keywords-Minimum Circuit Size Problem; MCSP; NP-
hardness; Constant Depth Formulas; Natural Proofs Barrier

I. ORGANIZATION

This extended abstract is organized as follows.

• Section II: We discuss general background on MCSP
and then proceed to describe more specific motivation

and prior work related to our results.

• Section III: We state our results and some of the broader

takeaways from our theorems.

• Section IV: We describe the main ideas and intuition

behind our results.

• Section V: We conclude by talking about a connection

between designing reductions to MCSP and (a variant

of) the constructivity condition in the Natural Proofs

barrier.

II. BACKGROUND AND MOTIVATION

A. General Background

The Minimum Circuit Size Problem, abbreviated MCSP,

requires one to determine whether a given Boolean function

f : {0, 1}n → {0, 1} (represented by its truth table, a binary

string of length N = 2n) is computable by circuits of size

at most a given parameter s ∈ N. Throughout this work,

we adopt this n and N notation, where n is the number of

inputs to f and N is the length of the truth table of f .

Kabanets and Cai [1] initiated the “modern” study of

MCSP and recent work has uncovered deep connections

between MCSP and a growing number of areas includ-

ing cryptography, learning theory, pseudorandomness and

average-case complexity.

Giving an exhaustive review of these results is beyond

our scope. However, we informally state some highlights

and recommend an excellent survey by Allender [2] for a

detailed overview.

• If MCSP is NP-hard under polynomial time many-one

reductions, then EXP �= ZPP [3].

• If MCSP with a fixed size parameter s = poly(n) does

not have circuits of size Õ(N), then NP �⊆ P/poly [4].

• If MCSP ∈ P, then there are no one-way functions [1],

[5].

• If a certain “universality conjecture” is true, then the

existence of one-way functions is equivalent to zero-

error average-case hardness of MCSP (under a certain

setting of parameters) [6].

• There is an equivalence between learning a circuit class

C and the problem of “approximately minimizing” C-

circuits [7].

• If a certain approximation to MCSP is NP-hard, then

there is a “worst-case to average-case” reduction for

NP [8].

Moreover, all but one of these results have been proved

within the past five years!

B. Specific Background and Motivation

While it is easy to see that MCSP is in NP, it is a

longstanding open question whether MCSP is NP-hard.

Indeed, there is work dating back to the 1950s attempting to

establish the intractability of MCSP (see [9] for a history of
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this early work), and Levin is said1 to have initially delayed

publishing his results on the theory of NP-completeness in

hopes of also showing MCSP is NP-complete. Nearly a half-

century later, the question of whether MCSP is NP-complete

remains wide open.

One intuition for why it is difficult to prove hardness

for MCSP is that producing a NO instance of MCSP
corresponds to producing a function with a certain circuit

complexity lower bound, a notoriously difficult task even

when the desired lower bound is quite small. Kabanets and

Cai formalized this intuition to show that any “natural”

polynomial-time reduction from SAT to MCSP would imply

breakthrough circuit lower bounds [1].

We describe two potential ways researchers hope to

“sidestep” having to prove strong lower bounds while still

giving compelling evidence that MCSP is intractable. The

first is to strengthen the assumption under which we are

trying to show that MCSP is intractable. Roughly speak-

ing, the Kabanets and Cai result suggests that proving

MCSP �∈ P under the assumption that P �= NP likely

requires breakthrough circuit lower bounds.

However, it is not clear whether a similar barrier exists to

proving that, say, the Exponential Time Hypothesis (ETH)

implies that MCSP �∈ P. In particular, we certainly know of

functions that require circuits of size cn for small constants

c, and even brute-forcing over all circuits of size n requires

about n! time, which is superpolynomial in N = 2n. Thus,

it is conceivable that one could prove that MCSP �∈ P under

ETH by showing that the brute-force algorithm for MCSP
is nearly optimal when s = O(n), since this is a regime

where we already have lower bounds. Indeed, we view this

as a tantalizing possibility.

Another approach to sidestep having to prove break-

through circuit lower bounds is to consider the circuit

minimization task for restricted classes of circuits C that

we already have strong lower bounds against, like AC0.

To formalize this, let C be some class of circuits, and let

(C)-MCSP be the task of determining whether a given truth

table is computed by some C-circuit of size at most a given

parameter.

Despite our relatively good understanding of circuit

classes like AC0, progress on proving hardness for

(C)-MCSP has been somewhat elusive. In 1979, Masek

showed that (DNF)-MCSP is NP-hard. A series of subse-

quent results [11]–[15] simplified Masek’s proof and showed

near-optimal hardness of approximation for (DNF)-MCSP.

However, it was only recently, in 2018, that hardness was

proved for a class C beyond DNFs: Hirahara, Oliveira, and

Santhanam [16] showed that (C)-MCSP is NP-hard when C
is the class of DNF ◦ XOR circuits (that is, DNFs that are

allowed to have XOR gates at its leaves).

1 [10] cites a personal communication from Levin regarding
this, and some discussion can be found on Levin’s website:
https://www.cs.bu.edu/fac/lnd/research/hard.htm.

Before we go on to state our results, we give a quick

review of how NP-hardness is proved for (DNF)-MCSP
and (DNF ◦ XOR)-MCSP. In particular, both results are

proved using a two part strategy that involves an intermediate

problem (C)-MCSP� which we define now.2

Roughly speaking, (C)-MCSP� is the analogue of

(C)-MCSP for partial truth tables. Formally, (C)-MCSP� is

defined as follows

• Given: the partial truth table T ∈ {0, 1, �}2n of an n-

input partial function γ : {0, 1}n → {0, 1, �} and a size

parameter s ∈ N

• Determine: whether there is a C-circuit of size at most

s that computes γ on all its {0, 1}-valued inputs.

We stress that the truth table T here is of length N = 2n and

the function f is not represented by the set of {0, 1}-valued

input/output pairs {(x, f(x)) : f(x) ∈ {0, 1}}, which could

be exponentially more concise. Indeed, it is known that the

input/output pair representation version of MCSP� is NP-

complete [17], [18]. However, this result makes use of the

succinctness of the input representation, and the instances

that the reduction produces can be solved by brute force in

time poly(N).
The two part strategy used to prove hardness for

(DNF)-MCSP and (DNF ◦XOR)-MCSP is then as follows:

First, reduce an NP-hard problem to (C)-MCSP�. Second,

reduce (C)-MCSP� to MCSP�.

Thus, the starting point of this work was to aim to prove

hardness for (C)-MCSP� and (C)-MCSP for as expressive

classes of circuits C as possible.

III. RESULTS AND DISCUSSION

A. (C)-MCSP is Hard when C is Constant Depth Formulas

Our first result shows that (C)-MCSP is NP-hard under

randomized quasipolynomial time reductions when C is the

class, denoted AC0
d, of depth-d formulas with NOT gates

and AND/OR gates of unbounded fan-in.

Theorem 1. Let d ≥ 2. Given oracle access to
(AC0

d)-MCSP, one can compute SAT in randomized
quasipolynomial time.

We discuss some of the ideas behind our proof in Sec-

tion IV. In a few sentences, our reduction works by induction

on d. The d = 2 case is given by the previously known

hardness of (DNF)-MCSP. For the inductive step, our main

technical contribution is to prove a novel way to “lift” depth-

d lower bounds to depth-(d+1) lower bounds. We use this

technique to estimate the depth-d complexity of a function

using an oracle that computes the depth-(d+1) complexity

of functions.

Comparison to Previous Work. As we mentioned earlier,

Masek [19] proved that (DNF)-MCSP is NP-hard in the

2Actually, Masek’s original reduction was a direct reduction from
Circuit-SAT, but later improvements used this framework.
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1970s, and Hirahara, Oliveira, and Santhanam [16] recently

showed that (DNF ◦ XOR)-MCSP is NP-hard.

One way the jump from DNF and DNF ◦XOR to AC0
3 is

significant is that both DNF and DNF◦XOR circuits can be

written as OR◦D for a circuit class D that is not functionally

complete (i.e., not every function can be computed by

a circuit in D). In the case of DNFs and DNF ◦ XOR
circuits, D contains functions corresponding to subcubes

and affine subspaces respectively. On the other hand, AC0
3

includes the class of OR ◦ CNF formulas and CNFs are

functionally complete. This makes it more involved to prove

lower bounds for AC0
3. For example, it is still a major open

question to prove explicit, strongly exponential lower bounds

against AC0
3. This reduced understanding is our rationale for

why the depth-3 case was elusive. Indeed, this difference

is manifest in our results as our method for “lifting” the

existing depth-2 result requires significantly different ideas

than the ones in [19] and [16], though their work forms our

base case.

Another related work is the innovative paper of Buch-

fuhrer and Umans [20], who showed that the Σ2P variant of

(AC0
d)-MCSP is Σ2P -hard. In particular, they consider the

problem where given an AC0
d formula ϕ and a size parameter

s, one must output whether there is a AC0
d formula of size

at most s that computes the same function as ϕ. As we will

describe later in this section, one of the first steps in our

reduction is actually the same as in Buchfuhrer and Umans:

to show that we can restrict to the case where the final output

gate is assumed to be OR.

After this, however, our proof strategy diverges signif-

icantly. In a sense, this divergence is expected since the

different input representations give the two problems a very

different character. One consequence of this difference, as

Buchfuhrer and Umans note in their paper, is that while the

succinctness of the input representation in the Σ2P version

allows one to get by with clever applications of “weak”

lower bounds, the full truth table representation used in

MCSP and (AC0
d)-MCSP means that proving NP-hardness

through “the use of weak lower bounds is not even an option,

under a complexity assumption.”

Finally, perhaps the most direct prior work is by Allender,

Hellerstein, McCabe, Pitassi, and Saks [13] who extended

the cryptographic hardness results for MCSP to show cryp-

tographic hardness for computing (AC0
d)-MCSP when d is

sufficiently large.

Using randomness to prove hardness for MCSP-type
problems. While there is significant evidence that proving

MCSP is NP-hard under deterministic reductions is beyond

the reach of current techniques [1], [3], no such barriers are

known for randomized reductions.

Indeed, some recent results show that for close variants

of MCSP, like an oracle variant [21] and a multi-output

variant [22], one can prove the problem is NP-hard using

randomized reductions.

We view our reduction as a further demonstration of how

one can use randomness in proving hardness for MCSP-

related problems. Intriguingly, our result seems to use ran-

domness in a more subtle way than the aforementioned

results. In particular, while the aforementioned results use

randomness to sample uniformly random functions, we use

randomness to sample functions with specific properties that

uniformly random functions do not have. These properties

are crucial to our analysis.

Application: Large Gaps in Complexity Between
Depths. A reasonable question is whether our method used

in the reduction for “lifting” depth-d lower bounds to depth-

(d+ 1) formula lower bounds can be applied to prove new

lower bounds.

Indeed, we give such an application. One can ask how far

apart can the depth-d and depth-(d+1) formula complexity

of a function be. In our notation, this corresponds to asking

how large can one make the quantity Ld(f)− Ld+1(f).

Using existing depth hierarchy theorems for AC0, there

exist explicit functions for which this gap is at least 2n
Ω(1/d)

[23].

Using our techniques, we are able to improve the depen-

dence on d significantly.

Theorem 2. For all d ≥ 2 there exists a function f such
that Ld(f)− Ld+1(f) ≥ 2Ωd(n

1/5).

Our proof works by “lifting” the d = 3 case in the known

depth hierarchy theorems to higher depths at a low cost.

We note, however, that our method comes with some

drawbacks. First, the lower bound is existential and does not

exhibit an explicit function witnessing this separation. Sec-

ond, while there is a large additive gap Ld−1(f) and Ld(f),
there is only a constant factor multiplicative gap between

the two quantities, and lastly, (related to the previous point)

it only gives a gap for formulas and not circuits.

Despite these drawbacks, we find Theorem 2 to be es-

pecially interesting because it does not yet seem possible

to prove such a result using the usual AC0 lower bound

approaches. An intriguing question is how well this lower

bound fits into the Natural Proofs framework of Razborov

and Rudich [24]. We defer discussion about this to Sec-

tion V.

Open Questions. There are several intriguing open ques-

tions related to our (AC0
d)-MCSP result. Can one prove

that minimizing constant depth circuits is NP-hard? Our

proof techniques heavily rely on the underlying model being

formulas.

Another interesting question is to prove stronger hardness

of approximation for (AC0
d)-MCSP. Our results only yield

hardness for small constant factor approximations. One

should be able to do significantly better.

One can also try to look beyond constant depth AND/OR
formulas. What if one is allowed to use, say, ⊕ gates?
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Finally, can one improve the gap between Ld(f)−Ld+1(f)
in Theorem 2? Can one give a multiplicative gap instead of

an additive one? What about the case of circuits?

B. (C)-MCSP� is Hard for General Circuits

As we mentioned earlier, hardness for (C)-MCSP� has

been an important intermediate step towards proving hard-

ness for (C)-MCSP in previous results. This naturally mo-

tivates the search for the most expressive class C where we

can show that (C)-MCSP� is hard. Perhaps surprisingly, we

are able to show hardness even in the case of general circuits,

but in order to do this we strengthen our assumption to the

Exponential Time Hypothesis (ETH).

ETH was first formulated by Impagliazzo, Paturi, and

Zane [25], [26] and has been extremely useful for proving

conditional lower bounds on various problems (see [27] for

a survey). It is somewhat technical to define ETH formally,

but, roughly speaking, it is a slight strengthening of the

statement that 3-SAT cannot be solved deterministically in

2o(n) time.

To formalize our result, let MCSP� denote the the problem

of (C)-MCSP� where C is the class of general circuits: that is

circuits with fan-in two AND and OR gates as well as NOT
gates where the size of a circuit is the number of AND and

OR gates in the circuit. We establish that MCSP� is not in

P assuming ETH.

Theorem 3. Assume ETH holds. Then there is no deter-
ministic algorithm solving MCSP� in time No(log logN).
Moreover, given the truth table of a partial function T ∈
{0, 1, �}N , there is no deterministic No(log logN) time al-
gorithm for deciding whether T can be computed by a
monotone read once formula.

We prove this theorem by giving a reduction from a

problem with known ETH hardness (2n × 2n Bipartite

Permutation Independent Set) to MCSP�. Lokshtanov, Marx,

and Saurabh [28] showed that, under ETH, 2n×2n Bipartite

Permutation Independent Set cannot be solved in determin-

istic time 2o(n logn). We discuss the basic idea behind our

proof in Section IV.

Input Representation and Closeness of MCSP� to
MCSP. We again stress that the partial function input to

MCSP� is represented as a string in {0, 1, �}2n and not as a

(possibly exponentially more concise) list of input/output

pairs where the partial function is defined. To highlight

this difference, we note that while the input/output pair

representation variant of MCSP� is already known to be

NP-complete under deterministic many-one reductions [17],

[18], if the same were known for MCSP�, then the break-

through separation EXP �= ZPP would follow from an

argument by Murray and Williams [3].

Implications for Read Once Formulas. Theorem 3

establishes that under ETH the brute force algorithm for

detecting whether a partial function can be computed by a

monotone read once formula is nearly optimal, since there

are roughly N log logN such read once formulas. This is in

sharp contrast to the case when one is given a total function

f as input: in that case, one can decide if f is computable by

a monotone read once formula in time poly(n) given oracle

access to the truth table of the function [29], an exponential

gap!
Algorithmic Implications. Currently, the best known

algorithm for solving MFSP on a truth table of length N
and with a size parameter s is the brute force algorithm that

runs in time Ns2O(s logn). There have been some efforts

[30] hoping to reduce the exponential dependence from

s log n to s. Theorem 3 suggests that the exponential s log n
dependence may be necessary when the input is a partial

truth table, at least in the regime where s = O(n).
Open Question: Extension to MCSP? A natural question

is whether this result can be extended to show that MCSP �∈
P under ETH. We already know reductions from (C)-MCSP�

to (C)-MCSP for the classes DNF and DNF ◦ XOR, so

perhaps one can also reduce MCSP� to MCSP.
In our opinion, however, the most promising approach is

to skip MCSP� entirely and extend our techniques to apply

to MCSP directly. In particular, our MCSP� hardness result

can be viewed in a more general framework that we describe

now. Let f : {0, 1}n → {0, 1} be a function whose optimal

circuits have size exactly s. Let F : {0, 1}n × {0, 1}k →
{0, 1}. We say that F is a simple extension of f if

• F depends on all its inputs,

• F can be computed by a circuit of size s+ k, and

• there exists a y0 ∈ {0, 1}k such that for all x ∈ {0, 1}n
we have F (x, y0) = f(x).

Essentially, the definition of a simple extension of an optimal

f -circuit is made so that we can apply a “reverse gate elim-

ination” argument (we describe what this is in Section IV)

to argue that any optimal circuit for F is obtained by taking

an optimal circuit for f and “uneliminating” (i.e. adding)

gates “in a specific way.”
From our definition, it is easy to see that one can compute

whether F is a simple extension of f using an oracle to

MCSP. Thus, if one can show hardness for deciding whether

F is a simple extension of f , then one has established

hardness for MCSP.
Indeed, our approach to proving hardness for MCSP�

essentially shows that deciding whether a partial function

F is a simple extension of ORn (the OR function on n bits)

cannot be solved in time No(log logN) under ETH.
We believe that one might be able to prove a similar

hardness result for MCSP by letting f be a function other

than ORn. Indeed the difficultly with using f = ORn to try

to prove hardness for MCSP is that the set of optimal ORn

circuits is so well structured that it is easy to decide whether

any total function F is a simple extension of f = ORn.

This difficultly is manifest in any function f whose optimal

circuits are read once formulas.
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Thus, the missing component in extending our results to

MCSP is finding some function f whose optimal circuits

we can characterize but are also sufficiently complex. Since

we can make do with linear-sized optimal circuits, we see

no immediate reason why existing techniques cannot yield

such an f .

IV. PROOF IDEAS

A. Hardness for (AC0
d)-MCSP.

Before we begin, we introduce some notation. The size
of a formula ϕ is denoted by |ϕ| and equals the number

of leaves in the binary tree underlying ϕ. Given a Boolean

function f , Ld(f) denotes the size of the smallest depth-d
formula computing f . LOR

d (f) and LAND
d (f) denote the size

of the smallest depth-d formula whose output/top gate is an

OR or AND gate respectively.

Three Step Overview. At a high-level, our strategy for

proving the NP-hardness of computing Ld(·) breaks into

three parts.

1) Show that for all d ≥ 2 one can reduce computing LOR
d

to Ld, so it suffices to prove NP hardness for LOR
d .

2) Show that when d = 2 it is NP-hard to compute

LOR
d within any constant factor (this part was already

known).

3) Show that when d ≥ 3 one can compute a small

approximation of LOR
d−1 using an oracle that computes

a small approximation of LOR
d . Conclude that Ld is

NP-hard to compute for all d ≥ 2.

We now describe each of these steps in order.

Step 1: Restrict to a Top OR Gate. The idea in Step

(1) to restrict the top gate of the formula is also used in

the aforementioned result of Buchfuhrer and Umans [20].

However, the method they use to restrict the top gate can

blow up the size of the corresponding truth table expo-

nentially. We modify their approach using existing depth

hierarchy theorems for AC0 (the statement of the depth-

hierarchy theorem in [31] is easiest for us to use) in order to

give a quasipolynomial time reduction from computing LOR
d

to Ld.

We note that this is the only part of our proof that

makes use of classical “switching lemma style” lower bound

techniques. This dependence, however, is not strictly neces-

sarily: we show that one can avoid “switching lemma” type

techniques altogether at the cost of losing some hardness of

approximation.

At a high-level, the key idea for how to prove step (1) is

to take the direct sum of f with a function g that is much

easier to compute with a top OR gate than a top AND gate

in order to force any optimal depth-d formula for computing

the direct sum to use a top OR gate.

Step 2: d = 2 Base Case. In step (2), we use the NP-

hardness of computing LOR
d to any constant factor when d =

2 as the base case of our inductive approach. This result

(actually a stronger version) was first proved in the work of

Feldman [14] and Allender et al. [13] and was subsequently

improved by Khot and Saket [15]. There is a technicality

in that these results use a slightly different size measure for

DNFs: the number of terms in a DNF rather than the number

of leaves. However, we show that there is an easy reduction

between computing the two size measures for DNFs.

Step 3: d ≥ 3 Inductive Argument. Finally, Step (3)’s

connection between computing LOR
d and LOR

d−1 is the heart

of our reduction and required several new ideas. Since the

goal in this step is to be able to compute LOR
d−1(f) for some

function f using an oracle to LOR
d , a natural approach is

to construct some function F such that any optimal OR ◦
AC0

d−1 formula for F must “contain” an optimal OR◦AC0
d−2

formula for f “within” it. Our original hope was to be able

to force such a situation using a “switching lemma style”

argument, but we were not able to make this approach to

work.

Instead, we take an approach based on direct sums. Our

proof of step (3) begins with an observation that, while

trivial, was an important perspective switch (at least for the

author): DeMorgan’s laws imply that LOR
d−1(f) = LAND

d−1 (¬f)
for all functions f . Thus, if we want to compute LOR

d−1(f)
given an oracle to Ld for any function f , it suffices to show

how to compute LAND
d−1 (f) using an oracle to Ld for any

function f .

The natural approach mentioned above then becomes to

try constructing a function F such that any optimal OR ◦
AC0

d−1 formula for F contains an optimal AND ◦ AC0
d−2

formula for f within it. A reasonable candidate for F is the

direct sum of f with another function g, that is F (x, y) =
f(x) ∧ g(y).

One can gain some intuition for the complexity of F by

examining the following family of formulas for computing

f(x) ∧ g(y). Suppose ϕ and ψ are OR ◦ AC0
d−1 formulas

for computing f and g respectively. Then we can expand

ϕ =
∨

i∈[tf ] ϕi where each ϕi is an AND ◦ AC0
d−2 formula

and tf is the top fan-in of ϕ. Similarly, write ψ =
∨

j∈[tg ] ψj .

Observe that, by distributivity, we can then compute F as
∨

i∈[tf ],j∈[tg ]
(ϕi(x) ∧ ψj(y)).

This yields a formula for computing f of size

|ϕ| · tg + |ψ| · tf .
Hence, if computing g is significantly more expensive than

computing f and g has an optimal formula with top fan-in

tg = 1, then the optimal formula for F within this family

is plausibly obtained by picking a formula ϕ for computing

f that has top fan-in tf = 1 (i.e. ϕ is an AND ◦ AC0
d−2

formula computing f ). In this case, we would have our

desired property that optimal formulas for F contain an

optimal AND◦AC0
d−2 formula for f within them. Our main

lower bound is a partial formalization of this intuition. We
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state this result informally here and point the reader to the

full version for a formal statement.

Theorem 4 (Informal). Let f be a boolean function, and let
g be a function that is “expensive” to compute compared to
f . Then

LAND
d−1 (f) + LOR

d (g) ≤ LOR
d (f(x) ∧ g(y))

≤ LAND
d−1 (f) + LAND

d−1 (g).

The proof of Theorem 4 is, in our opinion, our most

interesting proof. Unfortunately, even stating Theorem 4

formally requires more definitions than should be given

in an extended abstract. Roughly speaking, however, g is

“expensive” compared to f if computing even a weak one-

sided approximation of g using non-deterministic formulas is

more expensive than computing f exactly with AND◦AC0
d−2

formulas.

One can view Theorem 4 as saying that the family we

described above for computing F is nearly optimal when

computing g is “expensive” compared to f and when g has

an near-optimal OR ◦ AC0
d−1 formula with top fan-in one

(i.e. a AND ◦ AC0
d−2 formula).

Indeed, Theorem 4 implies that the quantity

LOR
d (f(x) ∧ g(y))− LOR

d (g)

gives an additive approximation to LAND
d−1 (f) with error

bounded by LAND
d−1 (g) − LOR

d (g). This is how our reduction

estimates LAND
d−1 (f).

While we do not describe the details of our reduction here,

there are three important details (phrased as questions) we

would like to highlight about getting the reduction to work:

• How do we get our hands on such g? We need g
to satisfy two properties: be expensive relative to f
and have the quantity LAND

d−1 (g) − LOR
d (g) be small.

Uniformly random functions (with the right parame-

ters) are expensive, but when d = 3, the quantity

LAND
d−1 (g) − LOR

d (g) is not small for such uniformly

random g. We get around this by selecting our g to be

drawn randomly from a set of functions that roughly

corresponds to the subfunctions computed by CNF

subformulas in Lupanov’s construction of near optimal

depth-3 formulas for random functions [32]. In this

way, we get functions that are essentially optimally

computed by CNFs but also have properties expected

of random functions.

• Without knowing the complexity of f , how can we know
that g is expensive compared to f? In our reduction

we have to balance how expensive g is with how large

LAND
d−1 (g) − LOR

d (g) is, since as g gets more expensive

LAND
d−1 (g)−LOR

d (g) also gets larger. Thus, in some sense

we need to know the complexity of f in order to ensure

the approximation error we get is small. The idea we

use is to successively iterate through all the possibilities

for the complexity of f from high to low, and only

output an estimate for f the first time the estimate

significantly exceeds the error bound LAND
d−1 (g)−LOR

d (g).
• How does the approximation error propagate as we go

to higher and higher depths? Because our method for

computing LAND
d−1 (f) involves some additive error, we

must be careful that at each depth we prove enough

hardness of approximation in order to imply hardness

for the next depth. Indeed, we show that for each d ≥ 3
there is an α > 0 such that it is NP-hard to approximate

LOR
d to within a factor of (1 + α).

B. Hardness for MCSP�

The heart of our hardness proof for MCSP� is the trivial

lower bound for computing ORn (the OR function on n
bits). One can easily characterize what the optimal circuits

for ORn look like: all optimal circuits for ORn are given by

taking a rooted binary tree with exactly n-leaves, labelling

the internal nodes by fan-in two OR gates, and labelling

each leaf node with an input variable in the set {x1, . . . , xn}
bijectively. This last part is crucial for us, since it implies

there are at least n! many optimal circuits for computing

ORn. It also suggests that one might be able to associate

optimal circuits for ORn with permutations.

Indeed this is the approach we take. Our starting point

is the 2n× 2n Bipartite Permutation Independent Set prob-

lem defined by Lokshtanov, Marx, and Saurabh [28], who

showed that, under ETH, one cannot solve 2n×2n Bipartite

Permutation Independent Set much faster than brute forcing

over all n! permutations, specifically not as fast as 2o(n logn).

For our high-level description, all the reader needs to know

about 2n×2n Bipartite Permutation Independent Set is that

it

• asks whether there is a permutation π : [2n] → [2n]
satisfying certain properties, and

• it cannot be solved in time 2o(n logn) under ETH.

Our reduction works by showing that given some instance

I of 2n × 2n Bipartite Permutation Independent Set, one

can construct a partial function γ : {0, 1}2n × {0, 1}2n ×
{0, 1}2n → {0, 1} such that

there exists a permutation π satisfying I

⇐⇒ ∃π so
∨

i∈[2n]
(zi ∧ (yi ∨ xπ(i))) computes γ(x, y, z)

⇐⇒ a monotone read once formula computes γ

⇐⇒ MCSP�(γ, 6n− 1) = 1.

We note that all the lower bound techniques used in our

proof of correctness are classical and can, for example, be

found in Wegner’s text on Boolean functions [33]. However,

we do highlight the specific way we use the gate elimination

technique, since it will be relevant to our discussion in

section V regrading the Natural Proofs framework.

“Reverse” Gate Elimination. One usually uses gate

elimination to say that if some circuit C computes some
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function f , then one can obtain a smaller circuit C ′ for

computing a restriction f ′ = f |σ of f by applying various

simplifications to C that eliminate gates in f . Reverse

gate elimination is the same technique but with a “reverse

perspective.”

Suppose C is a circuit of size s for computing f and

f ′ = f |σ is some restriction of f . Assume that gate

elimination implies that one can eliminate k gates from C to

obtain a circuit C ′ of size s− k for f ′. Then, equivalently,

we have that the circuit C can be obtained by taking C ′

and “un-eliminating” (i.e. adding) gates to C ′ in a specific

manner that is dual to the way gates are eliminated in gate

elimination. Thus, if one knows what the circuits for f ′ of

size s − k look like (as is the case with circuits for ORn

of size n− 1), one can constrain what circuits of size s for

computing f look like.

We use this technique to argue that any circuit for com-

puting γ has an optimal ORn circuit “within it,” which we

can associate with a permutation.

We note that the “reverse gate elimination” technique was

also used in [34] to show a non-trivial search-to-decision

reduction for (Formula)-MCSP. In fact, functions with many

optimal formulas, like the ORn function, precisely corre-

spond to the hard instances for the algorithm in [34].

V. CONNECTIONS WITH CONSTRUCTIVITY AND THE

NATURAL PROOFS BARRIER

There are close connections between MCSP and Razborov

and Rudich’s Natural Proofs barrier [24]. In this section,

we will focus on one specific connection between designing

reductions to (C)-MCSP and a strengthening of the construc-

tivity condition in the Natural Proofs barrier.3 We begin by

describing the connection informally, before going into more

detail.

Intuition. Roughly speaking, Razborov and Rudich’s cel-

ebrated Natural Proofs result shows that any “natural” lower

bound against a circuit class C can be made “algorithmic”

and that this algorithm can be used to defeat certain types

of cryptography constructed within the circuit class C. Since

the general belief is that strong cryptography exists in even

relatively weak looking circuit classes C, Razborov and

Rudich’s result suggests it is unlikely that there are “natural

proofs” showing strong lower bounds against many circuit

classes.

The relevance of this to (C)-MCSP is as follows. Suppose

one has a reduction R from SAT to (C)-MCSP. In the proof

of correctness of this reduction, one must use some lower

bound method M against C-circuits. If this method M were

“natural,” then M could be made “algorithmic.” But then

we argue that one could plug the algorithmic version of

M into the reduction R and obtain an efficient algorithm

3To the author’s knowledge, this connection was first observed in a
conversation between the author and Rahul Santhanam, who kindly allowed
for its inclusion here.

for SAT. Hence, if one believes that SAT does not have

efficient algorithms, one should also believe that the lower

bound method M cannot be made “algorithmic” (at least

without making modifications to M).

A More Formal Description. We now describe this idea

in more detail. A “lower bound method” M is not a formal

notion, so we instead look at collections of lower bound

statements S, whose elements are of the form (T, s) where

T is a truth table and s is a lower bound on the complexity

of T . For most lower bound methods M, there is a natural

choice of the lower bound statements SM that M “proves,”

although we note that whether a M “proves” a lower bound

statement is not necessarily well-defined.

One example where it is easy to define SM is Håstad’s

switching lemma, which implies that if a function f :
{0, 1}n → {0, 1} cannot be made to compute a constant

function by setting n− k of its inputs to 0/1-values, then f

cannot be computed by a depth-d circuit of size 2(n−k)Ω(1/d)

[23]. A natural choice of the collection of lower bound

statements associated with the switching lemma is

SM = {(T, s) : T is not constant on any subcube of

dimension k and s < 2(n−k)Ω(1/d)}.
The connection to (C)-MCSP is as follows. Suppose

one had a polynomial-time many-one reduction R from,

say, SAT to (C)-MCSP. In the proof of correctness for

this reduction, one must have some method for proving a

collection of lower bound statements S such that if ϕ is

unsatisfiable and (T, s) is output by the reduction, then the

lower bound statement that the C-complexity of T is greater

than s is an element of S, i.e. (T, s) ∈ S . On the other

hand if ϕ is satisfiable and the reduction outputs (T, s),
then we know that the C-complexity of T is at most s, so

(T, s) �∈ S because we require that S only contains correct

lower bounds.

Hence, we can conclude that the reduction R actually also

implies that recognizing elements of S is coNP-hard! In fact,

it shows that even the promise problem of distinguishing the

lower bounds contained in S from strings in the set of YES

instances of (C)-MCSP

{(T, s) : the truth table T has C-circuits of size ≤ s}
is coNP-hard. Thus, if one believes that, say, coNP �⊆
P/poly, it better not be the case that the language S can

be computed in P/poly.

With this in mind, we say a collection of lower

bound statements S against a circuit class C is (P/poly)-
recognizable if there exists a family of polynomial-sized

circuits that accepts all elements of S and rejects all the YES

instances of (C)-MCSP. The logic above demonstrates that,

under widely believed complexity assumptions, one should

not be able to prove hardness for (C)-MCSP using (P/poly)-
recognizable collections of lower bound statements. This is
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interesting because many lower bound methods we know,

like Håstad’s switching lemma, yield collections of lower

bound statements that are (P/poly)-recognizable.

One nice property of the definition of (P/poly)-
recognizability is monotonicity: if a set of lower bound

statements S is (P/poly)-recognizable, then all subsets of

S are also (P/poly)-recognizable. In the contrapositive, if a

set S is not (P/poly)-recognizable, then any set that contains

S is also not (P/poly)-recognizable. This is a consequence

of the promise problem underlying the definition.

Finally, we note that a collection of lower bound state-

ments being (P/poly)-recognizable is closely related to

Razborov and Rudich’s notion of (P/poly)-constructive.

The main difference being that Razborov and Rudich’s

formalization is only concerned with lower bound statements

where the size lower bound s is fixed to some particular

(usually super-polynomial) value.

The Takeaway. Perhaps the most useful consequence of

this connection is that it gives a helpful tool for designing

reductions to (C)-MCSP, since it rules out many approaches

that solely rely on easily recognizable lower bound state-

ments. Indeed, our proof that MCSP� is not in P under

ETH was inspired by our failure to rule out lower bounds

obtained by gate elimination within this framework.

This connection may also give further motivation for

proving hardness results for (C)-MCSP. Since the collec-

tion of lower bound statements used to prove hardness

for (C)-MCSP (likely) cannot be (P/poly)-recognizable,

any proof requires considering lower bounds of a slightly

different flavor than many existing lower bound techniques.

One might hope that these different lower bound techniques

might also be useful in understanding other questions about

the class C and, optimistically, might be a step towards

proving non-naturalizing lower bounds.

Indeed, our hardness result for (AC0
d)-MCSP gives ev-

idence for these two motivations. Using the novel lower

bound techniques in our reduction, we prove our “large gaps

in formula complexity between depths” result (Theorem 2).

Previous techniques like random restrictions do not seem

capable of achieving the parameters in Theorem 2 (since

random restrictions typically establish lower bounds of the

form 2n
O(1/d)

and our lower bound has a much better

dependence on d).

Moreover, if we view Theorem 2 as separating the class

of size-s depth-(d + 1) formulas from size-(s + 2Od(n
1/5))

depth-d formulas for some s, it is not clear to what extent

this circuit class separation naturalizes in the sense of

Razborov and Rudich’s Natural Proofs Barrier. For one, our

method only proves a lower bound on a specific class of

functions obtained via a direct sum. This seems to violate the

largeness condition of a natural proof, which roughly says

that the lower bound method should apply to a significant

fraction of functions. It is worth noting that (to the author’s

knowledge) it is open whether uniformly random functions

f : {0, 1}n → {0, 1} have a gap as large as

Ld(f)− Ld+1(f) ≥ 2n
Ω(1)

with high probability. Lupanov showed that

Ld(f) = (1 + o(1))Ld+1(f)

when d ≥ 3 with high probability [32]. Second, it is not

clear how to recognize the functions witnessing this lower

bound in polynomial time given a truth table. This seems to

violate the constructivity condition of a Natural Proof.

Of course, this does not mean that this separation does

not naturalize, just that it does not obviously naturalize.

Since results can naturalize in highly non-trivial ways (we

mention an example in the next paragraph), it would be

interesting to explore whether one can put this result in

the framework of Natural Proofs. Either way, we view this

result as a compelling example of the further insights that

understanding (C)-MCSP could give.

Caveats. Even though a collection of lower bound state-

ments S might not be (P/poly)-recognizable, it is possible

that there is a variation S ′ of S that is (P/poly)-recognizable

and still captures all the “interesting” lower bounds given by

S. A situation like this occurs in Razborov and Rudich’s pa-

per where they show how to modify Smolensky’s [35] lower

bound against AC0[p] circuits to fit into the natural proofs

framework, even though it is unclear whether Smolensky’s

original method is constructive.

That being said, if a collection of lower bound state-

ments S is used to prove hardness for (C)-MCSP, then

any (P/poly)-recognizable modification S ′ (likely) loses the

ability to prove hardness of (C)-MCSP, so it seems like some

“interesting” lower bounds must be lost in this case.

Another caveat worth mentioning is that our logic above

assumes that the reduction from SAT to (C)-MCSP is

a deterministic many-one reduction. In contrast, one can

imagine more exotic reductions, where it is not clear how to

define the collection of lower bound statements S used to

prove the correctness of a reduction. Nevertheless, we feel

that our logic is broadly applicable. In the specific reductions

we prove (one is a deterministic many-one reduction and one

is a randomized quasipolynomial time Turing reduction), the

definition of S does makes sense, and we can indeed carry

out a version of the logic above in order to argue that S is

hard.
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