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Abstract—The Exponential-Time Hypothesis (ETH) is a
strengthening of the P �= NP conjecture, stating that 3-SAT
on n variables cannot be solved in (uniform) time 2ε·n, for
some ε > 0. In recent years, analogous hypotheses that
are “exponentially-strong” forms of other classical complexity
conjectures (such as NP � BPP or coNP � NP) have also
been introduced, and have become widely influential.

In this work, we focus on the interaction of exponential-time
hypotheses with the fundamental and closely-related questions
of derandomization and circuit lower bounds. We show that even
relatively-mild variants of exponential-time hypotheses have
far-reaching implications to derandomization, circuit lower
bounds, and the connections between the two. Specifically, we
prove that:

1) The Randomized Exponential-Time Hypothesis
(rETH) implies that BPP can be simulated on “average-
case” in deterministic (nearly-)polynomial-time (i.e., in
time 2Õ(log(n)) = nloglog(n)O(1)

). The derandomization
relies on a conditional construction of a pseudorandom
generator with near-exponential stretch (i.e., with seed
length Õ(log(n))); this significantly improves the state-
of-the-art in uniform “hardness-to-randomness” results,
which previously only yielded pseudorandom generators
with sub-exponential stretch from such hypotheses.

2) The Non-Deterministic Exponential-Time Hypothe-
sis (NETH) implies that derandomization of BPP is
completely equivalent to circuit lower bounds against
E , and in particular that pseudorandom generators are
necessary for derandomization. In fact, we show that the
foregoing equivalence follows from a very weak version
of NETH, and we also show that this very weak version
is necessary to prove a slightly stronger conclusion that
we deduce from it.

Lastly, we show that disproving certain exponential-time hy-
potheses requires proving breakthrough circuit lower bounds.
In particular, if CircuitSAT for circuits over n bits of size
poly(n) can be solved by probabilistic algorithms in time
2n/polylog(n), then BPE does not have circuits of quasilinear
size.

Keywords-computational complexity

I. INTRODUCTION

The Exponential-Time Hypothesis (ETH), introduced

by Impagliazzo and Paturi [2] (and refined in [3]), conjec-

A full version of this paper is available online at ECCC [1].

tures that 3-SAT with n variables and m = O(n) clauses

cannot be deterministically solved in time less than 2ε·n, for

some constant ε = εm/n > 0. The ETH may be viewed

as an “exponentially-strong” version of P �= NP , since it

conjectures that a specific NP-complete problem requires

essentially exponential time to solve.
Since the introduction of ETH many related variants,

which are also “exponentially-strong” versions of classical

complexity-theoretic conjectures, have also been introduced.

For example, the Randomized Exponential-Time Hypoth-
esis (rETH), introduced in [4], conjectures that the same

lower bound holds also for probabilistic algorithms (i.e., it is

a strong version of NP �⊆ BPP). The Non-Deterministic
Exponential-Time Hypothesis (NETH), introduced (im-

plicitly) in [5], conjectures that co-3SAT (with n variables

and O(n) clauses) cannot be solved by non-deterministic

machines running in time 2ε·n for some constant ε > 0
(i.e., it is a strong version of coNP �⊆ NP). The variations

MAETH and AMETH are defined analogously (see [6]1),

and other variations conjecture similar lower bounds for

seemingly-harder problems (e.g., for #3SAT; see [4]).
These Exponential-Time Hypotheses have been widely

influential across different areas of complexity theory.

Among the numerous fields to which they were applied

so far are structural complexity (i.e., showing classes of

problems that, conditioned on exponential-time hypotheses,

are “exponentially-hard”), parameterized complexity, com-

munication complexity, and fine-grained complexity; see,

e.g., the surveys [7]–[10].
Exponential-time hypotheses focus on conjectured lower

bounds for uniform algorithms. Two other fundamental

questions in theoretical computer science are those of de-
randomization, which refers to the power of probabilistic

algorithms; and of circuit lower bounds, which refers to

the power of non-uniform circuits. Despite the central place

of all three questions, the interactions of exponential-time

hypotheses with derandomization and circuit lower bounds

have yet to be systematically studied.

1In [6], the introduction of these variants is credited to a private
communication from Carmosino, Gao, Impagliazzo, Mihajlin, Paturi, and
Schneider [5].
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A. Our results: Bird’s eye

In this work we focus on the interactions between

exponential-time hypotheses, derandomization, and circuit

lower bounds. In a nutshell, our main contribution is show-

ing that even relatively-mild variants of exponential-time

hypotheses have far-reaching consequences on derandom-

ization and circuit lower bounds.

Let us now give a brief overview of our specific results,

before describing them in more detail in Sections I-B, I-C,

and I-D. Our two main results are the following:

1) We show that rETH implies a nearly-polynomial-
time average-case derandomization of BPP . Specifi-

cally, assuming rETH,2 we construct a pseudorandom

generator for uniform circuits with near-exponential
stretch (i.e., with seed length Õ(log(n))) and with

running time 2Õ(log(n)) = nloglog(n)O(1)

, and de-

duce that BPP can be decided, in average-case and

infinitely-often, by deterministic algorithms that run

in time nloglog(n)O(1)

(see Theorem I.1). This signif-

icantly improves the state-of-the-art in the long line

of uniform “hardness-to-randomness” results, which

previously only yielded pseudorandom generators with

at most a sub-exponential stretch from worst-case

lower bounds for uniform probabilistic algorithms

(i.e., for BPT IME ; see Section I-B for details). We

also extend this result to deduce an “almost-always”

derandomization of BPP from an “almost-always”

lower bound (see Theorem I.2), which again improves

on the state-of-the-art. See Section I-B for details.

2) Circuit lower bounds against E are well-known to

yield pseudorandom generators for non-uniform cir-

cuits that can be used to derandomize prBPP in the

worst-case. An important open question is whether

such lower bounds and pseudorandom generators are

actually necessary for worst-case derandomization of

prBPP . We show that a very weak version of NETH
yields a positive answer to the foregoing question;

specifically, to obtain a positive answer it suffices to

assume that E cannot be computed by small circuits
that are uniformly generated by a non-deterministic

machine.3 In fact, loosely speaking, we show that this

weak version of NETH is both sufficient and necessary
to show an equivalence between non-deterministic

derandomization of prBPP and circuit lower bounds

2We will in fact consider a hypothesis that is weaker (qualitatively and
quantitatively), and conjectures that the specific PSPACE-complete prob-
lem Totally Quantified Boolean Formula (TQBF) cannot be solved in prob-
abilistic time 2n/polylog(n). (Recall that TQBF is the set of 3-SAT formulas
ϕ over variables w1, ..., wv such that ∀w1∃w2∀w3..., ϕ(w1, ..., wv) = 1,
and that 3SAT reduces to TQBF in linear time; see [1, Definition 4.6].)

3That is, we assume that the following statement does not hold: For any
L ∈ E there is a uniform machine ML that runs in time � 2n and uses
its non-determinism to generate a single small circuit CL that decides L
on all n-bit inputs; for example, ML runs in sub-exponential time and CL

is of polynomial size. (See Section I-C.)

against E . See Section I-C for more details.

Lastly, in Section I-D we show that disproving a conjec-

ture similar to rETH requires proving breakthrough circuit

lower bounds. Specifically, we show that if there exists a

probabilistic algorithm that solves CircuitSAT for circuits

with n input bits and of size poly(n) in time 2n/polylog(n),
then non-uniform circuits of quasilinear size cannot decide

BPE def
== BPT IME [2O(n)] (see Theorem I.6, and see the

discussion in Section I-D for a comparison with the state-

of-the-art).

Relation to Strong Exponential Time Hypotheses:
The exponential-time hypotheses that we consider also have

“strong” variants that conjecture a lower bound of 2(1−ε)·n,

where ε > 0 is arbitrarily small, for solving a correspond-

ing problem (e.g., for solving SAT, coSAT, or #SAT; see,

e.g., [10]). We emphasize that in this paper we focus only

on the “non-strong” variants that conjecture lower bounds of

2ε·n for some ε > 0; these are indeed significantly weaker

than their “strong” counterparts; in fact, some “strong”

variants of standard exponential-time hypotheses are simply

known to be false (see [6]).

We mention that a recent work of Carmosino, Impagli-

azzo, and Sabin [11] studied the implications of hypotheses

in fine-grained complexity on derandomization. These fine-

grained hypotheses are implied by the “strong” version of

rETH (i.e., by rSETH), but are not known to follow from

the “non-strong” versions that we consider in this paper. We

will refer again to their results in Section I-B.

B. rETH and pseudorandom generators for uniform circuits

The first hypothesis that we study is rETH, which (slightly

changing notation from above) asserts that probabilistic

algorithms cannot decide if a given 3-SAT formula with v
variables and O(v) clauses is satisfiable in time less than

2ε·v , for some constant ε > 0. Note that such a formula can

be represented with n = O(v · log(v)) bits, and therefore the

conjectured lower bound as a function of the input length is

2ε·(n/ log(n)).

Intuitively, using “hardness-to-randomness” results, we

expect that such a strong lower bound would imply a strong

derandomization result. For context, recall that in non-
uniform hardness-to-randomness results (following [12]),

lower bounds for non-uniform circuits yield pseudorandom

generators (PRGs) that “fool” non-uniform distinguishers.

Moreover, these results “scale smoothly” such that lower

bounds for larger circuits yield PRGs with longer stretch

(see [13] for an essentially optimal trade-off); at the extreme,

if E is hard almost-always for exponential-sized circuits, then

we obtain PRGs with exponential stretch and deduce that

prBPP = prP (see [14]).

The key problem, however, is that the long line-of-works

concerning uniform “hardness-to-randomness” did not yield

such smooth trade-offs so far (see [11], [15]–[23]). Ideally,

given an exponential lower bound for uniform probabilistic

14

Authorized licensed use limited to: University of Central Florida. Downloaded on February 24,2021 at 23:18:11 UTC from IEEE Xplore.  Restrictions apply. 



algorithms (such as E �⊆ i.o.BPT IME [2ε·n]) we would

like to deduce that there exists a PRG with exponential

stretch for uniform circuits, and consequently that BPP =
P in “average-case”.4 However, prior to the current work,

the state-of-the-art (by Trevisan and Vadhan [20]) could

at best yield PRGs with sub-exponential stretch (i.e., with

seed length polylog(n)), even if the hypothesis refers to

an exponential lower bound. Moreover, the best currently-

known PRG only works infinitely-often, even when we

assume that the “hard” function cannot be computed by

probabilistic algorithms on almost all input lengths.

Previous works bypassed these two obstacles in vari-

ous indirect ways. Goldreich [23] relied on the (much)

stronger hypothesis prBPP = prP to construct an “almost-

always” PRG with exponential stretch for uniform circuits.

Similarly, Carmosino, Impagliazzo, and Sabin [11] relied

on hypotheses from fine-grained complexity (recall that

these are qualitatively strong, and implied by the “strong”

version of rETH, i.e. by rSETH) to bypass both obstacles

and derandomize BPP “almost-always” on average-case in

polynomial time; however, their derandomization does not

rely on a PRG construction, and satisfies a weaker notion of

average-case derandomization than the notion that we use.5

Gutfreund and Vadhan [22] bypassed the “almost-always”

barrier by deducing (subexponential-time) derandomization

ofRP rather than of BPP (see details below). Lastly, a line-

of-works dealing with uniform “hardness-to-randomness”

for AM (rather than for BPP) was able to bypass both

obstacles in this context (see, e.g., [18], [19], [21]).

In this work we tackle both obstacles directly. First, we

establish for the first time that hardness assumptions for

BPT IME yield a pseudorandom generator for uniform

circuits with near-exponential stretch (i.e., with seed length

Õ(log(n))), which can be used for average-case derandom-

ization of BPP in nearly-polynomial-time (i.e., in time

2Õ(log(n)) = nloglog(n)O(1)

). Specifically, we start from the

hypothesis that the Totally Quantified Boolean Formula
(TQBF) problem cannot be solved by probabilistic algorithms

that run in time 2n/polylog(n); this hypothesis is weaker than

rETH (since 3-SAT reduces to TQBF with a linear overhead).

Under this hypothesis, we show that there exists a PRG

for uniform circuits with seed length ˜O(log(n)) that is

computable in time 2Õ(log(n)) = nloglog(n)O(1)

.

4Throughout the paper, when we say that a PRG is ε-pseudorandom for
uniform circuits, we mean that for every efficiently-samplable distribution
over circuits, the probability over choice of circuit that the circuit distin-
guishes the output of the PRG from uniform with advantage more than ε
is at most ε (see [1, Definitions 3.6 and 3.7]). The existence of such PRGs
implies an “average-case” derandomization of BPP in the following sense:
For every L ∈ BPP there exists an efficient deterministic algorithm D
such that every probabilistic algorithm that gets input 1n and tries to find
x ∈ {0, 1}n such that D(x) �= L(x) has a small probability of success
(see, e.g., [23, Prop. 4.4]).

5Specifically, they deduce an average-case derandomization of BPP
with respect to the uniform distribution, rather than with respect to every
polynomial-time-samplable distribution.

Theorem I.1 (rETH⇒ PRG with almost-exponential stretch

for uniform circuits; informal). Suppose that there exists
T (n) = 2n/polylog(n) such that TQBF /∈ BPT IME [T ].
Then, for every t(n) = npolyloglog(n), there exists a PRG that
has seed length ˜O(log(n)), runs in time npolyloglog(n), and
is infinitely-often (1/t)-pseudorandom for every distribution
over circuits that can be sampled in time t with log(t) bits
of non-uniform advice.

The proof of Theorem I.1 is based on careful refinements

of the proof framework of [15], using new technical tools

that we construct. The latter tools significantly refine and

strengthen the technical tools that were used by [20] to

obtain the previously-best uniform hardness-to-randomness

tradeoff. For high-level overviews of the proof of Theo-

rem I.1 (and of the new constructions), see Section II-A.
Overcoming the “infinitely-often” barrier: The hypoth-

esis in Theorem I.1 is that any probabilistic algorithm that

runs in time 2n/polylog(n) fails to compute TQBF infinitely-
often, and the corresponding conclusion is that the PRG

“fools” uniform circuits only infinitely-often. This is identi-

cal to all previous uniform “hardness-to-randomness” results

that used the [15] proof framework.6

Gutfreund and Vadhan [22, Sec 6] showed one way to

overcome this “infinitely-often” barrier, by deducing almost-

always average-case derandomization of RP (rather than of

BPP) under an almost-always lower bound hypothesis; as

in previous results, their derandomization is relatively slow

(i.e., it works in sub-exponential time). Combining their

ideas with the techniques underlying Theorem I.1, we prove

that under the hypothesis that rETH holds almost-always,

RP can be derandomized almost-always in average-case and

in (nearly-)polynomial time (see [1, Theorem 4.14]).

In addition, their techniques can be adapted to yield an

almost-always PRG (from an almost-always lower bound

hypothesis) that uses O(log(n)) bits of non-uniform advice.

We are able to significantly improve this: Assuming that

every probabilistic algorithm that runs in time 2n/polylog(n)

fails to decide TQBF on almost all input lengths, we

prove that BPP can be derandomized in average-case and

almost-always, using only a triply-logarithmic number (i.e.,

O(logloglog(n))) of advice bits.

Theorem I.2 (aa-rETH ⇒ almost-always derandomiza-

tion in time npolyloglog(n); informal). Assume that for
some T (n) = 2n/polylog(n) it holds that TQBF /∈
i.o.BPT IME [T ], and let t(n) = npolyloglog(n). Then, for
every L ∈ BPT IME [t] and every distribution ensemble
X = {Xn ⊂ {0, 1}n} such that x ∼ Xn can be sampled in
time t(n), there exists a deterministic algorithm D = DX
that runs in time npolyloglog(n) and uses O(logloglog(n))
bits of non-uniform advice such that for almost all input

6Other proof strategies (which use different hypotheses) were able to
support an “almost-always” conclusion, albeit not necessarily a PRG, from
an “almost-always” hypothesis (see [11], [19]).
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lengths n ∈ N it holds that Prx∼Xn
[D(x) �= L(x)] <

1/t(n).

Remark: Non-deterministic extensions: We note that

“scaled-up” versions of Theorems I.1 and I.2 for non-
deterministic settings follow easily from known results; that

is, assuming lower bounds for non-deterministic uniform

algorithms, we can deduce strong derandomization of corre-

sponding non-deterministic classes. First, from the hypoth-

esis MAETH7 we can deduce strong circuit lower bounds,

and hence also worst-case derandomization of prBPP and

of prMA (this uses relatively standard Karp-Lipton-style

arguments, following [24]; see [1, Appendix A] for details

and for a related result). Similarly, as shown by Gutfreund,

Shaltiel, and Ta-Shma [19], a suitable variant of AMETH
implies an average-case derandomization of AM.

C. NETH and an equivalence of derandomization and cir-
cuit lower bounds

Let us now consider the Non-Deterministic
Exponential-Time Hypothesis (NETH), which asserts

that co-3SAT (with n variables and O(n) clauses) cannot

be solved by non-deterministic machines running in time

2ε·n for some ε > 0. This hypothesis is an exponential-time

version of coNP �⊆ NP , and is therefore incomparable to

rETH and weaker than MAETH.

The motivating observation for our results in this section

is that NETH has an unexpected consequence to the long-

standing question of whether worst-case derandomization
of prBPP is equivalent to circuit lower bounds against
E . Specifically, recall that two-way implications between

derandomization and circuit lower bounds have been grad-

ually developing since the early ‘90s (for surveys see,

e.g., [25], [26]), and that it is a long-standing question

whether the foregoing implications can be strengthened to

show a complete equivalence between the two. One well-

known implication of such an equivalence would be that

any (worst-case) derandomization of prBPP necessitates
the construction of PRGs that “fool” non-uniform circuits.8

Then, being more concrete, the motivating observation for

our results in this section is that NETH implies an affirmative

7Note that indeed a non-deterministic analogue of rETH is MAETH
(or, arguably, AMETH), rather than NETH, due to the use of randomness.
Also recall that, while the “strong” version of MAETH is false (see [6]),
there is currently no evidence against the “non-strong” version MAETH.

8The question of equivalence is mostly “folklore”, but was mentioned
several times in writing. It was asked in [27, Remark 33], who proved
an analogous equivalence between non-deterministic derandomization with
short advice and circuit lower bounds against non-deterministic classes (i.e.,
against NT IME ; see also [28]). It was also mentioned as a hypothetical
possibility in [20] (referred to there as a “super-Karp-Lipton theorem”).
Following the results of [29], the question was recently raised again as a
conjecture in [30]. We note that in the context of uniform “hardness-to-
randomness”, equivalences between average-case derandomization, lower
bounds for uniform classes, and PRGs for uniform circuits have long been
known (see [15], [23]), but these equivalences do not involve circuit lower
bounds or standard PRGs.

answer to the foregoing question (and this is not difficult to

show; see Section II-B).

Our main contribution is in showing that, loosely speak-

ing, even a very weak form of NETH suffices to answer the

question of equivalence in the affirmative, and that this weak

form of NETH is in some sense inherent (see details below).

Specifically, we say that L ⊆ {0, 1}∗ has NT IME [T ]-
uniform circuits if there exists a non-deterministic machine

M that gets input 1n, runs in time T (n), and satisfies the

following: For some non-deterministic choices M outputs

a single circuit C : {0, 1}n → {0, 1} that decides L on all
inputs x ∈ {0, 1}n, and whenever M does not output such a

circuit, it outputs ⊥. We also quantify the size of the output

circuit, when this size is smaller than T (n).
The hypotheses that will suffice to show an equivalence

between derandomization and circuit lower bounds are of

the form “E does not have NT IME [T ]-uniform circuits

of size S(n) 
 T (n)”, for values of T and S that will be

specified below. In words, this hypothesis rules out a world

in which every L ∈ E can be computed by small circuits that

can be efficiently produced by a uniform (non-deterministic)

machine. Indeed, this hypothesis is weaker than the NETH-

style hypothesis E �⊆ NT IME [T ], and even than the

hypothesis E �⊆ (NT IME [T ] ∩ SIZE [T ]). We stress that

our hypothesis refers to lower bounds for uniform models

of computation, for which strong lower bounds (compared

to those for non-uniform circuits) are already known. (For

example, NP is hard for NP-uniform circuits of size nk for

every fixed k ∈ N (see [31]), whereas we do not even know

if ENP is hard for non-uniform circuits of arbitrarily large

linear size.) The fact that such a weak hypothesis suffices

to deduce that derandomization and circuit lower bounds

are equivalent can be seen as appealing evidence that the

equivalence indeed holds.

Our first result is that if E cannot be decided by

NT IME [2nδ

]-uniform circuits of polynomial size (for

some δ > 0), then derandomization of prBPP in

sub-exponential time is equivalent to lower bounds for

polynomial-sized circuits against EXP .

Theorem I.3 (NETH ⇒ circuit lower bounds are equiva-

lent to derandomization; “low-end” setting). Assume that
there exists δ > 0 such that E cannot be decided by
NT IME [2nδ

]-uniform circuits of arbitrary polynomial
size, even infinitely-often. Then,

prBPP ⊆ i.o.prSUBEXP ⇐⇒ EXP �⊂ P/poly .

Theorem I.3 also scales-up to “high-end” parameter set-

tings, albeit not smoothly, and using different proof tech-

niques (see [1, Section 5] for details). Nevertheless, an

analogous result holds for the extreme “high-end” setting:

Under the stronger hypothesis that E cannot be decided by

NT IME [2Ω(n)]-uniform circuits, we show that prBPP =
prP is equivalent to lower bounds for exponential-sized
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circuits against E ; that is:

Theorem I.4 (NETH ⇒ circuit lower bounds are equiva-

lent to derandomization; “high-end” setting). Assume that
there exists δ > 0 such that E cannot be decided by
NT IME [2δ·n]-uniform circuits, even infinitely-often. Then:

prBPP = prP ⇐⇒ ∃ε > 0 : DT IME [2n] �⊂ i.o.SIZE [2ε·n] .

Remarkably, as mentioned above, hypotheses such as the

ones in Theorems I.3 and I.4 actually yield a stronger

conclusion, and are also necessary for that stronger con-

clusion. Specifically, the stronger conclusion is that even

non-deterministic derandomization of prBPP (such as

prBPP ⊆ prNSUBEXP) yields circuit lower bounds

against E , which in turn yield PRGs for non-uniform circuits.

Theorem I.5 (NT IME-uniform circuits for E , non-deter-

ministic derandomization, and circuit lower bounds). As-
sume that there exists δ > 0 such that E cannot be decided
by NT IME [2nδ

]-uniform circuits of arbitrary polynomial
size. Then,

prBPP ⊆ prNSUBEXP =⇒ EXP �⊂ P/poly . (I.1)

In the other direction, if Eq. (I.1) holds, then E cannot be
decided by NP-uniform circuits.

Note that in Theorem I.5 there is a gap between

the hypothesis that implies Eq. (I.1) and the conclu-

sion from Eq. (I.1). Specifically, the hypothesis refers to

NT IME [2nδ

]-uniform circuits of polynomial size, whereas

the conclusion refers to NP-uniform circuits. By optimiz-

ing the parameters, this gap between sub-exponential and

polynomial can be considerably narrowed (see [1, Theorem

5.11]).

D. Disproving a version of rETH requires circuit lower
bounds

Lastly, we show that disproving a weak version of rETH
requires breakthrough circuit lower bounds. Specifically, we

show that a randomized algorithm that solves CircuitSAT

in time 2n/polylog(n) would yield lower bounds for circuits

of quasilinear size against BPE = BPT IME [2O(n)]. For

context, the best known lower bounds for such circuits are

against Σ2 (see [32]) or against MA/1 (i.e., Merlin-Arthur

protocols that use one bit of non-uniform advice; see [33]).

Specifically, we prove the following:

Theorem I.6 (circuit lower bounds from non-trivial ran-

domized CircuitSAT algorithms). For any constant c ∈ N
there exists a constant c′ ∈ N such that the following holds.
If CircuitSAT for circuits over n variables and of size
n2 · (log n)c′ can be solved in probabilistic time 2n/(logn)c

′
,

then BPE �⊂ SIZE [n · (log n)c].
Theorem I.6 constitutes progress on a well-known tech-

nical challenge. Specifically, the known arguments that de-

duce circuit lower bounds from “non-trivial” circuit-analysis

algorithms (following Williams [34]) crucially rely on the

hypothesis that the circuit-analysis algorithm is determinis-
tic, and it is a well-known challenge to obtain analogous

results for randomized algorithms, as we do in Theorem I.6.

In order to prove Theorem I.6 we crucially leverage the

technical tools that we develop in the proof of Theorem I.1;

see Section II-C for further details and for comparison with

known results.

Finally, we combine Theorem I.6 and Theorem I.1 to

deduce the following unconditional Karp-Lipton style result:

If BPE can be decided by circuits of quasilinear size, then

BPP can be derandomized, in average-case and infinitely-

often, in time 2Õ(log(n)) = npolyloglog(n). (See [1, Corollary

6.6] for details and for a precise statement.)

II. TECHNICAL OVERVIEW

In this section we describe the proofs of our main results,

in high level. In Section II-A we describe the proofs of

Theorems I.1 and I.2; in Section II-B we describe the proofs

of Theorems I.3, I.4 and I.5; and in Section II-C we describe

the proof of Theorem I.6, which relies on the proofs from

Section II-A.

A. Near-optimal uniform hardness-to-randomness results
for TQBF

Recall that in typical “hardness-to-randomness” results, a

PRG is based on a hard function, and the proof amounts to

showing that an efficient distinguisher for the PRG can be

transformed to an efficient algorithm or circuit that computes

the hard function.

In high-level, our proof strategy follows this paradigm,

and relies on the classic approach of Impagliazzo and

Wigderson [15] for transforming a distinguisher into an

algorithm for the hard function. Loosely speaking, the latter

approach works only when the hard function fws : {0, 1}∗ →
{0, 1}∗ is well-structured; the precise meaning of the term

“well-structured” differs across different follow-up works,

and in the current work it will also take on a new meaning,

but for now let us intuitively think of fws as downward

self-reducible and as having properties akin to random self-

reducibility. Instantiating the Nisan-Wigderson PRG with a

suitable encoding ECC(fws) of fws as the underlying function

(again, the precise requirements from ECC differ across

works), our goal is to show that if the PRG with stretch t(n)
does not “fool” uniform distinguishers even infinitely-often,

then fws is computable in probabilistic time t′(n) > t(n).

The key challenge underlying this approach is the sig-
nificant overheads in the proof, which increase the time

complexity t′ of computing fws. In the original proof of [15]

this time was roughly t′(n) ≈ t(t(n)), and the state-of-the-

art prior to the current work, by Trevisan and Vadhan [20]

(following [16]), yielded t′(n) = poly(t(poly(n))). Since

the relevant functions fws in all works are computable in
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E , proofs with such an overhead can yield at most a sub-

exponential stretch t(n) = 2n
Ω(1)

.

As mentioned in Section I-B, previous works bypassed

this difficulty by either using stronger hypotheses, or de-

ducing weaker conclusions, or working in different contexts

(e.g., considering derandomization of AM rather than of

BPP). In contrast, we tackle this difficulty directly, and

manage to reduce all of the polynomial overheads in the in-

put length to polylogarithmic overheads in the input length.

That is, we will show that for carefully-constructed fws and

suitably-chosen ECC (and with some variations in the proof

approach), if the PRG instantiated with ECC(fws) for stretch

t does not “fool” uniform distinguishers infinitely-often, then

fws can be computed in time t′(n) = t( ˜O(n))O(1).
1) The well-structured function fws: Following Trevisan

and Vadhan [20], our fws is an artificial PSPACE-complete

problem that we carefully construct. Their goal was to

construct fws that will be simultaneously downward self-

reducible and randomly self-reducible. They achieved this

by constructing a function based on the proof of IP =
PSPACE [35], [36]: Loosely speaking, at input length

N = poly(n) the function gets as input a 3-SAT formula

ϕ over n variables, and outputs P (ϕ,N)(ϕ) = Q1 ◦ Q2 ◦
... ◦ Qpoly(n)P

(ϕ), where P (ϕ) is an arithmetization of ϕ,

the Qi’s are arithmetic operators from the IP = PSPACE
proof, and P (ϕ,N)(ϕ) = TQBF(ϕ); and for i ∈ [poly(n)],
at input length N − i, the function gets input (ϕ,w) and

outputs P (ϕ,N−i)(ϕ,w), where P (ϕ,N−i) is the polynomial

that applies one less operator to P (ϕ) than P (ϕ,N−i+1) and

fixes some input variables for P (ϕ) according to w. Since

fws consists of low-degree polynomials, it is randomly self-

reducible; and since each P (ϕ,N−i) is obtained by applying

a simple operator to P (ϕ,N−(i−1)), the function fws is also

downward self-reducible.

Going through their proof (with needed adaptations for

our “high-end” parameter setting), we encounter four dif-

ferent polynomial overheads in the input length. The first

and obvious one is that inputs of length n are mapped

to inputs of length N = poly(n), corresponding to the

number of rounds in the IP = PSPACE protocol. The

other polynomial overheads in the input length come from

their reduction of TQBF to an intermediate problem that takes

both ϕ and w as part of the input and is still amenable

to arithmetization,9 from the field size that is required for

the strong random self-reducibility that is needed in our

parameter setting (see below), and from the way the poly(n)
polynomials are combined into a single Boolean function.

The main challenge is to eliminate all of the foregoing

overheads simultaneously. We will achieve this by presenting

a construction of a suitable fws, which is a refinement

of their construction, and constitutes the main technical

9Recall that the standard arithmetization of 3-SAT is a polynomial that
depends on the input formula, whereas we want a single polynomial that
gets both a formula and the assignment as input.

part in the proof of Theorem I.1. We now outline (very

briefly) the key points underlying the construction; for a

detailed overview see [1, Section 4.1]. After the following

brief outline, we will explain how we use fws to prove

Theorem I.1.

Our first main idea is to use an IP = PSPACE protocol

with polylog(n) rounds instead of poly(n) rounds, so that

the first overhead (i.e., the additive overhead in the input

length caused by the number of operators) will be only

polylog(n) instead of poly(n). Indeed, in such a protocol

the verification time in each round is high, and therefore our

downward self-reducibility algorithm is relatively slow and

makes many queries; but we will be able to afford this in

our proof (since eventually we only need to solve TQBF in

time 2n/polylog(n)). While implementing this idea, we define

a different intermediate problem that is both amenable to

arithmetization and reducible from TQBF in quasilinear time

(see [1, Claim 4.7.1]); we move to an arithmetic setting

that will support the strong random self-reducibility that we

want (see details below), and arithmetize the intermediate

problem in this setting (see [1, Claim 4.7.2]); we show how

to execute arithmetic operators in a “batch” in this arithmetic

setting (see [1, Claim 4.7.3]); and we combine the resulting

collection of polynomials into a single Boolean function. We

stress that we are “paying” for all the optimizations above,

by the fact that the associated algorithms (for downward self-

reducibility and for our notion of random self-reducibility

that will be described next) now run in time 2n/polylog(n),
rather than polynomial time; but again, we are able to afford

this in our proof.

We obtain a function fws with the following properties:

First, fws is computable in linear space; secondly, TQBF

is reducible to fws in quasilinear time; thirdly, fws is

downward self-reducible in time 2n/polylog(n); and lastly,

fws is sample-aided worst-case to δ-average-case re-
ducible, for δ(n) = 2−n/polylog(n). The last property,

which is implicit in many works and was recently made

explicit by Goldreich and G. Rothblum [37], asserts the

following: There exists a uniform algorithm T that gets

as input a circuit C : {0, 1}n → {0, 1}∗ that agrees with

fws
n on at least δ(n) of the inputs, and labeled examples
(x, fws(x)) where x ∈ {0, 1}n is uniformly-chosen, runs

in time 2n/poly log(n) and with high probability outputs a

circuit C ′ : {0, 1}n → {0, 1}∗ that computes fws
n on all

inputs (see [1, Definition 4.2]). Our construction of fws also

satisfies an additional property, which will only be used

in the proof of Theorem I.2 (i.e., of the “almost-always”

version of the result); we will describe this property in the

proof outline for Theorem I.2 below.

2) Instantiating the [15] proof framework with the func-
tion fws: Given this construction of fws, we now use a vari-

ant of the [15] proof framework, as follows. (For simplicity,

we show how to “fool” polynomial-time distinguishers that

do not use advice.) Let ECC be the Goldreich-Levin [38]
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(i.e., Hadamard) encoding ECC(fws)(x, r) = ⊕if
ws(x)i · ri.

The argument of [15] (following [12]) shows that if for

input length n there exists a uniform poly(n)-time distin-

guisher A for the Nisan-Wigderson PRG (instantiated with

ECC(fws)) that succeeds with advantage 1/n, then for input

length � = ˜O(log(n)) (corresponding to the set-size in the

underlying combinatorial design) there is a weak learner for

ECC(fws): That is, there exists an algorithm that gets oracle

access to ECC(fws), runs in time poly(n) ≈ 2�/polylog(�),
and outputs a small circuit that agrees with ECC(fws) on

approximately 1/2+1/n2 ≈ 1/2+δ0(�) of the �-bit inputs,

where δ0(�) = 2−�/polylog(�).
Assuming that there exists a distinguisher for the PRG

as above for every n ∈ N, we deduce that a weak learner

exists for every � ∈ N. Following [15], for each input

length i = 1, ..., � we construct a circuit of size 2i/polylog(i)

for fws
i . Specifically, in iteration i we run the learner for

ECC(fws) on input length 2i, and answer its oracle queries

using the downward self-reducibility of fws, the circuit

that we have for fws
i−1, and the fact that ECC(fws)2i is

easily computable given access to fws
i . The learner outputs

a circuit of size 22i/polylog(2i) that agrees with ECC(fws)
on approximately 1/2 + δ0(2i) of the 2i-bit inputs, and

the argument of [38] allows to efficiently transform this

circuit to a circuit of similar size that computes fws on

a approximately δ(i) = poly(δ0(2i)) of the i-bit inputs.

Our goal now is to transform this circuit to a circuit of

similar size that computes fws on all i-bit inputs. Recall that

in general, performing such transformations by a uniform
algorithm is challenging (intuitively, if fws is a codeword

in an error-correcting code, this corresponds to uniform list-

decoding of a “very corrupt” version of fws). However, in

our specific setting we can produce random labeled samples
for fws, using its downward self-reducibility and the circuit

that we have for fws
i−1. Relying on the sample-aided worst-

case to average-case reducibility of fws, we can transform

our circuit to a circuit of similar size that computes fws
i on

all inputs.
Finally, since TQBF is reducible with quasilinear overhead

to fws, if we can compute fws in time 2n/polylog(n) then

we can compute TQBF in such time. Moreover, since fws is

computable in space O(�) = Õ(log(n)) (and thus in time

npolyloglog(n)), the pseudorandom generator is computable

in time npolyloglog(n).
3) The “almost-always” version: Proof of Theorem I.2:

We now explain how to adapt the proof above in order to

get an “almost-always” PRG with near-exponential stretch.

For starters, we will use a stronger property of fws, namely

that it is downward self-reducible in a polylogarithmic
number of steps; this means that for every input length �
there exists an input length �0 ≥ � − polylog(�) such that

fws is efficiently-computable at input length �0 (i.e., fws
�0

is computable in time 2�0/polylog(�0) without a “downward”

oracle); see [1, Section 4.1.1] for intuition and details about

this property.

Now, observe that the transformation of a probabilistic

distinguisher A for the PRG to a probabilistic algorithm F
that computes fws actually gives a “point-wise” guarantee:

For every input length n ∈ N, if A distinguishes the PRG on

a corresponding set of input lengths Sn, then F computes

fws correctly at input length � = �(n) = ˜O(log(n));
specifically, we want to use the downward self-reducibility

argument for fws at input lengths �, � − 1, ..., �0, and Sn is

the set of input lengths at which we need a distinguisher

for G in order to obtain a weak learner for ECC(fws) at

input lengths �, �−1, ...�0. Moreover, since fws is downward

self-reducible in polylog steps, we will only need weak

learners at inputs �, ..., �0 = � − polylog(�); hence, we can

show that Sn is a set of polylog(�) = polyloglog(n) input

lengths in the interval [n, n2] (see [1, Lemma 4.9] for the

precise calculation). Taking the contrapositive, if fws cannot

be computed by F on almost all �’s, then for every n ∈ N
there exists an input length m ∈ Sn ⊂ [n, n2] such that G
fools A at input length m.10

Our derandomization algorithm gets input 1n and also

gets the “good” input length m ∈ Sn as non-uniform
advice; it then simulates G(1m) (i.e., the PRG at input

length m) and truncates the output to n bits. (We can indeed

show that truncating the output of our PRG preserves its

pseudorandomness in a uniform setting; see [1, Proposition

4.12] for details.) The crucial point is that since |Sn| =
polyloglog(n), the advice length is O(logloglog(n)). Note,

however, that for every potential distinguisher A there exists

a different input length m ∈ Sn such that G is pseudorandom

for A on m. Hence, our derandomization algorithm (or,

more accurately, its advice) depends on the distinguisher

that it wants to “fool”. Thus, for every L ∈ BPP and every

efficiently-samplable distribution X of inputs, there exists a

corresponding “almost-always” derandomization algorithm

DX (see [1, Proposition 4.12]).

B. NT IME-uniform circuits for E and an equivalence
between derandomization and circuit lower bounds

The proofs that we describe in the current section are

significantly simpler technically than the proofs described

in Sections II-A and II-C. As mentioned in Section I-C, the

motivating observation is that NETH implies an equivalence

between derandomization and circuit lower bounds; let us

start by proving this statement:

10Actually, since fws is downward self-reducible in polylog steps, it can
be computed relatively-efficiently on infinitely-many input lengths, and thus
cannot be “hard” for almost all �’s. However, since TQBF can be reduced
to fws with quasilinear overhead, if TQBF is “hard” almost-always then

for every �(n) there exists �′ ≤ ˜O(�(n)) such that fws is “hard” on �′,
which allows our argument to follow through, with a similar set Sn ⊂
[n, npolyloglog(n)] (see [1, Proposition 4.11] for details). For simplicity,
we ignore this issue in the overview.
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Proposition II.1 (“warm-up”: a weaker version of The-

orem I.3). Assume that EXP �⊂ i.o.NSUBEXP . Then,
prBPP ⊆ prSUBEXP ⇐⇒ EXP �⊂ i.o.P/poly.

Proof: The “⇐=” direction follows (without any as-

sumption) from [24]. For the “=⇒” direction, assume that

prBPP ⊆ prSUBEXP , and assume towards a contradic-

tion that EXP ⊂ i.o.P/poly. The latter hypothesis implies

(using the Karp-Lipton style result of [24]) that EXP ⊂
i.o.MA. Combining this with the former hypothesis, we

deduce that EXP ⊂ i.o.NSUBEXP , a contradiction.
Our proofs of Theorems I.3 and I.4 will follow the same

logical structure as the proof of Proposition II.1, and our goal

will be to relax the hypothesis EXP �⊂ i.o.NSUBEXP .

We will do so by strengthening the Karp-Lipton style result

that uses [24] and asserts that a joint “collapse” hypothesis

and derandomization hypothesis implies that EXP can be

decided in small non-deterministic time. We will show

two different strengthenings, each referring to a different

parameter setting: The first strengthening refers to a “low-

end” setting, and asserts that if EXP ⊂ P/poly and

prBPP ⊆ prSUBEXP then EXP has NSUBEXP-

uniform circuits of polynomial size (see [1, Item (1) of

Proposition 5.6]); and the second strengthening refers to a

“high-end” setting, and asserts that if E ⊂ i.o.SIZE [2ε·n]
and prBPP = prP then E has NT IME [2O(ε)·n]-uniform

circuits (see [1, Proposition 5.7]). The proofs of these two

different strengthenings rely on different ideas; for high-

level descriptions of the proofs see [1, Section 5.1.2] and [1,

Section 5.1.3], respectively.
For context, recall that (as noted by Fortnow, Santhanam,

and Williams [39]), the proof of [24] already supports the

stronger result that EXP ⊂ P/poly ⇐⇒ EXP =
OMA;11 and by adding a derandomization hypothesis (e.g.,

prBPP = prP) we can deduce that EXP = ONP .

Nevertheless, our results above are stronger, because NP-

uniform circuits are an even weaker model than ONP: This

is since in the latter model the proof is verified on an input-

by-input basis, whereas in the former model we only verify

once that the proof is convincing for all inputs. We also

stress that some lower bounds for this weaker model (i.e., for

NT IME-uniform circuits of small size) are already known:

Santhanam and Williams [31] proved that for every k ∈ N
there exists a function in NP that cannot be computed by

NP-uniform circuits of size nk.
We also note that our proofs actually show that (con-

ditioned on lower bounds for NT IME-uniform circuits

against E) even a relaxed derandomization hypothesis is

already equivalent to the corresponding circuit lower bounds.

For example, in the “high-end” setting, to deduce that

11The notation OMA stands for “oblivious” MA. It denotes the class
of problems that can be decided by an MA verifier such that for every
input length there is a single “good” proof that convinces the verifier on all
inputs in the set (rather than a separate proof for each input); see, e.g., [39],
[40].

E �⊂ SIZE [2Ω(n)] it suffices to assume that CAPP on v-bit

circuits of size n = 2Ω(v) can be solved in time 2ε·v , for a

sufficiently small ε > 0.12 For more details, see [1, Section

5.2].

Proof of Theorem I.5: The first part of Theorem I.5

asserts that if E does not have NT IME [2nδ

]-uniform

circuits of polynomial size, then the conditional statement

“prBPP ⊆ prNSUBEXP =⇒ EXP �⊂ P/poly” holds.

The proof of this statement again follows the logical struc-

ture from the proof of Proposition II.1, and relies on a further

strengthening of our “low-end” Karp-Lipton style result such

that the result only uses the hypothesis that prBPP ⊆
prNSUBEXP rather than prBPP ⊆ prSUBEXP .13

The second part of Theorem I.5 asserts that if the con-

ditional statement “prBPP ⊆ prNSUBEXP =⇒ EXP �⊂
P/poly” holds, then E does not have NP-uniform cir-

cuits. We will in fact prove the stronger conclusion that

E �⊆ (NP ∩ P/poly). (Recall that the class of prob-

lems decidable by NP-uniform circuits is a subclass of

ONP ⊆ NP ∩ P/poly.) The proof itself is very simple:

Assume towards a contradiction that E ⊆ (NP ∩ P/poly);
since BPP ⊆ EXP , it follows that prBPP ⊆ prNP
(see [1, Proof of Theorem 5.10]); and by the hypothesized

conditional statement, we deduce that EXP �⊂ P/poly, a

contradiction. Indeed, the parameter choices in the foregoing

proof are far from tight, and (as mentioned after the state-

ment of Theorem I.5) the quantitative gap between the two

parts of Theorem I.5 can be considerably narrowed (see [1,

Theorem 5.11]).

C. Circuit lower bounds from randomized CircuitSAT al-
gorithms

Recall that Theorem I.6 asserts that if CircuitSAT for

n-bit circuits of size Õ(n2) can be solved in probabilistic

time 2n/(logn)c , then BPE �⊂ SIZE [n · (log n)c′ ], where

c′ depends on c. The relevant context for this result is the

known line of works that deduce circuit lower bounds from

“non-trivial” circuit-analysis algorithms, following the cele-

brated result of Williams [34]. The main technical innovation

in Theorem I.6 is that our hypothesis is only that there

exists a probabilistic circuit-analysis algorithm, whereas the

aforementioned known results crucially rely on the fact that

the circuit-analysis algorithm is deterministic. On the other

hand, the aforementioned known results yield new circuit

lower bounds even if the running time of the algorithm is

12Note that the problem of solving CAPP for v-bit circuits of size
n = 2Ω(v) can be trivially solved in time 2O(v) = poly(n), and thus
unconditionally lies in prP ∩ prBPT IME[Õ(n)]. The derandomization
problem described above simply calls for a faster deterministic algorithm
for this problem.

13Intuitively, in the “low-end” Karp-Lipton result we only need to
derandomize probabilistic decisions made by the non-deterministic machine
that constructs the circuit, whereas the circuit itself is deterministic; thus,
a non-deterministic derandomization hypothesis suffices for this result.
See [1, Section 5.1.2] for details.
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2n/nω(1),14 whereas Theorem I.6 only yields new circuit

lower bounds if the running time is 2n/polylog(n).
As far as we are aware, Theorem I.6 is the first result that

deduces circuit lower bounds from a near-exponential-time

probabilistic algorithm for a natural circuit-analysis task.

The closest result that we are aware of is by Oliveira and

Santhanam [41, Theorem 14], who deduced lower bounds

for circuits of size nO(1) against BPE from non-trivial prob-

abilistic algorithms for learning with membership queries
(rather than for a circuit-analysis task such as CircuitSAT);

as explained next, we build on their techniques in our

proof.15

Our proof strategy is indeed very different from the proof

strategies underlying known results that deduce circuit lower

bounds from deterministic circuit-analysis algorithms (e.g.,

from the “easy-witness” proof strategy [27]–[29], [34], [42],

[43], or from proofs that rely on MA lower bounds [27,

Rmk. 26], [30], [33]). In high-level, to prove our result

we exploit the connection between randomized learning
algorithms and circuit lower bounds, which was recently

discovered by Oliveira and Santhanam [41, Sec. 5] (follow-

ing [44]–[46]). Loosely speaking, their connection relies on

the classical results of [15], and we are able to significantly

refine this connection, using our refined version of the [15]

argument that was detailed in Section II-A.

Our starting point is the observation that CircuitSAT

algorithms yield learning algorithms. Specifically, fix k ∈
N, and assume (for simplicity) that CircuitSAT for

polynomial-sized n-bit circuits can be solved in probabilistic

time 2n/polylog(n) for an arbitrarily large polylogarithmic

function. We show that in this case, any function that is

computable by circuits of size n·(log n)k can be learned (ap-

proximately) using membership queries in time 2n/polylog(n)

(we explain below how to prove this).16 Now, let fws be the

well-structured function from Section II-A, and recall that

fws is computable in linear space, and hard for linear space

under quasilinear-time reductions. Then, exactly one of two

cases holds:

1) The function fws does not have circuits of size

n · (log n)k. In this case a Boolean version of fws

also does not have circuits of such size, and since this

Boolean version is in SPACE [O(n)] ⊆ BPE , we are

done.

14For example, from such an algorithm they deduce the lower bound
NEXP �⊆ P/poly; and from an algorithm that runs in time 2n/polylog(n)

as in Theorem I.6, their results yield the lower bound NP �⊂ SIZE[nk]
for every fixed k ∈ N.

15Another known result, which was communicated to us by Igor Oliveira,
asserts that if CircuitSAT for circuits over n variables and of size
poly(n) can be solved in probabilistic sub-exponential time 2n

o(1)
, then

BPT IME[2O(n)] �⊂ P/poly. This result can be seen as a “high-end”
form of our result (i.e., of Theorem I.6), where the latter will use a weaker
hypothesis but deduce a weaker conclusion.

16That is, there exists a probabilistic algorithm that gets input 1n and
oracle access to f , and with high probability outputs an n-bit circuit of
size n · (logn)k that agrees with f on almost all inputs.

2) The function fws has circuits of size n · (log n)k.

Hence, fws is also learnable (as we concluded above),

and so the argument of [15] can be used to show

that fws is computable by an efficient probabilis-

tic algorithm.17 Now, by a diagonalization argument,

there exists Ldiag ∈ Σ4[n · (log n)2k] that cannot be

computed by circuits of size n · (log n)k. We show

that Ldiag ∈ BPE by first reducing Ldiag to fws in

time ˜O(n), and then computing fws (using the efficient

probabilistic algorithm).

Thus, in both cases we showed a function in BPE \
SIZE [n · (log n)k]. The crucial point is that in the second

case, our new and efficient implementation of the [15]

argument (which was described in Section II-A) yields a

probabilistic algorithm for fws with very little overhead,

which allows us to indeed show that Ldiag ∈ BPE . Specifi-

cally, our implementation of the argument (with the specific

well-structured function fws) shows that fws can be learned

in time T (n) = 2n/polylog(n), then fws can be computed in

similar time T ′(n) = 2n/polylog(n) (see [1, Corollary 4.10]).

We thus only need to explain how a CircuitSAT algo-

rithm yields a learning algorithm with comparable running

time. The idea here is quite simple: Given oracle access to a

function fws, we generate a random sample of r = poly(n)
labeled examples (x1, f

ws(x1)), ..., (xr, f
ws(xr)) for fws,

and we use the CircuitSAT algorithm to construct, bit-by-

bit, a circuit of size n · (log n)k that agrees with fws on the

sample. Note that the input for the CircuitSAT algorithm

is a circuit of size poly(n) over only n′ ≈ n · (log n)k+1

bits (corresponding to the size of the circuit that we wish

to construct). Hence, the CircuitSAT algorithm runs in

time 2n
′/polylog(n′) = 2n/polylog(n). And if the sample size

r = poly(n) is large enough, then with high probability

any circuit of size n · (log n)k that agrees with fws on the

sample also agrees with fws on almost all inputs (i.e., by a

union-bound over all circuits of such size).
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