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Abstract

We study the composability of discrete chemical reaction networks (CRNs) that stably com-
pute (i.e., with probability 0 of error) integer-valued functions f : Nd → N. We consider
output-oblivious CRNs in which the output species is never a reactant (input) to any reaction.
The class of output-oblivious CRNs is fundamental, appearing in earlier studies of CRN com-
putation, because it is precisely the class of CRNs that can be composed by simply renaming
the output of the upstream CRN to match the input of the downstream CRN.

Our main theorem precisely characterizes the functions f stably computable by output-
oblivious CRNs with an initial leader. The key necessary condition is that for sufficiently large
inputs, f is the minimum of a finite number of nondecreasing quilt-affine functions. (An affine
function is linear with a constant offset; a quilt-affine function is linear with a periodic offset).

1 Introduction

A foundational model of chemistry commonly used in natural sciences is that of chemical reaction
networks (CRNs): finite sets of chemical reactions such as A+B → A+C. The model is described
as a continuous time, discrete state, Markov process [20]. A configuration of the system is a
vector of non-negative integers specifying the molecular counts of the species (e.g., A, B, C), a
reaction can occur only when all its reactants are present, and transitions between configurations
correspond to reactions (e.g., when the above reaction occurs the count of B is decreased by 1 and
the count of C increased by 1). CRNs are widely used to describe natural biochemical systems
such as the intricate cellular regulatory networks responsible for the information processing within
cells. Looking beyond the scientific goal of understanding natural CRNs, to the engineering goal of
constructing programmable, autonomous smart molecules, artificial CRNs have been implemented
using the physical primitive of nucleic-acid strand displacement cascades [8, 11,23,24].

Population protocols, a widely-studied model of distributed computing with very limited agents,
are a restricted subset of CRNs (those with two reactants and two products in each reaction) that
nevertheless capture many of the interesting features of CRNs. The key feature is the inability of
agents (molecules) to control their schedule of communication (collisions). The decision problems
solvable by population protocols have been studied extensively: they can simulate Turing machines
with high probability in polylogarithmic time (with [5] or without [21] an initial leader), whereas
requiring probability 0 of error limits the computable predicates to being semilinear [6].
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f(x) = 2x

X → 2Y

f(x1, x2) = min(x1, x2)

X1 +X2 → Y

f(x1, x2) = max(x1, x2)

X1 → Z1 + Y
X2 → Z2 + Y

Z1 + Z2 → K
K + Y → ∅

Figure 1: Functions stably computed by CRNs. Note max is computed as x1 + x2 −min(x1, x2).

1.1 Function computation

Computation of functions f : Nd → N was discussed briefly in the first population protocols
paper [3, Section 3.4], which focused more on Boolean predicate computation, and it was defined
formally first for CRNs [10,17] and later for population protocols [7]. The class of functions stably
computable in either model is the same: the semilinear functions [6, 10]. We use the CRN model
because it is more natural for describing functions, but our results also apply to the population
protocol model.

To represent an input x ∈ Nd, we start in a configuration with counts x(i) of species Xi for each
i ∈ {1, . . . , d}, and count 1 of a “leader” species L.1 A function f : Nd → N is stably computable
by a CRN if a correct and stable configuration O (i.e., on input x the count of Y is f(x) in all
configurations reachable from O) remains reachable no matter what reactions occur.2

See Fig. 1 for examples. It is known that a function f : Nd → N is stably computable by a CRN
if and only if it is semilinear : intuitively, it is a piecewise affine function. (See Definition 2.6.)

1.2 Composability

Note a key difference between the CRNs for min and max in Fig. 1: the former only produces
the output species Y , whereas the latter also contains reactions that consume Y . In one possible
sequence of reactions for the max CRN, the inputs can be exhausted through the first two reactions
before ever executing the last two reactions. In doing so, the count of Y overshoots its correct value
of max(x1, x2) before the excess is consumed by the reaction K + Y → ∅.

For this reason that the min CRN is more easily composed with a downstream CRN. For
example, the function 2 ·min(x1, x2) is stably computed by the reactions X1+X2 →W (computing
w = x1+x2) and W → 2Y (computing y = 2w), renaming the output of the min CRN to match the
input of the multiply-by-2 CRN. However, this approach does not work to compute 2 ·max(x1, x2);
changing Y to W in the four-reaction max CRN and adding the reaction W → 2Y can erroneously
result in up to 2(x1 + x2) copies of Y being produced. Intuitively, the multiply-by-2 reaction
W → 2Y competes with the upstream reaction K +W → ∅ from the max CRN.

1 The leader is discussed in Section 1.3. A CRN may ignore its leader, as in Fig. 1.
2 We use this definition throughout the paper, but we mention here that it is equivalent to two other natural

definitions. The first definition is that any fair sequence of reactions will take the CRN to such a correct stable
configuration, where fair means that any configuration that is infinitely often reachable is eventually reached. The
second definition is that a correct stable configuration is actually reached with probability 1.
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f(x) = min(1, x)

X → Y
2Y → Y

f(x) = min(1, x)

L+X → Y

Figure 2: min(1, x) is stably computed by a leaderless non-output-oblivious CRN (left), and an output-oblivious
CRN with a single leader L (right).

This motivates us to study the class of functions f : Nd → N stably computable by output-
oblivious CRNs: those in which the output species Y appears only as a product, never as a reactant.
We call such a function obliviously-computable. Any obliviously-computable function must be
nondecreasing, otherwise reactions could incorrectly overproduce output (see Observation 2.1).

Obliviously-computable functions must also be semilinear, so it is reasonable to conjecture that
a function is obliviously-computable if and only if it is semilinear and nondecreasing. In fact, this
is true for 1D functions f : N → N (see Section 3). However, in higher dimensions, the function
max : N2 → N is semilinear and nondecreasing, yet not obliviously-computable; its consumption
of output turns out to be unavoidable. Assuming there is no leader, this is simple to prove: Since
max(1, 0) = 1, starting with one X1, a Y can be produced. Similarly, a Y can be produced starting
with one X2. Then with one X1 and one X2, these reactions can happen in parallel and produce
two Y ’s, too many since max(1, 1) = 1. It is more involved to prove that even with a leader, it
remains impossible to obliviously compute max; see Section 4.3

1.3 The role of the leader

Our model includes an initial leader, which is essential for our general constructions (see Sections 3
and 6). The class of stably computable functions is identical whether an initial leader is allowed or
not [17], as is the class of stably computable predicates [6].

Interestingly, the class of obliviously-computable functions we study is provably larger when an
initial leader is allowed. For example, consider the function f(x) = min(1, x) (see Fig. 2). f is stably
computable with or without a leader, but only the construction with a leader is output-oblivious.
Without using a leader, f is not obliviously-computable (see Observation 9.1).

Including the leader gives additional power to the model. This gives more power to our
CRN constructions, but makes our impossibility results stronger. Fully classifying the obliviously-
computable functions in a leaderless model remains an open question.

1.4 Contribution

Our main result, Theorem 5.2, provides a complete characterization of the class of obliviously-
computable functions. It builds off a key definition: a quilt-affine function is a nondecreasing
function that is the sum of a rational linear function and periodic function (formalized as Definition
5.1). For example, functions such as b3x2 c are quilt-affine (see Fig. 3a). Such floored division
functions are natural to the discrete CRN model (b3x2 c is stably computed by reactions X → 3Z,
2Z → Y ). Fig. 3b shows a higher-dimensional quilt-affine function, with a “bumpy quilt” structure
that motivates the name. Quilt-affine functions are also characterized by nonnegative periodic finite
differences, a structure key to showing they are obliviously-computable (see Lemma 6.1).

3 This result was obtained independently by Chugg, Condon, and Hashemi [13].
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𝑥

3𝑥
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(a) A 1D (single-input) quilt-affine function b 3x
2
c =

3
2
x+B(x mod 2), where B(0) = 0 and B(1) = − 1

2
.

𝑥1
𝑥2

𝑔

(b) A 2D quilt-affine function g(x) = (1, 2) · x +
B(x mod 3), where B(x) = 0 except when x ∈
{(1, 2), (2, 2), (2, 1)}.

Figure 3: Examples of 1D and 2D quilt-affine functions.
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min of 2𝐷
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(a) A 2D function satisfying Theorem 5.2.
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𝑓

linear at 
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functions when 
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(b) The scaling limit gives a 2D real-valued obliviously-
computable function from [9].

Figure 4: Example discrete and real-valued obliviously-computable functions.

Theorem 5.2 states that a function f : Nd → N is obliviously-computable if and only if

i) [nondecreasing] f is nondecreasing,

ii) [eventually-min] for sufficiently large inputs, f is the minimum of a finite number of quilt-affine
functions, and

iii) [recursive] every restriction fr : Nd−1 → N obtained by fixing some inputs to a constant value4

is obliviously-computable (i.e., eventually the minimum of quilt-affine functions).

Condition (ii) characterizes f when all inputs are sufficiently large (greater than some n ∈ Nd),
whereas condition (iii) characterizes f when some inputs are fixed to smaller values. See Fig. 4a
for a representative example of an obliviously-computable f : N2 → N. This pictured function has
arbitrary nondecreasing values in the “finite region” where x < (4, 4), has eventual 1D quilt-affine
behavior along the lines x1 = 0, 1, 2, 3 and x2 = 0, 1, 2, 3, and is the minimum of 3 different quilt-
affine functions in the “eventual region” where x ≥ (4, 4). This behavior generalizes naturally to
higher dimensions.

4 Note that Theorem 5.2 defines fixed-input restrictions slightly differently; see Section 5 for an explanation.
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The most technically sophisticated part of our result is the proof that the eventually-min con-
dition (ii) of Theorem 5.2 is necessary; the main ideas of this proof are outlined in Section 7.1.

1.5 Related work

Chalk, Kornerup, Reeves, and Soloveichik [9] showed an analogous result in the continuous model
of CRNs in which species amounts are given by nonnegative real concentrations. A consequence
of their characterization is that any obliviously-computable real-valued function is a minimum
of linear functions when all inputs are positive. In Theorem 8.2, we demonstrate that the limit
of “scalings” of a function f : Nd → N satisfying our main Theorem 5.2 is in fact a function
f̂ : Rd≥0 → R≥0 satisfying the main theorem of [9] (see Fig. 4b). The discrete details lost in the
scaling limit constitute precisely the unique challenges of proving Theorem 5.2 that are not handled
by [9]. In particular, our function class can contain arbitrary finite behavior and repeated finite
irregularities.

Returning to the discrete (a.k.a., stochastic) CRN model we study, Chugg, Condon, and
Hashemi [13] independently investigated the special case of two-input functions f : N2 → N com-
putable by output-oblivious CRNs, obtaining a characterization equivalent to ours when restricted
to 2D. Their characterization is phrased much differently, with specially constructed “fissure func-
tions” to describe the function behavior across what we describe as under-determined regions (in-
tuitively, thin “1D” regions bounded by parallel lines, where f cannot be described by a unique
quilt-affine function, see Section 7). The ideas required to prove the 2D case are sophisticated and
far from simple, yet unfortunately, these ideas do not extend straightforwardly to higher dimensions.
The planarity of the 2D input space constrains the regions induced by separating hyperplanes (i.e.,
lines) in a strong way. Furthermore, the fact that there is only one nontrivial integer dimension
smaller than 2 implies that the under-determined regions are simpler to reason about than in the
case where they can have arbitrary dimension between 1 and d. Finally, even restricted to 2D, a
notable aspect of our characterization is expressing f a minimum of quilt-affine functions, which
are simple intrinsic building blocks that generalize immediately.

1.6 Other ways of composing computation

In Section 2.3 we show that a for a CRN C be composable with downstream CRN D by “concatena-
tion” (renaming C’s output species to match D’s input species and ensuring all other species names
are disjoint between C and D), it is (in a sense) necessary and sufficient for C to be output-oblivious.
There are other ways to compose computations, however.

A common technique (e.g. [19]) is for C to detect when its output has changed and send a restart
signal to D. However, it is not obvious how to do this with function computation as defined in this
paper, where D changes C’s output by consuming it.

Another technique (e.g. [5]) is to set a termination signal, which is a sub-CRN that, with high
probability, creates a copy of a signal species T , but not before C has converged. T then “activates”
the reactions of D, so that D will not consume the output of C until it is safe to do so. However, this
has some positive failure probability. In fact, if we require T to be guaranteed with probability 1 to
be produced only after the CRN has converged, only constant functions can be stably computed.
Worse yet, in the leaderless case, it is provably impossible to achieve this guarantee even with
positive probability [16].
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2 Preliminaries

2.1 Notation

N denotes the set of nonnegative integers. For a set S (of species), we write NS to denote the
set of vectors indexed by the elements of S (equivalently, functions f : S → N). Vectors appear
in boldface, and we reserve uppercase A ∈ NS for such vectors indexed by species, and lowercase
a ∈ Nd,Zd,Qd,Rd for vectors indexed by integers. A(S) or a(i) denotes the element indexed by
S ∈ S or i ∈ {1, . . . , d}. We write a ≤ b to denote pointwise vector inequality a(i) ≤ b(i) for all i.

For p ∈ N+, Z/pZ denotes the additive group of integers modulo p, whose elements are congru-
ence classes. Generalizing to higher dimensions, Zd/pZd denotes the additive group of Zd modulo
p, whose elements are congruence classes. For x ∈ Nd where d ≥ 1, we write x mod p to denote
the congruence class {x + pz : z ∈ Zd} ∈ Zd/pZd, also denoted x when p is clear from context.
Rd≥0 denotes the nonnegative orthant in Rd. We consider regions R = {x ∈ Rd≥0 : Tx− h ≥ 0}

which are convex polyhedra given by a set of inequalities. R ∩ Nd denotes all integer points in R,
and for x ∈ Nd, R∩ (x mod p) denotes the integer points in R in the same congruence class as x.

2.2 Chemical reaction networks

We use the established definitions of stable function computation by (discrete) chemical reaction
networks [4, 13]:

A chemical reaction network (CRN) C = (S,R) is defined by a finite set S of species and a
finite set R of reactions, where a reaction (R,P) ∈ NS × NS describes the counts of consumed
reactant species and produced product species.5 For example, given S = {A,B,C}, the reaction
((1, 0, 2), (0, 2, 1)) would represent A+ 2C → 2B + C.

A configuration C ∈ NS specifies the integer counts of all species. Reaction (R,P) is applicable
to C if R ≤ C, and yields C′ = C−R + P, so we write C → C′. A configuration D is reachable
from C if there exists a finite sequence of configurations such that C→ C1 → . . .→ Cn → D; we
write C→∗ D to denote that D is reachable from C. Note this reachability relation is additive: if
A→∗ B, then A + C→∗ B + C. This property is key in future proofs to show the reachability of
configurations which overproduce output.

To compute a function6 f : Nd → N, the CRN C will include an ordered subset {X1, . . . , Xd} ⊂ S
of input species, an output species Y , and a leader species L ∈ S. (Note that we consider removing
the leader in Section 9).

The computation of f(x) will start from an initial configuration Ix encoding the input with
Ix(Xi) = x(i) for all i = 1, . . . , d, along with a single leader Ix(L) = 1, and count 0 of all other
species. A stable configuration C has unchanged output C(Y ) = D(Y ) for any configuration D
reachable from C. The CRN C stably computes f : Nd → N if for each initial configuration Ix

encoding any x ∈ Nd, and configuration C reachable from Ix, there is a stable configuration O
reachable from C with correct output O(Y ) = f(x).

5 We do not limit ourselves to bimolecular (two input) reactions, but the higher-order reactions we use can easily
be converted to have this form. For example, 3X → Y is equivalent to two reactions 2X ↔ X2 and X +X2 → Y .

6We consider codomain N without loss of generality, since f : Nd → Nl is stably computable if and only if each
output component is stably computable by parallel CRNs.
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2.3 Composition via output-oblivious CRNs

This section formally defines our notions of “composable computation with CRNs via concatenation
of reactions” and “output-oblivious” CRNs that don’t consume their output, showing these notions
to be essentially equivalent.

A CRN is output-oblivious if the output species Y is never a reactant7: for any reaction (R,P),
R(Y ) = 0. A function f : Nd → N is obliviously-computable if f is stably computed by an output-
oblivious CRN.

We begin with an easy observation:

Observation 2.1. An obliviously-computable function f : Nd → N must be nondecreasing.

Proof. Assume a CRN C (with output species Y ) stably computes f , but f(a) > f(b) for a ≤ b.
To stably compute f(a), input configuration Ia →∗ O for some configuration with O(Y ) = f(a).
However, since a ≤ b, that same sequence of reactions can be applied from the input configuration
Ib ≥ Ia. This overproduces Y since f(a) > f(b). Thus to stably compute f(b), some reaction
must consume Y as a reactant, so C cannot be output-oblivious.

A CRN being output-oblivious was shown in [9] (for continuous CRNs) to be equivalent to
being “composable via concatenation”, meaning renaming the output species of one CRN to match
the input of another. This equivalence still holds in our discrete CRN model. This is formalized
as Observation 2.2 and Lemma 2.3.

For CRNs Cf stably computing f : Nd → N and Cg stably computing g : N → N, define the
concatenated CRN Cg◦f by combining species and reactions, with Cf ’s output species as Cg’s input
species and no other common species, plus a reaction L → Lf + Lg creating a copy of the leader
from each of Cf and Cg.

We first observe that this composition works correctly if the upstream CRN Cf is output-
oblivious. Intuitively, the reactions from Cg can only affect the reactions from Cf via the common
species W , but this output species of Cf is never used as a reactant to stably compute f(x).

Observation 2.2. If Cf stably computes f : Nd → N, Cg stably computes g : N → N, and Cf is
output-oblivious, then the concatenated CRN Cg◦f stably computes the composition g ◦ f : Nd → N.

Note that the downstream CRN Cg need not be output-oblivious, but if two output-oblivious
CRNs are composed, then the composition Cg◦f remains output-oblivious. More generally, g can
take any number of inputs from output-oblivious CRNs, which act as modules for arbitrary feed-
forward composition.

The converse shows that a composable CRN is essentially output-oblivious. If Cf can be cor-
rectly composed with any downstream Cg, then Cf must function correctly even if downstream
reactions from Cg starve it of the common species W . Thus Cf will still stably compute f if we
remove all reactions with output W as a reactant, making it output-oblivious.

Lemma 2.3. Let Cf stably compute f : Nd → N such that for any Cg stably computing g : N→ N,
the concatenated CRN Cg◦f stably computes the composition g ◦ f : Nd → N. Then Cf still stably
computes f if we remove all reactions using the output species as a reactant, making it output-
oblivious.

7 A more general definition in [13] of output-monotonic CRNs just requires no reaction to reduce the count of
output species. This can be directly seen to classify the same set of functions, see Observation 2.4.
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Proof. Let Cf (with output species W ) stably compute f : Nd → N. Let g(x) = x be the identity
function, stably computed by W → Y . Assume the concatenated CRN Cg◦f stably computes
g ◦ f = f . Let C′f be the output-oblivious CRN with all reactions using W as a reactant removed
from Cf . We now show that C′f also stably computes f .

For any x ∈ Nd, let Ix be the initial configuration encoding x in C′f , and C be a configuration
reachable from Ix. Now we can naturally view Ix and C also as configurations in the concatenated
CRN Cg◦f . We first consider configuration D reachable from C by applying reaction W → Y
C(W ) until D(W ) = 0. Now because Cg◦f stably computes f , there exists a sequence of reactions
α from D to a stable configuration O with O(Y ) = f(x). α could contain reactions that use W
as a reactant, but because D(W ) = 0, any such reactions must occur after additional W has been
produced.

Before any such reactions using W as a reactant, we can insert more reactions W → Y , reaching
an intermediate configuration D2 again with D2(W ) = 0. There must exist some new sequence of
reactions α2 from D2 to a stable configuration O2 with O2(Y ) = f(x). Repeating this process, we
will eventually find a sequence of reactions β from C to a correct stable configuration On. Notice
that we only have to “splice in” new reactions when W is produced, and this can only happen at
most f(x) times, so this process will terminate.

Thus we have demonstrated a sequence of reactions β in Cg◦f from C reaching a stable correct
output configuration On without using any reactions using W as a reactant. On(Y ) = f(x), so
β contains precisely f(x) copies of the reaction W → Y . Ignoring these reactions then gives a
sequence of reactions β′ in C′f from C to a correct configuration O′ with O′(W ) = f(x). Notice
that On being stable in Cg◦f implies O′ is stable in C′f since no additional W can be produced.
This shows C′f stably computes f as desired.

We finally observe that the more general definition of output-monotonic CRNs (which cannot
decrease the count of the output species) stably compute precisely the same set of functions as
output-oblivious CRNs:

Observation 2.4. f : Nd → N is stably computable by an output-oblivious CRN ⇐⇒ f is stably
computable by an output-monotonic CRN.

Proof. =⇒ : Any output-oblivious CRN must be output-monotonic.
⇐= : If f was stably computed by an output-monotonic CRN C which is not already output-

oblivious, then there must be reactions of the form Y + . . .→ Y + . . . with output species Y acting
as a catalyst. C can be made output-oblivious by replacing all such occurrences of Y as a catalyst
by a new catalyst species Z that is always produced alongside Y . Since C was output-monotonic,
if a Y is ever produced, it cannot be consumed. Thus any reactions with Y as a catalyst are
“turned on” the moment the first Y is produced and never turn off again. So it does not change
the reachable configurations to irreversibly produce a Z alongside Y and use Z as the catalyst in
place of Y . This output-oblivious CRN thus also stably computes f .

2.4 Semilinear functions

The functions stably computable by a CRN were shown in [10], building from work in [4], to be
precisely the semilinear functions, which are defined based on semilinear sets8

8Semilinear sets have other common equivalent definitions [3]; the above definition is convenient for our proof.
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Definition 2.5. A subset S ⊆ Nd is semilinear if S is a finite Boolean combination (union,
intersection, complement) of threshold sets of the form {x ∈ Nd : a · x ≥ b} for a ∈ Zd, b ∈ Z and
mod sets of the form {x ∈ Nd : a · x ≡ b mod c} for a ∈ Zd, b ∈ Z, c ∈ N+.

A semilinear function can be concisely defined as having a semilinear graph, but a more useful
equivalent definition comes from Lemma 4.3 of [10]9:

Definition 2.6 ( [10]). A function f : Nd → N is semilinear if f is the finite union of affine partial
functions, whose domains are disjoint semilinear subsets of Nd.

All functions discussed have been semilinear. For example, the function

min(x1, x2) =

{
x1, if x1 ≤ x2
x2, if x1 > x2

is semilinear with affine partial functions on disjoint domains which are defined by a single threshold
and thus semilinear.

Similarly, the function ⌊
3x

2

⌋
=

{
3
2x, if x is even
3
2x−

1
2 , if x is odd

is semilinear with affine partial functions on disjoint domains which are defined by parity (a single
mod predicate) and thus semilinear. All quilt-affine f : Nd → N are semilinear by the same
argument.

Lemma 2.7 ( [10]). A function f : Nd → N is stably computable ⇐⇒ f is semilinear.

3 Warm-up: One-dimensional case

For functions with one-dimensional input, the necessary conditions of being nondecreasing and
semilinear are also sufficient.

Theorem 3.1. f : N→ N is obliviously-computable ⇐⇒ f is semilinear and nondecreasing.

Intuitively, the proof works as follows. We show semilinear, nondecreasing f : N → N must
have the eventually quilt-affine structure in Fig. 5. From this structure, we define a CRN that
uses auxiliary leader states to track the value of x (or x mod p once x ≥ n), while outputting the
correct finite differences from adding each input.

Proof. =⇒ : Lemma 2.7 and Observation 2.1.
⇐= : If f : N→ N is semilinear and nondecreasing, it will eventually be quilt-affine (generalized

to higher-dimensional functions as Definition 5.1) and thus have periodic finite differences: for some
n ∈ N, period p ∈ N+, and finite differences δ0, . . . , δp−1 ∈ N, then for all x ≥ n, f(x+ 1)− f(x) =
δ(x mod p) (see Fig. 5).

Because f is semilinear, by Definitions 2.5 and 2.6, it can be represented as a disjoint union of
affine partial functions, whose domains are semilinear sets, and thus represented as finite Boolean

9Lemma 4.3 in [10] has domains that are non-disjoint linear sets. We assume the domains are disjoint for conve-
nience, making the domains semilinear sets.
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Figure 5: Every semilinear nondecreasing f : N→ N is eventually quilt-affine, with periodic finite differences δx.

combinations of threshold {x ∈ N : x ≥ a} and mod {x ∈ N : x ≡ b mod c} sets. Now take
n ∈ N greater than all such a and p = lcm(c) for all such c. Then for all x ≥ n, f periodically
cycles between affine partial functions. Because f is nondecreasing, these periodically-repeated
affine partial functions must all have the same slope. This implies f is eventually quilt-affine, with
periodic finite differences for all x ≥ n as claimed.

The CRN C to stably compute f uses input species X, output species Y , leader L, and species
L0, . . . , Ln−1, P0, . . . , Pp−1 corresponding to auxiliary “states” of the leader, i.e., exactly one of
L,L0, . . . , Ln−1, P0, . . . , Pp−1 is present at any time. Intuitively the leader tracks how many input
X it has seen, where the count past n wraps around mod p, and outputs the correct finite differences.
The reactions of C are as follows

L→ f(0)Y + L0

Li +X → [f(i+ 1)− f(i)]Y + Li+1 for all i = 0, . . . , n− 2

Ln−1 +X → [f(n)− f(n− 1)]Y + Pn

Pa +X → δaY + Pa+1 for all a = 0, . . . , p− 1.

In the 1D case, we can also characterize the functions obliviously-computable without a leader:
they are semilinear and superadditive: meaning f(x) + f(y) ≤ f(x+ y) for all x, y. (Theorem 9.2)

4 Impossibility result

The characterization of obliviously-computable functions as precisely semilinear and nondecreasing
from Theorem 3.1 is insufficient in higher dimensions. As an example, consider the function max :
N2 → N, which is both semilinear and nondecreasing. We prove max is not obliviously-computable
via a more general lemma:

Lemma 4.1. Let f : Nd → N. If there exists an increasing sequence (a1,a2, . . .) ∈ Nd such that for
all i < j there exists some ∆ij ∈ Nd with

f(ai + ∆ij)− f(ai) > f(aj + ∆ij)− f(aj),

10
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Figure 6: Lemma 4.1 applied to f = max(x1, x2).

then f is not obliviously-computable.

Before proving Lemma 4.1, we use it to show max is not obliviously-computable.
For f = max(x1, x2), we let ai = (i, 0) and ∆ij = (0, j), so for i < j,

max(i, j)−max(i, 0) = j − i > max(j, j)−max(j, 0) = 0

as desired (see Fig. 6). Adding ∆ij input after computing f(ai) should produce j − i additional
output Y . However, adding ∆ij input after computing f(aj) should not. Lemma 4.1 uses this to
show there exists a reaction sequence that overproduces Y , thus max is not obliviously-computable.
We now prove Lemma 4.1.

Proof. Assume toward contradiction an output-oblivious CRN C stably computes f . To stably
compute each f(ai), the initial configuration Iai →∗ Oi for some configuration with Oi(Y ) = f(ai),
giving a sequence of configurations (Oi)

∞
i=1. By Dickson’s Lemma [15], any sequence of nonnegative

integer vectors has a nondecreasing subsequence, so there must be Oi ≤ Oj for some i < j. By
assumption there exists ∆ij ∈ Nd such that

f(ai + ∆ij)− f(ai) > f(aj + ∆ij)− f(aj)

Now consider the initial configuration Iai+∆ij ≥ Iai , so define the difference D = Iai+∆ij−Iai ∈
NS . Then the same sequence of reactions Iai →∗ Oi is applicable to Iai+∆ij reaching configuration
Ci = Oi + D, with Ci(Y ) = Oi(Y ) = f(ai). Then to stably compute f(ai + ∆ij) there must exist
a further sequence of reactions α from Ci that produce an additional f(ai + ∆ij)− f(ai) copies of
output Y .

By the same argument, from initial configuration Iaj+∆ij the configuration Cj = Oj + D is
reachable, with Cj(Y ) = Oj(Y ) = f(aj). Then since Oi ≤ Oj , we have Ci ≤ Cj , so the same
sequence of reactions α is applicable to Cj , reaching some configuration C′j with an additional
f(ai + ∆ij)− f(ai) copies of output Y , so

C′j(Y ) = f(aj) + f(ai + ∆ij)− f(ai) > f(aj + ∆ij)

Then Iaj+∆ij →∗ C′j overproduces Y , so the output-oblivious CRN C cannot stably compute
f(aj + ∆ij).

11



Lemma 4.1 is our main technical tool used to show that a particular semilinear, nondecreasing
function is not obliviously-computable, the key challenge in the impossibility direction of Theo-
rem 5.2.

5 Main result: Full-dimensional case

To formally state our main result, Theorem 5.2, we must first define quilt-affine functions as the
sum of a linear and periodic function (see Fig. 3b):

Definition 5.1. A nondecreasing function g : Nd → Z is quilt-affine (with period p) if there exists
∇g ∈ Qd≥0 and B : Zd/pZd → Q such that

g(x) = ∇g · x +B(x mod p).

We call ∇g the gradient of g, and the periodic function B the periodic offset. Without loss of
generality we have the same period p along all inputs, since p could be the least common multiple
of the periods along each input component. Note that ∇g · x and B can each be rational, but the
sum g(x) ∈ Z will be integer-valued. We allow g to have negative output for technical reasons10,
but in the case that g is quilt-affine with nonnegative output (i.e. g : Nd → N), there is a simple
output-oblivious CRN construction to stably compute g. The intuitive idea is to use a single leader
that reacts with every input species sequentially, tracks the periodic value x mod p, and outputs
the correct changes in g (Lemma 6.1).

Our main result has a recursive condition where we fix the input of a function f : Nd → N.
For each i = 1, . . . , d and j ∈ N, define the fixed-input restriction11 f[x(i)→j] : Nd → N of f for all

x ∈ Nd by f[x(i)→j](x) = f(x(1), . . . ,x(i− 1), j,x(i+ 1), . . . ,x(d)).
We can now formally state our main result:

Theorem 5.2. f : Nd → N is obliviously-computable ⇐⇒

i) [nondecreasing] f is nondecreasing,

ii) [eventually-min] there exist quilt-affine g1, . . . , gm : Nd → Z and n ∈ Nd such that for all x ≥ n,
f(x) = mink(gk(x)), and

iii) [recursive] all fixed-input restrictions f[x(i)→j] are obliviously-computable.

We first prove that these conditions imply f is obliviously-computable via a general CRN
construction in Section 6.

The nondecreasing condition (i) is necessary by Observation 2.1. It is immediate to see the
recursive condition (iii) is also necessary:

Observation 5.3. If f : Nd → N is obliviously-computable, then any fixed-input restriction
f[x(i)→j] : Nd → N is obliviously-computable.

10 The quilt-affine functions that describe f for large inputs may be negative on inputs close to the origin.
11 We define f[x(i)→j] to have domain Nd because it is notationally convenient to have the same domain as f , but

f[x(i)→j] only has relevant input in d− 1 of its input components, making condition (iii) recursive.
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Proof. Let the output-oblivious CRN C stably compute f . We define the output-oblivious CRN
C′ to “hardcode” the input x(i) = j by modifying the reactions of C. Replace all instances of the
leader L and input species Xi by L′ and X ′i respectively, then add the initial reaction L→ jX ′i+L

′.
It is straightforward to verify that C′ stably computes f[x(i)→j].

Then the remaining work (and biggest effort of this paper) is to show the necessity of the
eventually-min condition (ii): that every obliviously-computable function can be represented as
eventually a minimum of a finite number of quilt-affine functions, which is shown as Theorem 7.1.
Its proof relies on f being semilinear, nondecreasing, and not having any “contradiction sequences”
to apply Lemma 4.1. Thus the proof of Theorem 7.1 also yields the following alternative charac-
terization to Theorem 5.2:

Theorem 5.4. f : Nd → N is obliviously-computable ⇐⇒ f is semilinear, nondecreasing, and
has no sequence (a1,a2, . . .) meeting the conditions of Lemma 4.1.

This gives a “negative characterization” identifying behavior obliviously-computable functions
must avoid, whereas Theorem 5.2, is a “positive characterization” describing the allowable behavior
of such functions. We include Theorem 5.4, though it is less descriptive of the function, because it
may be useful in other contexts.

6 Construction

First we show that any quilt-affine function with nonnegative range is stably computed by an
output-oblivious CRN:

Lemma 6.1. Every quilt-affine function g : Nd → N is obliviously-computable.

Proof. Let g : Nd → N be quilt-affine with period p (recalling Definition 5.1). Notice that g has
periodic finite differences. For each congruence class a ∈ Zd/pZd and input component i = 1, . . . , d,
where ei is the ith standard basis vector, define

δia = ∇g · ei +B(a + ei mod p)−B(a mod p) ∈ N.

Observe that for all x ∈ a, g(x + ei) − g(x) = δia. We now use these periodic finite differences to
construct an output-oblivious CRN C to stably compute g.

The CRN C has input species X1, . . . , Xd, output species Y , leader species L and pd additional
species La for each a ∈ Zd/pZd coresponding to auxilliary “states” of the leader. The initial reaction
L→ g(0)Y + L0 is accompanied by dpd reactions of the form

La +Xi → δiaY + La+ei

for each i = 1, . . . , d and a ∈ Zd/PZd. This CRN first creates g(0) output, then sequentially
outputs all finite differences, and is easily verified to stably compute g.

We now prove (in Lemma 6.2) one direction of Theorem 5.2: that conditions (i), (ii), and
(iii) imply an output-oblivious CRN can stably compute f . Intuitively, by the eventually-min
condition (ii) we compute f(x) for x ≥ n by composing min and quilt-affine functions. If x �
n, then x(i) = j for some input i and j < n(i). By the recursive condition (iii) we compute

13



f[x(i)→j](x) = f(x) 12. The key remaining insight is a trick (similar to a proof in [9]) to compose
these pieces using minimum and indicator functions.

The proof of Lemma 6.2 then expresses f as such a minimum of finitely many pieces. We
justify that f is obliviously-computable by showing that each piece is obliviously-computable, since
by Observation 2.2 obliviously-computable functions are closed under composition.

Lemma 6.2. If f : Nd → N satisfies the conditions of Theorem 5.2, f is obliviously-computable.

Proof. Assume f : Nd → N satisfies the conditions of Theorem 5.2. Then by eventually-min
condition (ii), there exist quilt-affine g1, . . . , gm : Nd → Z and n ∈ Nd (without loss of generality
assume n = (n, . . . , n)) such that f(x) = mink(gk(x)) for all x ≥ n.

Let x ∨ n = (max(x(1), n), . . . ,max(x(d), n)) denote the componentwise max of x and n. Let
1x(i)>j : Nd → {0, 1} denote the indicator function that is 1 ⇐⇒ its input x obeys x(i) > j. Recall
f[x(i)→j] is the fixed-input restriction setting input x(i) = j. We claim that f can be expressed as

f(x) = min

[
f(x ∨ n), f[x(i)→j](x) + 1{x(i)>j}(x) · f(x ∨ n)︸ ︷︷ ︸

i=1,...,d
j=0,...,n−1

]
. (1)

We first show f ≥ min[. . .] since for all x ∈ Nd, f(x) is achieved by some term. If x ≥ n, then
f(x) = f(x ∨ n). If x � n, there must be x(i) = j for some i = 1, . . . , d and j = 0, . . . , n − 1, so
f(x) = f[x(i)→j](x) = f[x(i)→j](x) + 1{x(i)>j}(x) · f(x ∨ n) since the indicator is 0.

We next show f ≤ min[. . .] since f(x) ≤ each term for all x ∈ Nd. f(x) ≤ f(x∨n) since x ≤ (x∨
n) and f is nondecreasing. When 1{x(i)>j}(x) = 1, we then have f(x) ≤ f[x(i)→j](x)+1{x(i)>j}(x) ·
f(x ∨ n). If 1{x(i)>j}(x) = 0, then x(i) ≤ j so f(x) ≤ f[x(i)→j](x) since f is nondecreasing. Thus
equation 1 holds as claimed.

It remains to show that f is obliviously-computable. From Observation 2.2, output-oblivious
CRNs are closed under composition, and equation 1 gives a method to express f as a composition
of functions. Thus it suffices to show that each piece is obliviously-computable. Specifically, we
show the functions min : Nk → N (for any k), f(x ∨ n) : Nd → N, f[x(i)→j](x) : Nd → N,

and c(a, b,x) = a + 1{x(i)>j}(x) · b : Nd+2 → N are each obliviously-computable. Implicit in the
composed CRN to stably compute f as the composition from equation 1 is the “fan out” operation
where reactions of the form Xi → X1

i , . . . , X
m
i create multiple copies of species Xi to be used as

independent inputs to multiple “modules” in this composition.

min : Nk → N is obliviously-computable:
Consider the CRN with single reaction X1, . . . , Xk → Y , the natural generalization of two-
input min from Fig. 1.

f(x ∨ n) : Nd → N is obliviously-computable:
By condition (ii), f(x ∨ n) = mink(gk(x ∨ n)) since x ∨ n ≥ n, so it suffices to show for each
quilt-affine gk : Nd → Z that gk(x ∨ n) is obliviously-computable.

By condition (ii), gk(x + n) ≥ f(x + n) ≥ 0 since x + n ≥ n. Then gk(x + n) : Nd → N
is still quilt-affine since that property is preserved by translation, but now has guaranteed
nonnegative output. Thus by Lemma 6.1, gk(x + n) : Nd → N is obliviously-computable.

12As a result, this construction is recursive, with an additional input being fixed at each level of the recursion, so
the base case is simply a constant function.
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Letting (x − n)+ = (max(x(1) − n, 0), . . . ,max(x(d) − n, 0)), we then show the function
(x−n)+ : Nd → Nd is obliviously-computable via the CRN with reactions (n+1)Xi → nXi+Yi
for each component i = 1, . . . , d.

Finally, because x ∨ n = (x − n)+ + n, we have shown gk(x ∨ n) = gk((x − n)+ + n) is
obliviously-computable as the composition of obliviously-computable gk(x+n) and (x−n)+.

f[x(i)→j](x) : Nd → N is obliviously-computable:
This is precisely the assumed recursive condition (iii).

c(a, b,x) = a+ 1{x(i)>j}(x) · b : Nd+2 → N is obliviously-computable:
Consider the output-oblivious CRN (with input species A,B,X1, . . . , Xd and output species
Y ) with two reactions A→ Y and (j + 1)Xi +B → (j + 1)Xi + Y . The A is all converted to
Y , and (j + 1) copies of input species Xi catalyze the conversion of B to Y , which will only
happen when 1{x(i)>j}(x) = 1. Thus this stably computes c(a, b,x) as desired.

7 Output-oblivious implies eventually min of quilt-affine functions

To complete the proof of Theorem 5.2, it remains to show the necessity of the eventually-min
condition (ii):

Theorem 7.1. If f : Nd → N is obliviously-computable, then there exist quilt-affine g1, . . . , gm :
Nd → Z and n ∈ Nd such that for all x ≥ n, f(x) = mink(gk(x)).

For the remainder of Section 7, we fix an obliviously-computable f : Nd → N, and Section 7 is
devoted to finding g1, . . . , gm and n satisfying Theorem 7.1.

7.1 Proof outline

Section 7.2. Since f : Nd → N is obliviously-computable, f is semilinear (recall Definition 2.6),
and we first consider all threshold sets used to define the semilinear domains of the affine partial
functions that define f . Each threshold set defines a hyperplane, and we use these hyperplanes to
define regions (see Fig. 8a and Fig. 8c). We consider regions as subsets of Rd≥0, so they are convex

polyhedra with useful geometric properties.13

The regions partition 14 the points in the domain Nd. To prove Theorem 7.1, for each region Rk
we will identify a quilt-affine function gk (the extension of f from region R) such that g(x) = f(x)
for all integer x ∈ R. To ensure f = mink(gk), we further require that these quilt-affine extensions
eventually dominate f (each gk(x) ≥ f(x) for sufficiently large x). Also, because we only care about
sufficiently large x, we need only consider eventual regions which are unbounded in all inputs (for
example regions 3,4, and 5 in Fig. 8a).

As a simple motivating example, consider the semilinear, nondecreasing function

f(x1, x2) =


x1 + 1, if x1 < x2 (region D1)

x2 + 1, if x1 > x2 (region D2)

x1 if x1 = x2 (region U)

13What we consider is a restricted case of a hyperplane arrangement [25], with well-studied combinatorial properties.
14Without loss of generality, we assume that the hyperplanes do not intersect Nd, so that the partition is well-defined

(see Fig. 8a).
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𝑓

𝐷1 𝑈 𝐷2

(a) Plot of f , whose domain has 3 regions: D1,
D2, and U .

𝑥1𝑥2

𝑔1

(b) g1 (green) is the unique quilt-affine exten-
sion from region D1.

𝑥1𝑥2

𝑔

(c) g (green) is a quilt-affine extension from U ,
but g < f on D1.

𝑥1𝑥2

𝑔𝑈

(d) gU (green) is a quilt-affine extension from
U , and gU ≥ f .

Figure 7: Obliviously-computable f can be expressed as a min of quilt-affine functions.

As in Definition 2.6, f is piecewise-affine, with semilinear domains that happen to be only defined
by threshold sets. These thresholds then partition the domain into three regions: D1, D2, and
U (see Fig. 7a). For region D1, there is a unique quilt-affine extension g1(x1, x2) = x1 + 1 (note
an affine function is the special case of a quilt-affine function with period 1). Also, g1 eventually
dominates f as desired, since g1(x) ≥ f(x) for all x ∈ N2 (see Fig. 7b). By symmetry, we have the
same for region D2 and its extension g2(x1, x2) = x2 + 1.

These desirable properties follow from D1 and D2 being “wide” regions that we define to be
determined (formalized later). On the other hand, U is a “narrow” region that is under-determined.
As a result, there is not a unique quilt-affine extension from U . For example, g(x1, x2) = x1 is a
quilt-affine extension, however, we do not have g(x) ≥ f(x) for all sufficiently large x (see Fig. 7c).

In order to identify a quilt-affine extension from U that does eventually dominate f , we will refer
to the unique extensions g1 and g2 from regions D1 and D2, which are neighbors of U (formalized
later). We can construct a quilt-affine function with a gradient (12 ,

1
2) that is the average of the

gradients (1, 0) of g1 and (0, 1) of g2. In particular, we can let gU (x1, x2) = dx1+x22 e (note this is a
quilt-affine function with period 2, see Fig. 7d). We then have f(x) = min [g1(x), g2(x), gU (x)] for
all x ≥ n = 0 as guaranteed by Theorem 7.1.

We now describe how we formalize the notion of a determined region, under-determined region,
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𝟓

𝟐
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(a) Three threshold hyperplanes creating five re-
gions. Regions 3 and 5 are determined, region 4 is
under-determined but still eventual (unbounded in
all input).

recc(1)

recc(2)

recc(4)

recc(3)

recc(5)

(b) The recession cones of all five regions. For finite
regions, recc(1) = recc(2) = {0}. Under-determined
region 4 has a 1D recession cone, determined regions
3 and 5 have 2D recession cones.

𝑥1
𝑥2

𝑥3

𝟏 𝟐 𝟑

𝟒 𝟓 𝟔
𝟕 𝟖 𝟗

(c) Two pairs of parallel threshold hyperplanes cre-
ating nine eventual regions. Regions 1,3,7,9 are de-
termined. Region 5 is under-determined with 1D re-
cession cone. Regions 2,4,6,8 are under-determined
with 2D recession cones.

𝑥1
𝑥1

𝑥1
𝑥2

𝑥2𝑥2

𝑥3

𝑥3 𝑥3

recc(5)
recc(6)

recc(3)

(d) recc(5) ⊆ recc(6) ⊆ recc(3) so region 3 is a de-
termined neighbor of under-determined region 5 and
under-determined region 6. Also, region 6 is a neigh-
bor of region 5.

Figure 8: Examples with domains N2 (top) and N3 (bottom), with threshold hyperplanes giving regions (left),
which are classified by their recession cones (right).

and neighbor, for the general case of domain Nd, where the regions are convex polyhedra in Rd.
Section 7.3. To formally define determined regions, we identify the recession cone recc(R) ⊆ Rd
of each region R: the set of vectors along infinite rays in R [22] (see Fig. 8b and Fig. 8d). A
determined region D is defined as having a d-dimensional recession cone (see regions 3 and 5 in
Fig. 8a and regions 1,3,7,9 in Fig. 8c). For determined regions, we can prove (see Lemmas 7.7 and
7.9) there is a unique quilt-affine extension, which eventually dominates f .
Section 7.4. Under-determined regions are then defined as having a recession cone with dimension
< d (see regions 1,2,4 in Fig. 8a and regions 2,4,5,6,8 in Fig. 8c). The above arguments do not work
for under-determined regions. Instead, identify the neighbors of an under-determined region U as
regions R with recc(U) ⊆ recc(R) (see Fig. 8b and Fig. 8d). We consider the neighbors of U that
are determined regions. The possible behavior of f on U is constrained by the unique extensions
from these regions, and we can define an extension from U based on an averaging process. . (See
Lemma 7.16).
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7.2 Domain Decomposition

To identify the quilt-affine components gk, the strategy will be to partition the domain Nd into
regions where the restriction of f to that region yields a quilt-affine function.

By Lemma 2.7, f is semilinear, so by Definition 2.6, f is the union of affine partial functions,
whose disjoint domains are semilinear subsets of Nd. This representation is not unique, so we now
fix some arbitrary such representation of f . Recall by Definition 2.5, these semilinear domains are
finite Boolean combinations of threshold and mod sets, so consider the collection T of all threshold
sets and the collection M of all mod sets that defined any of these semilinear domains.

Let T consist of l threshold sets {x ∈ Nd : ti ·x ≥ hi} for each i = 1, . . . , l, where ti ∈ Zd and hi ∈
Z. These thresholds are equivalently written 2ti ·x > 2hi−1 (since ti ·x ≥ hi ⇐⇒ ti ·x > hi− 1

2), so
we can assume without loss of generality that the boundary hyperplanes Hi = {x ∈ Rd : ti ·x = hi}
contain no integer points (see Fig. 8a). These hyperplanes then partition the domain Nd. For some
y ∈ Nd, let si = sign(ti ·y−hi) = ±1 for each i = 1, . . . , l. Defining the threshold matrix T ∈ Zl×k,
offset vector h ∈ Zl, and diagonal sign matrix S ∈ Zl×l as

T =

tT1
...

tTl

 h =

h1...
hl

 S =


s1 0 . . . 0
0 s2 . . . 0
...

...
. . .

...
0 0 . . . sl


then S(Ty − h) ≥ 0. This concise form will let us define the region of points that are in precisely
the same threshold sets as y (those that agree on the signs of the components of Ty − h):

Definition 7.2. Let S be a sign matrix: a diagonal matrix with diagonal entries = ±1. Then the
region (induced by S) is defined as

R = {x ∈ Rd≥0 : S(Tx− h) ≥ 0}.

When referring to a region R, we use SR to denote the sign matrix that induces R.

We consider nonnegative real vectors x ∈ Rd rather than just x ∈ Nd, but we are only truly
concerned with the integer points R∩Nd, and only consider regions where R∩Nd 6= ∅. Also, since
each y ∈ Nd induces a unique sign matrix as shown above, it follows that every y ∈ Nd is contained
in some unique region. The reason to consider R ⊂ Rd is that each region R is a convex polyhedron,
with convenient properties from convex geometry (see Fig. 8a and Fig. 8c).

Now consider the collectionM, consisting of m mod sets {x ∈ Nd : ai ·x ≡ bi mod ci} for each
i = 1, . . . ,m, where ai ∈ Zd, bi ∈ Z, ci ∈ N+. Then let the global period p be the least common
multiple lcmi(ci), so all elements of a congruence class a ∈ Zd/pZd are contained in precisely the
same mod sets. Thus for a region R, the set R∩ a is contained in precisely the same threshold and
mod sets, so the restriction f |R∩a is an affine partial function.

We now summarize this decomposition as a characterization of a semilinear function. Note that
this applies to all semilinear functions, even those that are decreasing.

Lemma 7.3. Let f : Nd → N be a semilinear function. Then there exist a finite set of regions
R1, . . . , Rn ⊆ Rd and a global period p ∈ N+ such that for each region Ri and congruence class
a ∈ Zd/pZd, there exist ∇Ri,a ∈ Qd and bRi,a ∈ Q such that the restriction of f defined for all
x ∈ Ri ∩ a by

f |Ri∩a(x) = ∇Ri,a · x + bRi,a
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is a (rational) affine partial function.

Notice the similarity in form between these affine partial functions in Lemma 7.3 and Defini-
tion 5.1 of quilt-affine functions. In fact, we will show the behavior of f on some regions has a
unique quilt-affine structure. This will require the region to be “infinitely wide in all directions”, a
notation we now make precise to define these determined regions.

7.3 Determined Regions

To formally define determined regions, we must first make the connection between regions and their
recession cones (more information on recession cones can be found in [22]).

Definition 7.4. For a region R, the recession cone of R is

recc(R) = {y ∈ Rd : x + λy ∈ R for all x ∈ R, λ ∈ R≥0}.

The recession cone corresponds to the directions (y) one can proceed infinitely in a region R,
and is a convex polyhedral cone (recall that a subset of Rd is a cone if it is closed under positive
scalar multiplication) (see Fig. 8b and Fig. 8d).

Recall by Definition 7.2 a region R = {x ∈ Rd≥0 : S(Tx−h) ≥ 0}. It is possible to equivalently
define

recc(R) = {y ∈ Rd≥0 : SRTy ≥ 0}.

In other words, the recession cone is defined by the homogenized version of the same inequalities
that defined R. One can easily verify this is equivalent to Definition 7.4.

We then say a region R is determined if dim recc(R) = d. Otherwise, the region R is under-
determined. We now make precise the idea that a determined region with full-dimensional recession
cone is “infinitely wide in all directions”:

Lemma 7.5. Let D be a determined region. Then the recession cone recc(D) contains open balls
of arbitrarily large radius.

Proof. Since recc(D) is a d-dimensional convex polyhedron, it has nonempty interior, so there exists
some x ∈ int(recc(D)) and an open ball Bε(x) ⊂ recc(D) of radius ε around x contained in the
cone. Since recession cones are closed under positive scalar multiplication, for any positive scalar
c, the ball Bcε(cx) ⊂ recc(D).

We next make precise the idea that the function has a unique quilt-affine structure on a deter-
mined region.

Definition 7.6. An extension g : Nd → Z (of f) from a region R is a quilt-affine function that
agrees with f on R: f(x) = g(x) for all integer x ∈ R ∩ Nd.

We will now show there is a unique extension from each determined region. The construction
of the regions yields a periodic piecewise-affine structure f restricted to a region (Lemma 7.3). In
order for f to be nondecreasing, these affine gradients must all agree, which will let us uniquely
describe a quilt-affine extension g using Definition 5.1.

Lemma 7.7. There is a unique extension g : Nd → Z from any determined region D.
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Proof. By Definition 5.1, it suffices to show that there is a ∇g ∈ Qd and B : Zd/pZd → Q such
that, defining g : Nd → Z for all x ∈ Nd as

g(x) = ∇g · x +B(x mod p),

then for all x ∈ D ∩ Nd, g(x) = f(x).15

By Lemma 7.3, for each a ∈ Zd/pZd, there are ∇a ∈ Qd and ba ∈ Q such that

f |D∩a(x) = ∇a · x + ba.

Since D contains arbitrarily large open balls by Lemma 7.5, it contains points in all congruence
classes, so all pd constants ba are well-defined. Then we define the periodic offset function B(x
mod p) = bx mod p. This is almost what we require to prove the lemma, except that ∇a depends
on a. It remains to show that all vectors ∇a are equal, so we can define the gradient ∇g = ∇a for
any a ∈ Zd/pZd.

Assuming for the sake of contradiction that ∇a 6= ∇b for some equivalence classes a,b, we will
show that f cannot be nondecreasing. Since the recession cone recc(D) is full-dimensional and
∇a − ∇b 6= 0, there must exist some v ∈ recc(D) such that ∇a · v 6= ∇b · v. Furthermore, by
density of the rationals, we can assume v ∈ Qd, and by scaling by the denominator we can assume
v ∈ Nd. Now without loss of generality assume ∇a · v > ∇b · v.

Now pick some y ∈ D ∩ a, and some z ∈ D ∩ b with y < z, which must exist because again D
contains arbitrarily large open balls by Lemma 7.5. But since ∇a ·v > ∇b ·v, moving along v, the
function values in a grow faster than in b when moving along v from y and z, respectively. Note
that y + cpv, z + cpv ∈ D by definition of v ∈ recc(D), and cpv ∈ pZd, so y + cpv ∈ D ∩ a and
z + cpv ∈ D ∩ b. Thus for some multiple cp of the period p, we must have

f(y + cpv) > f(z + cpv)

but then f is not nondecreasing, since y + cpv < z + cpv.
Thus there is a uniquely determined gradient ∇g. While there was not necessarily a unique

choice for the period p, any valid choice will define the same function g.

We next make precise why these extensions gk can be used in the eventual-min that will define
f to prove Theorem 7.1.

Definition 7.8. An extension g : Nd → Z eventually dominates f if there exists n ∈ Nd such that
f(x) ≤ g(x) for all x ≥ n.

We now show the uniquely defined extension g from a determined region D eventually dominates
f . The idea is that if the extension g did not eventually dominate f , then we can apply Lemma 4.1
to show f is not obliviously-computable.

For example, the function

max(x1, x2) =

{
x2, if x1 ≤ x2
x1, if x1 > x2

15Note that while p is not necessarily unique, any valid choice of p will result in the same function g.
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is naturally identified by two determined regions, with unique extensions g1(x) = (0, 1) · x and
g2(x) = (1, 0) · x. These extensions do not eventually dominate f , and we already saw in Section 4
how Lemma 4.1 applies to max. Thus the following lemma generalizes this example, finding a
“contradiction sequence” (a1,a2, . . .) to apply Lemma 4.1 whenever a determined extension g does
not eventually dominate f :

Lemma 7.9. The unique extension g from a determined region D eventually dominates f .

Proof. Let g be the extension from some determined region D. Assume toward contradiction that
g does not eventually dominate f , so for any point n ∈ Nd there exists some “bad point” b ≥ n
with f(b) > g(b). We will use Lemma 4.1 to show this implies f is not obliviously-computable.
To satisfy the Lemma conditions, we construct an increasing sequence (a1,a2, . . .) ∈ Nd such that
for all i < j there exists some ∆ij ∈ Nd with

f(ai + ∆ij)− f(ai) > f(aj + ∆ij)− f(aj)

We will choose (a1,a2, . . .) ∈ D ∩ a to be points in D that are all in the same congruence class
a mod p, and a sequence of vectors (v1,v2, . . .) ∈ Nd such that for all i, ai + vi is a “bad point”:
f(ai + vi) > g(ai + vi), while for all j > i, aj + vi ∈ D, so f(aj + vi) = g(aj + vi). Then for i < j,
let ∆ij = vi, so

f(ai + ∆ij)− f(ai) > g(ai + vi)− g(ai) since ai + vi is a “bad point”

= g(aj + vi)− g(aj) since g is quilt-affine and ai ≡ aj mod p

= f(aj + ∆ij)− f(aj)

as desired, where f = g for points in ai,aj ,aj + vi ∈ D.
We now construct the sequences (a1,a2, . . .) and (v1,v2, . . .) recursively, to ensure for all i < j

that ai ∈ a, ai + vi is a “bad point”, and aj + vi ∈ D. Let a1 ∈ D arbitrarily, and the fixed
congruence class a = a1. For each ai, there must be a “bad point” above ai, so we recursively
define each vi based on ai such that ai + vi is this “bad point”: f(ai + vi) > g(ai + vi).

Now we recursively define each aj based on aj−1 and v1, . . . ,vj−1 to ensure the sequence
(a1,a2, . . .) is increasing, congruent, and aj + vi ∈ D for all i < j. Since the recession cone recc(D)
contains open balls of arbitrary radius by Lemma 7.5, we can find a point aj in the recession cone
above aj−1 in the same congruence class a such that the open ball Br(aj) ⊂ D for a large radius
r ≥ maxi |vi|. This gives the desired condition aj + vi ∈ D for all i < j.

By the above analysis, this increasing sequence (a1,a2, . . .) with ∆ij = vi satisfies the conditions
of Lemma 4.1, giving the contradiction that f is not obliviously-computable.

The results of Lemmas 7.7 and 7.9 bring us close to proving Theorem 7.1. From each determined
region D1, . . . , Dq we have a quilt-affine extension g1, . . . , gq : Nd → Z that all eventually dominate
f , so for some large enough n ∈ Nd we have f(x) ≤ mink gk(x) for all x ≥ n. Furthermore,
f(x) = gk(x) if x ∈ Dk for some determined region Dk. However, it is possible f(x) < mink gk(x)
for any x that belong to an under-determined region. Since the bound n can be arbitrarily large,
we need only consider eventual under-determined regions that are unbounded in all inputs:

Definition 7.10. A region R is eventual if for any n ∈ Nd, there exists some x ∈ Nd ∩ R such
that x ≥ n.

To finish the proof of Theorem 7.1, it remains to show how to construct a quilt-affine extension
gU from each eventual under-determined region U , where gU eventually dominates f .
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7.4 Under-determined regions

Let U be an under-determined eventual region. The eventual condition implies that there is some
v ∈ recc(U) strictly positive on all coordinates. Let W = span(recc(U)), which we call the deter-
mined subspace of U , with 1 ≤ dimW < d. For example, for the “pizza slice” shaped region 6 in
Fig. 8c, W is a 2D subspace, and region 6 is “infinitely wide” within the directions of W . This
term reflects the fact that although the extensions from U are not unique, their values are uniquely
defined within W . (For a determined region, its determined subspace is all of Rd.)

Definition 7.11. Region R is a neighbor of an under-determined region U if recc(U) ⊆ recc(R).

We will construct the extension from U by referencing the determined regions which are neigh-
bors of U . Any under-determined eventual region will in fact have at least two determined neighbors
(proved as Corollary 7.19 to the later Lemma 7.18). Geometrically, we can think of the under-
determined recession cones as faces of each of the recession cones of the determined neighbors (see
Fig. 8d).

Unlike in the proof of Lemma 7.7, the affine partial functions defining f within U do not need
to have equal gradients. However, these gradients will be equal projected onto the subspace W .
We now show a stronger statement, that this common gradient (projected onto W ) agrees with the
gradient of the extension from any determined neighbor D. Intuitively, if these gradients disagreed
within W , then moving along directions in recc(U), the differences between f on U and on D
become arbitrarily large, contradicting that f must be nondecreasing.

Lemma 7.12. Let U be an under-determined eventual region. Let D be a determined neighbor of
U , with unique extension g(x) = ∇g · x +B(x mod p) given by Lemma 7.7. For any u ∈ U ∩ Nd,
consider the affine partial function f |U∩(u mod p)(x) = ∇u · x + bu given from Lemma 7.3. Then

projW (∇u) = projW (∇g).

Proof. This proof uses similar techniques to the proof of Lemma 7.7: with two nonequal gradients,
moving far enough along a recession cone direction to contradict the fact that f is nondecreasing.

Assume toward contradiction that for some u ∈ U ∩ Nd, projW (∇u) 6= projW (∇g). Then since
W = span(recc(U)), we have ∇u · y 6= ∇g · y for some y ∈ recc(U). Again, we can assume y ∈ Nd
by density of the rationals then scaling to clear denominators. Without loss of generality further
assume ∇u · y > ∇g · y.

Now pick some d ∈ D ∩ Nd such that d ≥ u, so f(d) ≥ f(u) because f is nondecreasing.
Then since y ∈ recc(U) ⊂ recc(D), for any c ∈ N, u + cpy ∈ U ∩ u and d + cpy ∈ D ∩ d. Since
f |U∩u(x) = ∇u ·x+ bu and f |D∩d(x) = ∇g ·x+B(d), where ∇u ·y > ∇g ·y, for some large enough
c ∈ N, we have f(u + cpy) > f(d + cpy). But this contradicts the fact that f is nondecreasing,
since u ≤ d.

Lemma 7.12 constrains the behavior of f moving within the subspace W . The region U ,
however, could have a finite “width” in other directions. This motivates us to separate U into
“strips”, partitioning its integer points to classes lying on translated versions of W :

Definition 7.13. Let U be an under-determined region with W = span(recc(U)). The equivalence
relation ≡W , where x ≡W y if x − y ∈ W , partitions U ∩ Nd into sets called strips. Thus a strip
I = {x ∈ U ∩ Nd : x ≡W u} for some u ∈ U ∩ Nd.
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For a strip I, we will consider the smallest affine set containing I: the affine hull aff(I) [14].
Note that for every u ∈ I, aff(I) = u + W = {u + w : w ∈ W}, and aff(I) is a rational affine
subspace. We next show a useful lemma about the distance from rational affine subspaces to
surrounding integer points. This will be used to show there are only a finite number of strips, and
will also be key to a trick in the later proof of Lemma 7.16.

Lemma 7.14. Let A ⊂ Rd be a rational affine subspace, containing some point x ∈ Nd. Then there
exists a constant c > 0 such that for any period p∗ ∈ N+, for all y ∈ (x mod p∗) with y /∈ A, the
distance dist(y, A) ≥ cp∗.

Proof. Let A be a rational affine subspace containing x ∈ Nd. Let y ∈ x mod p∗ with y /∈ A, so
we can write y = x + p∗v for some v ∈ Zd.

First we consider the case that A is a hyperplane, so we can write A = {z ∈ Rd : a · z = b} for
some a ∈ Zd and b ∈ Z. Then using a standard formula [12] for the distance from a point y ∈ Rd
to A:

dist(y, A) =
|a · y − b|
‖a‖

=
|a · (x + p∗v)− b|

‖a‖
=
p∗|a · v|
‖a‖

≥ p∗

‖a‖
where the inequality follows from |a ·v| ≥ 1: a ·v ∈ Z and a ·v 6= 0 since y /∈ A. The desired result
then holds taking c = 1/‖a‖, which depends only on A (and not on p∗).

Finally if the rational affine space A is not a hyperplane, it is the intersection of a finite number
of hyperplanes, so A is contained in some rational hyperplane H and then by the above result
dist(y, A) ≥ dist(y, H) ≥ cp∗.

Now we can show there are only a finite number of strips in each under-determined region.

Lemma 7.15. The equivalence relation ≡W partitions U ∩ Nd into a finite number of strips.

Proof. Consider the set of unique strips {I1, I2, . . .} each with some representative uj ∈ Ij . For
each strip Ij , consider the affine hull aff(Ij), which is a rational affine space, which are all parallel.
For any Ij 6= Ik, since both aff(Ij) and aff(Ik) contain integer points, using Lemma 7.14 with p = 1
implies that dist(aff(Ij), aff(Ik)) ≥ c for some constant c > 0. This lower bound c is the same for
all j, k because the aff(Ij) are all parallel. The affine hulls of the strips being bounded away from
each other will imply there can only be finitely many strips.

Since U is a convex polyhedron, we can write it as U = H + recc(U) = {h + y : h ∈ H, y ∈
recc(U)}, the sum of a bounded polytope H and the recession cone [14]. Thus each representative
uj = hj + yj for some hj ∈ H and yj ∈ recc(U), so hj = uj − yj ∈ aff(Ij) (since yj ∈ W ). Then
dist(hj ,h, k) ≥ c for all j 6= k. Since all hj are contained in the bounded polytope H, there must
be finitely many and thus finitely many strips.

Since there are a finite number of under-determined regions, by Lemma 7.15 there are a finite
total number of strips, so it suffices to consider each strip separately and show there exists an
extension from each strip that eventually dominates f .

We can build off Lemma 7.12 for a strip I to define an extension gI from I that eventually
dominates f . Intuitively, we will take the average gradient of the extensions from all determined
neighbors. We crucially assume that the gradients of these extensions are not all the same. This will
imply that their average grows faster than the minimum (and thus grows faster than f) moving
away from aff(I). It is then immediate that gI will eventually dominate f sufficiently far from
aff(I), but requires a subtle trick to make this hold near aff(I).
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We choose gI to have a larger period p∗ that will guarantee (via Lemma 7.14) that points
congruent to points in I are sufficiently far from aff(I) (where gI ≥ f). The offsets in these
congruence classes mod p∗ are uniquely defined so gI = f on I. The remaining offsets are then
maximized subject to the constraint that gI is nondecreasing.

Finally, we must show gI eventually dominates f on aff(I). This is only nontrivial for d ≥ 3.
For example if I is a strip in the “pizza slice” shaped region 6 in Fig. 8c, we must argue that an
extension from I will eventually dominate within the whole spanning plane. This is a generalization
of Lemma 7.9, since I is essentially determined within aff(I) (hence us calling W the determined
subspace of U).

Lemma 7.16. Let I be a strip of an under-determined eventual region U . Let D1, . . . , Dm be the
determined neighbors of U , with extensions g1, . . . , gm. Assume for all z ∈W⊥, the gradients of the
extensions along z are not all equal: ∇gi · z 6= ∇gj · z for some i, j. Then there exists an extension
gI from the strip I that eventually dominates f .

Proof. Let D1, . . . , Dm be determined neighbors of U , with a quilt-affine extension from each Di

gi(x) = ∇gi · x + Bgi(x mod p). Let ∇avg = 1
m

∑m
i=1∇gi ∈ Qd. We will define p∗ ∈ N+ and

B∗ : Zd/p∗Zd → Q and let the extension be

gI(x) = ∇avg · x +B∗(x mod p∗),

which is quilt-affine with a potentially larger period p∗ = kp for some k ∈ N+, so (x mod p∗) ⊆ (x
mod p). To ensure that gI still has integer outputs, we pick p∗ such that p∗∇avg ∈ Nd. We will
show later that p∗ can be chosen large enough to make gI eventually dominate f . Let r ∈ I be a
fixed reference vector we will use to define B∗.

First we show that for each u ∈ I, B∗(u mod p∗) is uniquely defined so that gI(x) = f(x) for all
x ∈ I∩ (u mod p∗) (in other words there are fixed values of B∗ for inputs in I that will make gI an
extension of f from I). By Lemma 7.3 we have affine partial function f |U∩(u mod p)(x) = ∇u ·x+bu
and by Lemma 7.12 we have projW (∇u) = projW (∇gi) for all gradients of determined neighbor
extensions gi. Thus we also have projW (∇u) = projW (∇avg), so ∇u ·w = ∇avg ·w for all w ∈ W .
We then define B∗(u mod p∗) = ∇u · r−∇avg · r + bu, which depends only on the congruence class
u mod p (but doesn’t depend on p∗). We can now verify that for any x ∈ I ∩ (u mod p∗), where
x− r ∈W by definition of the strip I, we have

gI(x) = ∇avg · x +B∗(x mod p∗)

= ∇avg · (x− r) +∇avg · r +∇u · r−∇avg · r + bu

= ∇u · (x− r) +∇u · r + bu since x− r ∈W
= ∇u · x + bu = f |U∩(u mod p)(x) = f(x)

gI is currently a partial function, only defined on the set I∗ = (I+p∗Zd)∩Nd of points congruent
mod p∗ to some u ∈ I. For all other congruence classes a mod p∗ ∈ Zd/p∗Zd such that a ∩ I = ∅,
we will define B∗(a) to be as large as possible while still having gI be nondecreasing. For gI to be
nondecreasing, gI(x) ≤ miny≥x gI(y) for all x ∈ Nd. We maximize B∗(a) such that for all x ∈ a,

gI(x) = min
y∈I∗,y≥x

gI(y)

Observe that since the finite differences above each x are periodic (as observed formally to prove
Lemma 6.1), this required offset B∗(a) depends only on the congruence class a of x.
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Now in order to show that gI eventually dominates f , we claim it suffices to show that gI
eventually dominates f on I∗: for some n ∈ Nd, gI(x) ≥ f(x) for all x ∈ I∗ with x ≥ n. If this
holds, then for any x /∈ I∗ with x ≥ n, we have gI(x) = gI(y) for some y ∈ I∗,y ≥ x, so

gI(x) = gI(y) ≥ f(y) ≥ f(x)

showing that gI eventually dominates f as long as gI eventually dominates f on I∗.
We will next show gI eventually dominates f for x sufficiently far from aff(I) by comparing gI

to the extension gj(x) = ∇gj · x + Bgj (x mod p) from some determined neighbor Dj . Let x ∈ I∗
and let gj be the extension of any determined neighbor Dj . Writing x = r + w + z for the fixed
reference r ∈ I, w = projW (x− r) ∈W and z = projW⊥(x− r) ∈W⊥, we have

gI(x)− gj(x) = ∇avg · (r + w + z) +B∗(x mod p∗)−∇gj · (r + w + z)−Bgj (x mod p)

= ∇avg · z−∇gj · z + [∇avg · r−∇gj · r +B∗(x mod p∗)−Bgj (x mod p)]

Notice that the term [. . .] depends only on j and x mod p (since B∗ was uniquely defined on
I∗ based only on x mod p). Thus minimizing over all finitely many j and x mod p gives some
(possibly negative) lower bound −q ∈ Q (which crucially does not depend on the choice p∗) such
that

gI(x)− gj(x) ≥ ∇avg · z−∇gj · z− q

for all x ∈ I∗ and extensions gj .
Now we use the crucial assumption that for any z ∈ W⊥, ∇gi · z 6= ∇gj · z for some i, j.

Considering first unit vectors v ∈W⊥ with ‖v‖ = 1, then there is some j minimizing ∇gj · v with
∇avg · v − ∇gj · v > 0. We claim that there exists ε > 0 such that ∇avg · v − ∇gj · v ≥ ε for
all such v and their corresponding j. If not, then there is a sequence (vi) of unit vectors with
∇avg · vi − ∇gj · vi → 0. Since the unit ball is compact, there must be a subsequence of (vi)
converging to some v, which implies ∇avg · v − ∇gj · v = 0. This completes the claim that such
ε > 0 exists. Then as long as ‖z‖ ≥ q/ε, we have for some j (which minimizes ∇gj · z)

gI(x)− gj(x) ≥ ‖z‖
(
∇avg ·

z

‖z‖
− ∇gj ·

z

‖z‖

)
− q ≥ ‖z‖ε− q ≥ 0

Since x = r + w + z for some r + w ∈ aff(I) and z ∈ W⊥, we have ‖z‖ = dist(x, aff(I)). Thus
we have shown for x sufficiently far from aff(I), gI(x) ≥ gj(x) for some quilt-affine gj which itself
eventually dominates f (by Lemma 7.9). Crucially this bound ‖z‖ ≥ q/ε did not depend on p∗,
so we will now use Lemma 7.14 to choose p∗ large enough that dist(x, aff(I)) ≥ q/ε for all x ∈ I∗
with x /∈ aff(I). Since such x ∈ (u mod p∗) for some u ∈ I ⊂ aff(I) and aff(I) is a rational
affine subspace, by Lemma 7.14 there is some bound c > 0 (depending only on aff(I)) such that
dist(x, aff(I)) ≥ cp∗. Thus we choose a large enough multiple p∗ = kp such that cp∗ ≥ q/ε.

We have shown that gI(x) eventually dominates f(x) for all x ∈ I∗ with x /∈ aff(I). It finally
remains to show that gI eventually dominates f on aff(I). This is true for the same reasons as
Lemma 7.9 (because gI is a quilt-affine extension of f from I) following the same proof strategy. In
the proof of Lemma 7.9 we assumed toward contradiction a sequence of “bad points”, and used the
fact that a determined region D contained arbitrarily large open balls to construct a contradiction
sequence for Lemma 4.1. Now we are only showing gI eventually dominates f on aff(I), so all
“bad points” would be in aff(I). We can construct a contradiction sequence (ai) ∈ I by the same
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argument. Since W = span(recc(U)), by the same argument as Lemma 7.5, recc(U) contains
arbitrarily large open balls within the subspace W . This is sufficient to ensure (ai) ∈ I, since the
sequence of vectors (vi) with ai + vi being “bad points” are in W because all “bad points” are in
aff(I).

Thus gI eventually dominates f everywhere, as desired.

Lemma 7.16 crucially assumed that along any z ∈ W⊥, the gradients of all extensions from
determined neighbors are not equal. If this does not hold, f could fail to be obliviously-computable.
For example, consider the function

f(x1, x2) =

{
x1 + x2 + 1, if x1 6= x2

x1 + x2, if x1 = x2
(2)

which is a single affine function, depressed by 1 along the diagonal x1 = x2. f is semilinear and
nondecreasing. The two determined regions where x1 > x2 and x1 < x2 have the same quilt-affine
extension ((1, 1) ·x+1), which eventually dominates f . On the underdetermined region, which here
consists of just the single strip where x1 = x2, f is strictly smaller. There does not actually exist
given a quilt-affine extension from this strip that eventually dominates f . (One can show directly
f is not obliviously-computable by Lemma 4.1, with ai = (i, 0) and ∆ij = (0, j)).

The remaining case thus serves to disallow general versions of this counterexample. Lemma
7.16 assumed for all z ∈ W⊥, ∇gi · z 6= ∇gj · z for some i, j. We will now consider the negation:
that for some z ∈ W⊥ we have ∇gi = ∇gj for all i, j. To proceed in this case, we will need to be
able to identify the neighbor of U in the direction of z.

For example, consider the under-determined eventual region 5 in Fig. 8c. The determined
subspace W is 1D, while the orthogonal complement W⊥ is a 2D. For each z ∈ W⊥, the neighbor
in the direction of z will correspond to one of the 8 other pictured regions.

We now identify which threshold hyperplanes can distinguish a region from its neighbors. Recall
the threshold hyperplanes Hi = {x ∈ Rd : ti · x = hi} for i = 1, . . . , l. We now show that some of
these hyperplanes must be parallel to all vectors in recc(U):

Lemma 7.17. Let U be an under-determined eventual region. Then there exists some threshold
hyperplane Hi = {x ∈ Rd : ti · x = hi} such that ti · y = 0 for all y ∈ recc(U).

Proof. Assume toward contradiction that for all ti, there exists some yi ∈ recc(U) such that
ti ·yi 6= 0, so si(ti ·yi) > 0, where si is the ith sign that defined the region U , and sj(tj ·yi) ≥ 0 for

all j = 1, . . . , l since yi ∈ recc(U). Then let y =
∑l

i=1 yi ∈ recc(U) since recc(U) is closed under
addition, so si(ti · y) > 0 for all i = 1, . . . , l.

Recall that recc(U) = {x ∈ Rd≥0 : (∀i)si(ti · x) ≥ 0} is a closed convex polyhedron that is

the intersection of closed half-spaces. Then int(recc(U)) = {x ∈ Rd>0 : (∀i)si(ti · x) > 0} is
the intersection of the respective open half-spaces, and we have y ∈ int(recc(U)). Thus because
int(recc(U)) is nonempty, recc(U) must be full-dimensional, contradicting that U is an under-
determined region.

We call such hyperplanes neighbor-separating hyperplanes for reasons that will be made clear
shortly. If ti·y = 0 for all y ∈ recc(U), we also have ti·y = 0 for all y ∈W , so by definition ti ∈W⊥.
Then let LU = {i ∈ {1, . . . , l} | ti ∈ W⊥} be the subset of labels of all such neighbor-separating
hyperplanes for U .
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For example, in Fig. 8c, for under-determined region 5, all four hyperplanes are neighbor-
separating hyperplanes. For under-determined region 6, only the pair of horizontally oriented
hyperplanes are neighbor-separating.

Recalling Definition 7.2, let SU = diag(s1, . . . , sl) be the sign matrix that defined U . For
z ∈ W⊥, define Rz, the neighbor of U in the direction of z, by a related sign matrix Sz =
diag(s′1, . . . , s

′
l), where if i ∈ LU and sign(ti · z) = −si, then let s′i = −si, but otherwise s′i = si for

all other i = 1, . . . , l. Intuitively, for all neighbor-separating hyperplanes, Rz is on the same side as
the direction z, but is otherwise identical to U .

The following lemma justifies the use of the word “neighbor” in the previous definition, and
further shows that such a neighbor is “more determined” (recession cone has higher dimension)
than U .

Lemma 7.18. Let U be an under-determined eventual region with W = span(recc(U)), let z ∈W⊥,
and let the region Rz be the neighbor of U in the direction of z. Then Rz ∩ Nd is nonempty, Rz is
a neighbor of U and furthermore dim recc(U) < dim recc(Rz).

Proof. We first show that Rz is a neighbor of U , i.e., that

recc(U) = {x ∈ Rd≥0 : SUTx ≥ 0} ⊂ recc(Rz) = {x ∈ Rd≥0 : SzTx ≥ 0}.

Let x ∈ recc(U). Then for all i ∈ LU , si · x = 0, so s′i · x ≥ 0, and otherwise s′i = si, so SzTx ≥ 0.
This implies x ∈ recc(Rz), i.e., recc(U) ⊂ recc(Rz), proving the claim that Rz is a neighbor of U .

Next we argue that dim recc(U) < dim recc(Rz). Now similar to the proof of Lemma 7.17, for
each i /∈ LU there exists some yi ∈ recc(U) such that ti · yi 6= 0, so si(ti · yi) > 0. Then taking
y =

∑
i/∈LU

yi we have y ∈ recc(U), and also si(ti · y) > 0 for all i /∈ LU .16

We will show for some ε > 0, y + εz ∈ recc(Rz), which will imply z ∈ span(recc(Rz)) so
dim recc(Rz) ≥ dim recc(U)+1 since z ∈W⊥. Intuitively, to show this, we perturb the vector y by
a slight amount in the direction of z to be on the correct side of all neighbor-separating hyperplanes,
while remaining on the same side of all other hyperplanes. Formally, for all i ∈ LU , we have
s′i(ti · z) ≥ 0 by construction of s′i. This might not hold for i /∈ LU , but in that case s′i(ti · y) > 0.
Thus we can pick some small enough ε > 0 such that s′i(ti · (y + εz)) ≥ 0 for all i /∈ LU . For i ∈ LU ,
we have ti · y = 0 (by definition of LU since y ∈ recc(U)), so we also have s′i(ti · (y + εz)) ≥ 0 and
thus y + εz ∈ recc(Rz). This concludes the claim that dim recc(U) < dim recc(Rz).

Finally, we argue that Rz ∩ Nd is nonempty, so the region Rz is meaningfully defined. We
can further assume that the vector y+ = y + εz ∈ Nd (again by density assuming that the pieces
are rational and then scaling up to clear denominators). Now consider a point u ∈ U ∩ Nd, so
SU (Tu−h) ≥ 0, and consider moving along y+. For all i such that si 6= s′i, we have s′i(ti ·y+) > 0.
Thus for all sufficiently large constants c, Sz(T (u + cy+) − h) ≥ 0 so u + cy+ ∈ Rz. Intuitively,
the path from U along the vector y+ will eventually remain in the region Rz. This shows that the
neighbor of U in the direction of z is well-defined.

For under-determined eventual region U , by repeatedly applying Lemma 7.18 using directions
±z for any z ∈W⊥, we can show that determined neighbors must actually exist:

Corollary 7.19. An under-determined eventual region U has at least 2 determined neighbors.

16 In fact y can be shown to be in the relative interior of recc(U), where the relative interior is the interior within
the affine hull. [14]
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We are now ready to consider the remaining case left after Lemma 7.16, when all determined
neighbor gradients agree along some z ∈W⊥.

Lemma 7.20. Let I be a strip of an under-determined eventual region U . Let D1, . . . , Dm be the
determined neighbors of U , with extensions g1, . . . , gm. Assume there exists z ∈ W⊥ such that
the gradients of the extensions along z are all equal: ∇gi · z = ∇gj · z for all i, j. Let Rz be the
neighbor of U in the direction z, with extension extension gz. Then gz is also an extension from I:
gz(x) = f(x) for all x ∈ I, so taking gz gives an extension from I which eventually dominates f .

Proof. Let I be a strip of under-determined eventual region U , with extensions g1, . . . , gm from
determined neighbors D1, . . . , Dm respectively. Let z ∈ W⊥ such that ∇gi · z = ∇gj · z for all
i, j. We will consider the regions Rz and R−z which are the neighbors of U in the directions
z and −z. Recall by Lemma 7.18 that dim recc(U) < dim recc(R±z). The proof will proceed
by induction on the codimension: d − dim recc(U). For U with codimension 1, R±z must be
determined regions with unique extensions. In general, R±z could be under-determined, but will
have lower codimension, so by the inductive hypothesis we assume R±z have extensions which
eventually dominate f (considering this Lemma alongside Lemma 7.16). Thus there exist quilt-
affine extensions gz and g−z (from Rz and R−z) which eventually dominate f . Note these may have
a larger period p∗ as used in the proof of Lemma 7.16. We assume gz and g−z have common period
p∗ by taking the least common multiple if necessary. Thus we can write gz(x) = ∇gz · x + Bgz(x
mod p∗) and g−z(x) = ∇g−z · x +Bg−z(x mod p∗).

Now by assumption ∇gi ·z = ∇gj ·z for any determined neighbors Di, Dj . Also by Lemma 7.12,
projW (∇gi) = projW (∇gj ). Thus all determined gradients agree along span(W, z). The regions
R±z are either determined, or their determined neighbors are among D1, . . . , Dm (by transitivity
of the neighbor relation). Regardless, we can say projspan(W,z)(∇gz) = projspan(W,z)(∇g−z). For this
proof, we will consider the affine space A = aff(I) + span(z) = {i + w + cz : i ∈ I,w ∈ W, c ∈ R}
containing all points reachable from I by vectors in span(W, z). We now claim that gz(x) = g−z(x)
for all x ∈ A∩Nd. The gradients along directions in A (span(W, z)) were already shown to be equal.
Thus if gz(x) 6= g−z(x) (without loss of generality gz(x) < g−z(x)), then gz(y) < g−z(y) for all
congruent y ∈ x mod p∗. However, g−z is an extension of f from R−z, so we have gz(y) < f(y) for
all y ∈ R−z∩ (x mod p∗). This contradicts the fact that gz eventually dominates f , and completes
the claim that gz(x) = g−z(x) on A ∩ Nd.

Thus we must have gz(x) = f(x) for all x ∈ A∩Rz ∩Nd (since gz is an extension from Rz) and
x ∈ A ∩R−z ∩ Nd (since gz = g−z, the extension from R−z). We now show also that gz(x) = f(x)
for all x ∈ I. Assume toward contradiction that gz(u) 6= f(u) for some u ∈ I. By Lemma
7.3 we have affine partial function f |U∩(u mod p)(x) = ∇u · x + bu and by Lemma 7.12 we have
projW (∇u) = projW (∇gz). Then for any x ∈ I ∩ (u mod p∗), x = u + w for some w ∈ W by
definition of I, so

gz(x)− f(x) = ∇gz · (u + w) +Bgz(u mod p∗)−∇u · (u + w)− bu
= (∇gz ·w −∇u ·w)︸ ︷︷ ︸

=0 since w∈W

+(∇gz · u +Bgz(u mod p∗))− (∇u · u + bu)

= gz(u)− f(u) (3)

In other words, if gz(u) 6= f(u), they are also unequal for all x within the strip I on the entire
congruence class u.
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If we had gz(u) < f(u), then gz(x) < f(x) for all x ∈ I ∩ (u mod p∗) by (3), which contradicts
that gz eventually dominates f .

The other case is that gz(u) > f(u), so again by (3), we have gz(x) > f(x) for all x ∈ I ∩ (u
mod p∗). (This is the behavior of our example (2), which will be shown to not be obliviously-
computable by the following general argument). Here, similar to the proof of Lemma 7.9, we will
apply Lemma 4.1 by creating a contradiction sequence (a1,a2, . . .) ∈ Nd such that for all i < j
there exists some ∆ij ∈ Nd with

f(ai + ∆ij)− f(ai) > f(aj + ∆ij)− f(aj).

To do this, we will find a sequence (a1,a2, . . .) ∈ A ∩Rz ∩ (u mod p∗), so gz(ai) = f(ai) for all i.
We will then find another sequence (v1,v2, . . .) ∈ Nd such that ai + vi ∈ I ∩ (u mod p∗) for all i,
implying gz(ai+vi) > f(ai+vi). Also, we need that for all i < j, ai+vj ∈ A∩R−z∩ (u mod p∗),
so gz(ai + vj) = f(ai + vi). If these are both true, then choosing ∆ij = vj for i < j gives

f(ai + ∆ij)− f(ai)

= gz(ai + vj)− gz(ai)

= gz(aj + vj)− gz(aj) since gz is quilt-affine and ai ≡ aj mod p∗

> f(aj + vj)− f(aj) = f(aj + ∆ij)− f(aj).

Lemma 4.1 then tells us that f is not obliviously-computable, a contradiction. It remains to show
that such sequences ai ∈ Rz and vi ∈ Nd can be found satisfying ai + vi ∈ I ∩ (u mod p∗) for all
i, and for all i < j, ai + vj ∈ A ∩R−z ∩ (u mod p∗).

Now from the proof of Lemma 7.18, we take the same y ∈ recc(U) and perturbed y+ =
y + εz ∈ recc(Rz) that were defined in that proof. Recall we showed for x ∈ U , for all large enough
c, x + cy+ ∈ Rz. Likewise, we also have y− = y − εz ∈ recc(R−z) (taking ε small enough to work
for both Rz and R−z) and we can assume (by density of rationals and scaling up denominators)
that y+,y− ∈ Nd.

Pick c ∈ N large enough that u + cp∗y+ ∈ Rz and u + cp∗y− ∈ R−z. Then for all i ∈ N+, let
ai = u + icp∗y+ and vi = icp∗y−. Since y+,y− ∈ span(W, z), we have ai ∈ A for all i, and the
multiple of p∗ ensures all points are in (u mod p∗) as desired. Finally, we can check that

ai + vi = u + icp∗y+ + icp∗y− = u + 2icp∗y ∈ I

since y+ + y− = 2y ∈ recc(U). Also, for i < j we have

ai + vj = u + icp∗y+ + jcp∗y− = u + (j − i)cp∗y− + icp∗y

Note that j − i ≥ 1, u + (j − i)cp∗y− ∈ R−z, and icp∗y ∈ recc(R−z). Thus

ai + vj = u + (j − i)cp∗y− + icp∗y ∈ R−z

as required.
Thus Lemma 4.1 gives a contradiction that f cannot be obliviously-computable. We reached this

contradiction by assuming that gz(u) 6= f(u) for some u ∈ I. Thus we conclude that gz(x) = f(x)
for all x ∈ I, so gz is an extension from I that eventually dominates f .
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For any strip I of an under-determined eventual region U , one of the cases from Lemmas 7.16 or
7.20 applies to show there exists an extension from I that eventually dominates f . There are only
finitely many such strips (Lemma 7.15), so alongside the unique extensions from the determined
regions (Lemmas 7.7 and 7.9), we have identified a finite collection g1, . . . , gm of quilt-affine functions
to complete the proof of Theorem 7.1.

8 Comparison to continuous case

In [9], the authors classified the power of output-oblivious continuous CRNs to stably compute real-
valued functions f : Rd≥0 → R≥0. We can generalize to also consider such functions by introducing
the following natural scaling:

Definition 8.1. For a function f : Nd → N, the ∞-scaling f̂ : Rd≥0 → R≥0 is given by

f̂(z) = lim
c→∞

f(bczc)
c

.

Note this limit may not exist for arbitrary f : Nd → N, but it will exist for all obliviously-
computable f .

The next theorem shows that in this scaling limit, our output-oblivious function class exactly
corresponds to the real-valued function class from [9] (see Fig. 4b).

Theorem 8.2. If f : Nd → N is obliviously-computable, then the ∞-scaling f̂ : Rd≥0 → R≥0 is
obliviously-computable by a continuous CRN. Furthermore, every function obliviously-computable
by a continuous CRN is the ∞-scaling of some function obliviously-computable by a discrete CRN.

Proof. To prove the first statement, let f : Nd → N be obliviously-computable. We will show
the ∞-scaling f̂ : Rd≥0 → R≥0 satisfies the main classification of [9]: that f̂ is superadditive,
positive-continuous, and piecewise rational-linear.

First we prove that for any quilt-affine g : Nd → Z, the∞-scaling ĝ is nonnegative and rational-
linear. From Definition 5.1, we can express g(x) = ∇g · x + B(x mod p) for ∇g ∈ Qd≥0 and

B : Zd/pZd → Q. Then for any z ∈ Rd≥0,

ĝ(z) = lim
c→∞

∇g · bczc+B(bczc mod p)

c
= ∇g · z,

since B is bounded. Because ∇g ∈ Qd≥0, ĝ is nonnegative and rational-linear.
Now by the eventually-min condition (ii) of Theorem 5.2, there exists quilt-affine g1, . . . , gm :

Nd → Z and n ∈ Nd such that f(x) = mink(gk(x)) for all x ≥ n. Then for any z ∈ Rd>0, bczc ≥ n
for large enough c, so

f̂(z) = lim
c→∞

f(bczc)
c

= lim
c→∞

mink(gk(bczc))
c

= min
k

(
lim
c→∞

gk(bczc)
c

)
= min

k
(ĝk(z)), (4)

where we pass the limit through the min function because min is continuous. Since ĝk(z) = ∇gk · z
are all rational-linear, on the domain R>0, f̂(z) = mink(ĝk(z)) is continuous and piecewise rational-
linear.
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We will now generalize this argument to show on the full domain Rd≥0, f̂ is piecewise rational-

linear and positive-continuous: for each subset S ⊆ {1, . . . , d}, f̂ is continuous on domain DS =
{z ∈ Rd≥0 : z(i) = 0 ⇐⇒ i ∈ S}. Fix any such S. By repeatedly applying the recursive condition
(iii) of Theorem 5.2, the fixed-input restriction f[(∀i∈S) x(i)→0] fixing input coordinates in S to
0, is obliviously-computable. Then by the eventually-min condition (ii), there exists quilt-affine
gS1 , . . . , g

S
m and n ∈ Nd such that f[(∀i∈S) x(i)→0](x) = mink(g

S
k (x)) for all x ≥ n, but it sufficient

for x(i) ≥ n(i) for all i /∈ S. Now let z ∈ DS , so z(i) = 0 ⇐⇒ i ∈ S. Then for large enough c,
bczc(i) ≥ n(i) for all i /∈ S, so

f(bczc) = f[(∀i∈S) x(i)→0](bczc) = min
k

(
gSk (bczc)

)
.

Now repeating equation (4), we have f̂(z) = mink(ĝ
S
k (z)), so f̂ is continuous and piecewise rational-

linear on DS . This holds for all S ⊆ {1, . . . , d}, so f̂ is positive-continous and piecewise rational
linear.

It remains to show that f̂ must be superadditive: f̂(a) + f̂(b) ≤ f̂(a + b) for all a,b ∈ Rd≥0.
Let a,b ∈ Rd≥0 with a + b ∈ DS for a domain DS defined as above. Then

f̂(a + b) = min
k

(ĝSk (a + b)) = ĝSi (a + b) = ĝSi (a) + ĝSi (b)

for some minimizing rational-linear ĝSi . It remains to show ĝSi (a) ≥ f̂(a) (and by symmetry
ĝSi (b) ≥ f̂(b)). This is immediate if a ∈ DS since f̂(a) = mink(ĝ

S
k ). Otherwise if a /∈ DS ,

assume toward contradiction that f̂(a) > ĝSk (a). Then for some small enough ε > 0, we also

have f̂(a) > ĝSk (a + εb). Observing that a + εb ∈ DS , then ĝSk (a + εb) ≥ f̂(a + εb). But

then f̂(a) > f̂(a + εb), a contradiction since f̂ must be nondecreasing as the ∞-scaling of the
nondecreasing function f .

Thus f̂ is semilinear, positive-continuous, and piecewise rational-linear as desired.
Next, to prove the second statement, let f̂ : Rd≥0 → R≥0 be any semilinear, positive-continuous,

and piecewise rational-linear function. We will show that there exists some obliviously-computable
f : Nd → N such that its ∞-scaling is f̂ .

On each domain DS = {z ∈ Rd≥0 : z(i) = 0 ⇐⇒ i ∈ S} for S ⊆ {1, . . . , d}, f̂ |DS
is

superadditive, continuous, and piecewise rational-linear. By Lemma 8 in [9], f̂ |DS
can be written

as the minimum of a finite number of rational linear functions ĝSk (z) = ∇gk · z. For each ĝSk , we
will identify a quilt-affine gSk with gradient ∇gk . In particular, we can define gSk : Nd → N for all
x ∈ Nd by gSk (x) = b∇gk · xc, which will be quilt-affine.

Now for all S and integer x ∈ DS ∩ Nd, define f(x) = mink(g
S
k (x)). From the above proof

it follows that f̂ is the ∞-scaling of f . It is also straightforward to verify that f is obliviously-
computable by satisfying Theorem 5.2. f is nondecreasing, satisfying condition (i), because f̂
was semilinear and thus nondecreasing. f satisfies eventually-min condition (ii) since for all x ≥
(1, . . . , 1), x ∈ D∅ = Rd>0, so f(x) = mink(g

∅
k(x)). For all other S 6= ∅, the fixed-input restriction

f[(∀i∈S) x(i)→0](x) = mink(g
S
k (x)). It follows that f satisfies recursive condition (iii), because any

fixed-input restriction will be eventually-min of quilt-affine functions.
Thus any function f̂ obliviously-computable by a continuous CRN is the ∞-scaling limit of

some f obliviously-computable by a discrete CRN.
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9 Leaderless one-dimensional case

In this section we show a characterization of 1D functions f : N→ N that are obliviously-computable
without a leader. The general case for leaderless oblivious computation in higher dimensions remains
open.

Note that the following observation applies to any number of dimensions. We say f : Nd → N
is superadditive if f(x) + f(y) ≤ f(x + y) for all x,y ∈ Nd.

Observation 9.1. Every f obliviously-computable by a leaderless CRN is superadditive.

Proof. Let C be a leaderless CRN stably computing f . We prove the observation by contrapositive.
Suppose f is not superadditive. Then there are x, z ∈ Nd such that f(x) + f(z) > f(x + z). Recall
Iw is the initial configuration of C representing input w. Let αx be a sequence of reactions applied
to Ix to produce f(x) copies of Y , and let αz be a sequence of reactions applied to Iz to produce
f(z) copies of Y .

Since C is leaderless, Ix+z = Ix + Iz. Thus we can apply αx to Ix+z, followed by αz, producing
f(x) + f(z) copies of Y . Since this is greater than f(x + z), to stably compute f , C must have a
reaction consuming Y , so it is not output-oblivious. Since C was arbitrary, f cannot be obliviously-
computable.

This added condition of superadditivity gives us the 1D leaderless characterization.

Theorem 9.2. For any f : N → N, f is obliviously-computable by a leaderless CRN ⇐⇒ f is
semilinear and superadditive.

Proof. =⇒ : By Lemma 2.7 and Observation 9.1.
⇐= : If f is superadditive, then f is also nondecreasing (since f(x+ 1) ≥ f(x) + f(1) ≥ f(x)).

Then as in the Proof of Theorem 3.1, f is eventually quilt-affine, so there exist n ∈ N, period
p ∈ N+, and finite differences δ0, . . . , δp−1 ∈ N, such that for all x ≥ n, f(x+1)−f(x) = δ(x mod p).

Also, without loss of generality assume p divides n, so n mod p = 0.
The new CRN construction is motivated by trying to simply remove the leader species L from

the construction used in Theorem 3.1. Recall that set of reactions was

L→ f(0)Y + L0

Li +X → [f(i+ 1)− f(i)]Y + Li+1 for all i = 0, . . . , n− 2

Ln−1 +X → [f(n)− f(n− 1)]Y + Pn

Pa +X → δaY + Pa+1 for all a = 0, . . . , p− 1.

Since f is superadditive, we must have f(0) = 0. We then remove the species L and L0, and the
two reaction that contain them, and add the first reaction

X → f(1)Y + L1

If this reaction only occurred once, this would still correctly compute f . Otherwise, however, there
will be multiple “auxiliary leader species” from {L1, . . . , Ln−1, P0, . . . , Pp−1} in the system. To
correctly compute f , we must introduce pairwise reactions between these species that reduce the
count of auxiliary leaders and add a corrective difference.
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For all i, j ∈ {1, . . . , n− 1}, the reaction between Li and Lj is

Li + Lj → Di,jY +

{
Li+j if i+ j < n

Pi+j if i+ j ≥ n

where Di,j := f(i+ j)−f(i)−f(j) ≥ 0 by superadditivity, and is the difference between how much
output Y was released in the reactions that produced Li and Lj and how much should have been
produced from the input that led to Li and Lj .

We have similar reactions between Li and Pj for all i ∈ {1, . . . , n− 1} and a ∈ {0, . . . , p− 1}

Li + Pa → Di,aY + Pi+a

where Di,a := f(i + n + a)− f(i)− f(n + a) ≥ 0 by superadditivity. The reaction sequences that
produced Li consumed i copies of input X, and those that produced Pa consumed n + a + kp for
some k ∈ N, so we have undercounted by f(i+ n+ a+ kp)− f(i)− f(n+ a+ kp) = Di,a since the
periodic differences cancel.

Finally, the reactions between Pa and Pb for all a, b ∈ {0, . . . , p− 1} are

Pa + Pb → Da,bY + Pa+b

where Da,b := f(n + a + n + b) − f(n + a) − f(n + b) ≥ 0 by superadditivity, and this gives the
corrective difference in output by a similar argument.

Note that the rest of the reactions used in Theorem 3.1 are not strictly necessary, since if all
input X undergoes the first reaction X → f(1)Y +L1, the corrective difference reactions will then
reduce the count of auxiliary leader species down to 1, while outputting the correct differences to
produce precisely f(x) output.

10 Conclusion

An obvious question is the computational power of output-oblivious CRNs without an initial leader.
A leaderlessly-obliviously-computable function must be superadditive, which is a strictly stronger
condition than being nondecreasing. The continuous result [9] had the same restriction of super-
additivity, so our “scaling limit” reduction to their function class (Theorem 8.2) shows our main
function class is already “almost superadditive.” We also showed in the 1D case, f : N → N is
leaderlessly-obliviously-computable if and only if f is semilinear and superadditive (Theorem 9.2).

Does adding the additional constraint of superaddivity to our full result (Theorem 5.2) classify
leaderlessly-obliviously-computable f : Nd → N? If this were true, a proof would require modifying
our construction (Section 6) to eliminate the leader L. We successfully modified the 1D construction
(Theorem 3.1) to remove the leader in proving Theorem 9.2, but it has been difficult to extend the
same ideas to our much more complicated general construction.

An initial leader can also help make computation faster [5, 7, 21]. Many recent results in pop-
ulation protocols have shown time upper and lower bounds for computational tasks such as leader
election and function/predicate computation [1,2,7,18,19,21]. These techniques, however, are not
at all designed to handle the constraint of output-obliviousness. It would be interesting to study
how this constraint affects the time required for computation.
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