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Abstract
Register automata are finite automata equipped with a finite set of registers ranging over the
domain of some relational structure like (N; =) or (Q; <). Register automata process words over
the domain, and along a run of the automaton, the registers can store data from the input word
for later comparisons. It is long known that the universality problem, i.e., the problem to decide
whether a given register automaton accepts all words over the domain, is undecidable. Recently, we
proved the problem to be decidable in 2-ExpSpace if the register automaton under study is over
(N; =) and unambiguous, i.e., every input word has at most one accepting run; this result was shortly
after improved to 2-ExpTime by Barloy and Clemente. In this paper, we go one step further and
prove that the problem is in ExpSpace, and in PSpace if the number of registers is fixed. Our proof
is based on new techniques that additionally allow us to show that the problem is in PSpace for
single-register automata over (Q; <). As a third technical contribution we prove that the problem is
decidable (in ExpSpace) for a more expressive model of unambiguous register automata, where the
registers can take values nondeterministically, if defined over (N; =) and only one register is used.
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1 Introduction

Certainly, determinism plays a central role in the research about computation models. Re-
cently, a lot of active research work [1, 5, 2, 15, 13] is devoted to its weaker form: unambiguity.
A system is unambiguous if for every input word there is at most one accepting run. Un-
ambiguous systems exhibit elegant properties; in particular many natural computational
problems turn out to be easier compared to the general case. A prominent example is
the universality problem for finite automata, i.e., the problem of deciding whether a given
automaton accepts every input word. It is in PTime [17] and even in NC2 [18] in the
unambiguous case, as opposed to PSpace-completeness in the general case.

In his seminal overview article about unambiguity, Colcombet [4] states some very natural
conjectures about unambiguous systems that are so fundamental that one can be surprised
that they are still open. An example conjecture, motivated by the fact that the universality
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problem for unambiguous finite automata is in PTime, was that for every unambiguous finite
automaton the complement of its language can be accepted by another unambiguous finite
automaton with at most polynomial size with respect to the size of the original automaton.
This conjecture was surprisingly resolved negatively by Raskin [16], who provided a family
of automata where a blowup Θ(nlog log log(n)))) is unavoidable. Still, a lot of other natural
questions remain unresolved. Some of them are not algorithmic (as the above one), while
others ask for the existence of faster algorithms in the unambiguous case.

Usually one cannot hope for designing more efficient algorithms for the emptiness problem,
as it is often easy to transform a nondeterministic system to a deterministic (and thus
unambiguous) system which has empty language if and only if the accepted language of the
original system is empty. Indeed, it is often sufficient to change the labelling of every transition
of the system to its unique transition name. This transformation preserves the emptiness
property, but not much more. Therefore there is a hope that the unambiguity assumption may
result in faster solving of problems like universality, equivalence and language containment.
Recently there was a substantial amount of research in this area [10, 3, 6, 13, 5, 1]. The
considered problem is often the universality problem. Indeed, the universality problem is
probably the easiest nontrivial problem for which there is a hope to obtain an improvement
in the unambiguous case. Equivalence and containment are often not much harder, even
though sometimes a bit more involved techniques are needed.

For register automata, this line of research was started in [13]. Register automata (RA,
for short) extend finite automata with a finite set of registers that take values from an infinite
data domain for later comparisons. More detailed, RA are defined over a relational structure,
like (N; =) or (Q; <, =); they process finite words over the domain of the relational structure,
and the registers can store values from the input word for comparing them using the relations
provided by the relational structure. In the more expressive model of register automata
with guessing (GRA) the registers can even take arbitrary values. In [13] it is shown that
for unambiguous RA (URA) over (N; =) the containment problem is in 2-ExpSpace and in
ExpSpace for a fixed number of registers. Without the unambiguity assumption, this problem
is known to be much harder. Concretely, the universality problem is undecidable as soon as
the automaton uses two registers [11, 14, 8], and Ackermann-complete in the one-register
case [9]. In the case of GRA even the one-register case is undecidable.1 The result for URA
in [13] was improved by Barloy and Clemente [1] who have shown that the problem is in
2-ExpTime and in ExpTime for a fixed number of registers, using very different tools such as
linear recursive sequences in two dimensions.

Our contribution

Our result improves statements of Barloy and Clemente [1] even further. We provide three
results shown by two different techniques. Our first technique is to show that in some cases
one can assume that only a linear or exponential number of different configurations can
be reached via an input word. This claim immediately provides an improved upper bound
compared to [1].

▶ Theorem 1. The containment problem L(A) ⊆ L(B) is in ExpSpace, if A is an RA and

1 A proof for undecidability can be done using a reduction from the undecidable reachability problem for
Minsky machines, following the lines of the proof of Theorem 5.2 in [7]. The nondeterministic guessing
can be used to express that there exists some decrement for which there is no matching preceding
increment.
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B is a URA over (N; =). The containment problem is in PSpace on inputs A, B both having
a bounded number of registers.

This approach can also be applied to unambiguous one-register automata over (Q; <, =).

▶ Theorem 2. The universality problem for one-register URA over (Q; <, =) is in PSpace.

However, we will see that the techniques for URA do not work for unambiguous GRA
(GURA), not even in the one-register case. In that case we solve the universality problem,
and even the containment problem, with the use of more sophisticated analysis. In short, we
show that we can modify the set of reachable configurations such that it becomes small and
equivalent in some sense, which also allows us to obtain a more efficient algorithm.

▶ Theorem 3. The containment problem L(A) ⊆ L(B) is in ExpSpace, if A is a GRA over
(N; =) and B is a one-register GURA over (N; =).

We recently learned that, independently from our work, Bojańczyk, Klin and Moerman
claim a yet unpublished result about orbit-finite vector spaces, which implies an ExpTime
algorithm for GURA and PSpace complexity if the number of registers is fixed. However, we
believe that our contribution does not only provide an improved complexity of the considered
problem, but also techniques that can be useful in future research on unambiguous systems.

2 Preliminaries

In this section, we define register automata, introduced by Kaminski et al [11, 12]. We start
with some basic notions used throughout the paper. We use Σ to denote a finite alphabet,
and N and Q denote the set of non-negative integers and rational numbers, respectively.
Given a, b ∈ N with a ≤ b, we write [a, b] to denote the set {a, a + 1, . . . , b}.

A relational structure is a tuple D = (D; R1, . . . , Rk), where D is an infinite domain, and
R1, . . . , Rk are binary relations over D, and we assume that Rk is the equality relation. In
this paper, we are mainly interested in the relational structures (N; =) of the non-negative
integers with equality, and (Q; <, =) of the rationals with the usual order and equality
relations.

A data word is a finite sequence (σ1, d1) . . . (σk, dk) ∈ (Σ × D)∗. If Σ = {σ} is a singleton
set, we may write d1 · d2 · . . . · dk shortly for (σ, d1)(σ, d2) . . . (σ, dk). We use ε to denote the
empty data word. A data language is a set of data words. We use data(w) to denote the set
{d1, . . . , dk} of all data occurring in w.

Let D⊥ denote the set D ∪ {⊥}, where ⊥ ̸∈ D. We let ⊥ ≠ d for all d ∈ D, and ⊥
is incomparable with respect to ≤ to all d ∈ D. We use boldface lower-case letters like
a, b, . . . , u . . . to denote tuples in Dn

⊥, where n ∈ N. Given a tuple a ∈ Dn
⊥, we write ai for

its i-th component, and data(a) denotes the set {a1, . . . , an} ⊆ D⊥ of all data occurring in
a.

Let R = {r1, . . . , rn} be a finite set of registers. A register valuation is a mapping
u : R → D⊥; we may write ui as shorthand for u(ri). Let DR

⊥ denote the set of all register
valuations. A register constraint over D and R is defined by the grammar

ϕ ::= true | R(t1, t2) | ¬ϕ | ϕ ∧ ϕ

where R is a binary relation symbol from the relational structure D, and ti ∈ {#} ∪ {r, ṙ |
r ∈ R}. Here # is a symbol representing the current input datum, r refers to the current
value of the register r, and ṙ refers to the future value of the register r. We use Φ(D, R)
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to denote the set of all register constraints over D and R. The satisfaction relation |= on
DR

⊥ × D × DR
⊥ is defined by structural induction as follows. We only give some atomic cases;

the other cases can be derived easily. We have (u, d, v) |= ϕ if
ϕ is of the form true,
ϕ is of the form R(ri, #) and D |= R(ui, d),
ϕ is of the form R(ṙi, ri) and D |= R(vi, ui),
ϕ is of the form R(ṙi, #) and D |= R(vi, d).

For example, ϕ := ¬(r = #) ∧ (ṙ = r) is a register constraint over (N; =) and R = {r}, and
we have (1, 2, 1) |= ϕ, whereas (1, 2, 3) ̸|= ϕ.

It is important to note that only register constraints of the form ṙ = r and ṙ = # uniquely
determine the new value of r. In absence of such a register constraint, the register r can
nondeterministically take any of infinitely many data values from D, with the following
restrictions: the register constraint ¬(ṙ = #) requires that the new value of r is different
from the current input datum, so that r may take any datum in D except for the input
datum. Likewise, the register constraint ¬(ṙ = r) requires that r takes any datum in D
except for the current value of r. Register automata that allow for such nondeterministic
guessing of future register values are also called register automata with guessing. Formally, a
register automaton with guessing (GRA) over D and Σ is a tuple A = (R, L, ℓinit, Lacc, E),
where

R is a finite set of registers,
L is a finite set of locations,
ℓinit ∈ L is the initial location,
Lacc ⊆ L is the set of accepting locations,
E ⊆ L × Σ × Φ(D, R) × L is a finite set of edges.

If every edge of A contains some constraint of the form ṙ = r or ṙ = #, for every r ∈ R,
so that the future value of every register is uniquely determined, then we simply speak of
register automata (RA, for short), i.e., register automata without guessing. If the number
of registers of a GRA (RA, respectively) is fixed to k ∈ N, then we speak of k-GRA (k-RA,
respectively).

A state of A is a pair (ℓ, u) ∈ L ×DR
⊥ , where ℓ is the current location and u is the current

register valuation. Abusing notation a bit, we usually write ℓ(u) instead of (ℓ, u). The state
ℓinit(uinit), where uinit maps every register r ∈ R to ⊥, is called the initial state, and a
state ℓ(u) is called accepting if ℓ ∈ Lacc. Given two states ℓ(u) and ℓ′(u′) and some input
letter (σ, d) ∈ Σ × D, we postulate a transition ℓ(u) σ,d−−→A ℓ′(u′) if there exists some edge
(ℓ, σ, ϕ, ℓ′) ∈ E such that (u, d, u′) |= ϕ. A run of A on the data word (σ1, d1) . . . (σk, dk) is a
sequence ℓ0(u0) σ1,d1−−−→A ℓ1(u1) σ2,d2−−−→A . . .

σk,dk−−−→A ℓk(uk) of such transitions. We say that
a run as above starts in ℓ0(u0); similarly, the run ends in ℓk(uk). A state ℓ(u) is reachable
in A if there exists a run that ends in ℓ(u). A run is initialized if it starts in the initial state,
and a run is accepting if it ends in some accepting state. A data word w is accepted from
ℓ(u) if there exists an accepting run on w that starts in ℓ(u). The data language accepted by
A, denoted by L(A), is the set of data words that are accepted from the initial state.

A GRA is unambiguous if for every input data word w there is at most one initialized
accepting run. Note that unambiguity is a semantic condition; it can be checked in polynomial
time [4]. We write GURA and URA to denote unambiguous GRA and RA, respectively.

▶ Example 4. Let us study the behaviour of the 1-GRA depicted in Figure 1. The GRA is
over (N; =) and the singleton alphabet Σ = {σ} (we omit the letter σ from all transitions
in the figure). Suppose the first input letter is d1. In order to satisfy the constraint of
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ℓ0 ℓ1 ℓ2
¬(ṙ = #) ṙ = r

r = #

ṙ = r

¬(r = #)

Figure 1 A 1-GURA

# registers RA URA
∗ undecidable [7] in ExpSpace (Th. 7)
1 Ackermann-cpl. [9] in PSpace (Th. 7)
# registers GRA GURA
∗ undecidable [12]
1 undecidable in ExpSpace (Th. 3)

Table 1 Universality over (N; =)

the transition from ℓ1 to ℓ2, the automaton has to nondeterministically guess some datum
d′ ̸= d1 and store it into its register r. Being in the state ℓ1(d′), the automaton can only
move to the accepting location ℓ2 if the next input datum is equal to d′ (indicated by the
constraint r = d); for every other input letter, the automaton satisfies the constraint ¬(r = d)
and stays in ℓ1, and it keeps the register value to satisfy the constraint ṙ = r. In this way,
the automaton accepts the language {d1 · . . . · dk | ∀k ≥ 2 ∀1 ≤ i < k. di ̸= dk}. Note
that the automaton is unambiguous: for every input data word there is only one accepting
run. We remark that the accepted data language cannot be accepted by any RA (without
guessing) [12]. Hence, GRA are more expressive than RA.

In this paper, we study the universality problem: given a GRA A, is A universal, i.e.,
does L(A) = (Σ × D)∗ hold? In Table 1, we give an overview of the decidability status for
register automata over (N; =), in bold the new results for unambiguous register automata
that we present in this paper.

3 Basic Notions for Deciding Universality

For many computational models, a standard approach for solving the universality problem is
to explore the (potentially infinite) state space of the automaton under study. Starting from
the initial state, the basic idea is to input one letter after the other, and keep track of the
sets of states that are reached, building a reachability graph whose nodes are the reached
sets of states (per input letter). The key property of this state space is that it contains
sufficient information to decide whether the automaton under study is universal: this is the
case if, and only if, every node of the graph contains an accepting state. Let us formalize
this intuition for register automata.

Fix a k-GRA A = (R, L, ℓinit, Lacc, E) over D and Σ, for some k ∈ N. A configuration of
A is a subset of L × Dk

⊥. The set Cinit, denoting the singleton set containing the initial state
of A, is a configuration, henceforth called the initial configuration. Let C be a configuration,
and let (σ, d) ∈ (Σ × D). We use SuccA(C, (σ, d)) to denote the successor of C on the input
(σ, d), formally defined by

SuccA(C, (σ, d)) := {ℓ(u) | ∃ ℓ′(u′) ∈ C ℓ′(u′) σ,d−−→A ℓ(u)}.

In order to extend this definition to data words, we define inductively SuccA(C, ε) := C

and SuccA(C, w · (σ, d)) := SuccA(SuccA(C, w), (σ, d)). We say that a configuration C is
reachable in A by the data word w if C = SuccA(Cinit, w); we say that C is reachable in A
if there exists some data word w such that C is reachable in A by w. We say that C is
coverable if there exists some C ′ ⊇ C such that C ′ is reachable in A. Given a configuration
C, we use data(C) to denote the set {di ∈ Dk

⊥ | ∃ℓ ∈ L, 1 ≤ i ≤ k ℓ(d1, . . . , dk) ∈ C} of data
occurring in C. Notice that every configuration reachable in an RA (without guessing) is
necessarily finite. In contrast, the configuration {ℓ1(d′) | d′ ∈ N, d′ ̸= d1} is reachable in the
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GRA in Figure 1 by the single-letter data word (σ, d1). If C = {ℓ(u)} is a singleton set, then
we may, in slight abuse of notation, omit the curly brackets and write ℓ(u).

We say that a configuration C is accepting if there exists ℓ(u) ∈ C such that ℓ ∈ Lacc;
otherwise we say that C is non-accepting. Clearly, A is universal if, and only if, every
configuration reachable in A is accepting. This suggests to reduce the universality problem to
a reachability problem for the state space corresponding to the given input GRA. However,
the state space of a GRA is infinite, in two different aspects.

First of all, the state space is infinitely branching, as each of the infinite data in D may give
rise to a unique successor configuration. The standard approach for solving this complication
is to abstract from concrete data, using the simple observation that, e.g., the data word 3 · 4
is accepted from the state ℓ(4) if, and only if, 5 · 2 is accepted from the state ℓ(2). This is
formalized in the following.

A partial isomorphism of D⊥ is an injective mapping π : D → D⊥ with domain dom(π) :=
D ⊆ D such that if ⊥ ∈ D then π(⊥) = ⊥. Let π be a partial isomorphism of D⊥ and let
C be a configuration such that data(C) ⊆ dom(π). We define the configuration π(C) :=
{ℓ(π(d1), . . . , π(dk))) | ℓ(d1, . . . , dk) ∈ C}; likewise, if {d1, . . . , dk} ⊆ dom(π), we define the
data word π(w) = (σ1, π(d1)) . . . (σk, π(dk)). We say that two pairs ⟨C, w⟩ and ⟨C ′, w′⟩ are
equivalent with respect to π, written ⟨C, w⟩ ∼π ⟨C ′, w′⟩, if π(C) = C ′ and π(w) = w′. If
w = w′ = ε, we may write C ∼π C ′. We write ⟨C, w⟩ ∼ ⟨C ′, w′⟩ if ⟨C, w⟩ ∼π ⟨C ′, w′⟩ for
some partial isomorphism π of D⊥.

▶ Proposition 5. Let A be a GRA. If ⟨C, w⟩ ∼ ⟨C ′, w′⟩, then SuccA(C, w) ∼ SuccA(C ′, w′).

Secondly, there can be infinitely many reachable configurations even up to the equivalence
relation ∼. As an example, consider the GURA in Figure 1. For every n ≥ 1, the configuration
Cn := {ℓ1(d′) | d′ ∈ N\{d1, . . . , dn}} ∪ {ℓ2(dn)} with pairwise distinct data values d1, . . . , dn

is reachable by the data word d1 · d2 · . . . · dn, and Cn ̸∼ Cn′ for n ̸= n′. There are similar
examples also for URA, cf. [13].

In order to obtain our results, we will prove that one can solve the reachability problem
for the state space of A by focussing on a subset of configurations reachable in the automaton
under study. The concrete methods are different for URA and GURA, however, for both
models we will take advantage of Proposition 5 and its simple consequence (cf. [13]).

▶ Corollary 6. Let A be a GRA. If ⟨C, w⟩ ∼ ⟨C ′, w′⟩ and SuccA(C, w) is non-accepting
(accepting, respectively), then SuccA(C ′, w′) is non-accepting (accepting, respectively).

4 The Universality Problem for URA over (N; =)

In this section, we study the complexity of the universality problem for URA over the
relational structure (N; =). We prove the following theorem.

▶ Theorem 7. The universality problem is
in PSpace for k-URA for any fixed k ∈ N,
in ExpSpace for URA.

We start by showing that we can assume URA to have a specific form that simplifies the
coming proofs. Given some k-URA A, we say that A is pruned if for every state ℓ(u) that
is reachable in A there exists a data word w that is accepted from ℓ(u), and ui ̸= uj for
all 1 ≤ i < j ≤ k, i.e., no datum appears more than once in u. The proof of the following
proposition is simple and omitted.
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▶ Proposition 8. For every k-URA one can compute in polynomial time an equivalent pruned
k-URA.

In the following we always assume that a k-URA is pruned, even if we do not explicitly
mention it. For simplicity, we also assume that the alphabet of the URA we consider are
singletons. The techniques we develop can be easily lifted to the more general case where Σ
is not a singleton.

We introduce some constants that bound from above the number of states with the same
location occurring in a configuration reachable in a universal URA. Let A be a k-URA. For
a configuration C of A, define MC ∈ N to be the maximal number M such that in C there
are M different states with the same location. Define MA ∈ N∪ {∞} to be the supremum of
MC , for C ranging over all the configurations C reachable in A, if A is a universal k-URA,
i.e., L(A) = D∗. In the sequel, we show that MA < ∞. In order to do so, for k ∈ N, define
Mk ∈ N ∪ {∞} to be the supremum of all the MA, for A ranging over pruned and universal
k-URA. The main technical result of this section is showing that Mk is finite and moreover
upper-bounded by an exponential function of k.

Let n be the number of locations of A. First observe that showing Mk ∈ N easily implies
the existence of a NPSpace algorithm deciding whether A is universal. Indeed, if Mk < ∞,
then every configuration C reachable in A has size at most n · Mk, as otherwise C contains
more than Mk states with the same location. Thus, in order to decide whether A is not
universal, we can apply the following algorithm:

By Corollary 6, A is not universal iff A does not accept some data word (σ1, d1)(σ2, d2) . . . ,
where di ∈ {0, . . . , i} for all i.
Guess, letter by letter, an input data word (σ1, d1)(σ2, d2) . . . , where di ∈ {0, . . . , i}.
For each i ≥ 1, define Ci := SuccA(Ci−1, (σi, di)), where C0 = Cinit.
If for some i ≥ 1, the configuration Ci is not accepting or its size exceeds n · Mk, we
know that A is not universal.
Otherwise we keep the configuration in the space linear with respect to n and count the
length of the word. If the length exceeds the number of possible configurations, then this
run is not accepting. The length counter can be also kept in linear space.

The above is hence a PSpace-algorithm for deciding non-universality for k-URA. By Savitch’s
theorem, there also exists one for deciding universality for k-URA. Moreover, if we show that
Mk is exponential in k, then the above algorithm works in space exponential with respect to
k, so is in ExpSpace even without fixing the number of registers k. Therefore, in order to
show Theorem 7, it is enough to prove that Mk is bounded by some exponential function of
k. The rest of this Section is devoted mainly to showing the following lemma.

▶ Lemma 9. Mk ≤ (k · 4k · k!)k.

A short Ramsey argument given below shows that Mk is finite for all k, however only
giving a doubly-exponential bound. Before starting the proof, we remark that these techniques
alone cannot be used to lower the complexity of the universality problem for k-URA or for
URA even more. This is because Mk ≥ k!, which is the subject of the following lemma.

▶ Lemma 10. Mk ≥ k!.

Proof. We define a family of pruned universal k-URA (Ak)k≥1 over Σ = {σ} such that
MAk

≥ k!. Consider the following part of a pruned universal k-URA Ak (shown for the case
k = 3):
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. . . ℓ
r1 = # r2 = # r3 = #

. . . ℓ′
#∈{r1,r2,r3} #∈{r1,r2,r3}

# /∈{r1,r2,r3}

# /∈{r1,r2,r3}

#
/∈{r1 ,r2 ,r3 }

The rest of the automaton makes sure that the configuration

{ℓ(u) | u ∈ {1, . . . , k}k is a permutation} ∪ {ℓ′(1, . . . , k)}

is reachable in Ak by the k-letter data word 1 · 2 · . . . · k (e.g., each ℓ(u) is reached by a
path storing the input data in a different order). By taking the (disjoint) union with an
unambiguous automaton accepting every data word of length < k and every k letter word
that has a repeated data value, we obtain a universal automaton. ◀

Our main tool to prove Lemma 9 is a structural observation, which delivers an understanding
of how reachable configurations in universal k-URA can look like. Before diving into it we
present an intuition by the following example.

▶ Example 11. Let C be a configuration reachable in some universal 2-URA A over Σ = {σ}
by some data word w, and assume that C contains three states ℓ(1, 2), ℓ(3, 4) and ℓ(5, 6)
sharing the same location ℓ. We will argue that this is impossible. Assume that from ℓ(1, 2)
the data word 1 · 2 · 7 is accepted. Then clearly also 3 · 4 · 7 is accepted from ℓ(3, 4), and
5 · 6 · 7 is accepted from ℓ(5, 6). Let us now consider the data word 8 · 9 · 7, where 8 and
9 are fresh data values, that is, they do not occur in w. Since A is universal, the data
word 8 · 9 · 7 must be accepted from some state (ℓ′, d1, d2) in C. The set {d1, d2} has only
two elements, and so the intersection with at least one of the sets {1, 2}, {3, 4} and {5, 6}
must be empty. For instance, assume that {d1, d2} ∩ {1, 2} = ∅ and (d1, d2) = (3, 6). Note
that ⟨ℓ′(3, 6), 8 · 9 · 7⟩ ∼ ⟨ℓ′(3, 6), 1 · 2 · 7⟩, so that by Corollary 6, the data word 1 · 2 · 7 is
accepted from state ℓ′(3, 6), too. But then that there are two accepting runs for w · 1 · 2 · 7,
contradiction to the unambiguity of A. Below we generalise this reasoning, in particular to
the case where some registers in the reached states keep the same value (i.e., not all are
different, as 1, 2, 3, 4, 5 and 6 in the above example). However the intuition stays the same.

We say that a set of tuples T ⊆ Dm
⊥ is m-full (or simply full if m is clear from the context)

if there exists a set of indices I ⊆ [1, m] such that:
all the tuples in T are identical in indices from I, namely for all i ∈ I and all t, t′ ∈ T we
have ti = t′

i;
all the data values occurring in tuples in T on indices outside I are different, namely
for all i ̸∈ I, all j ∈ {1, . . . , m}, and all t, t′ ∈ T we have ti ̸= t′

j unless both t = t′ and
i = j. Note that in particular, this condition applies to the case t′ = t, and thus ti ̸= tj

whenever i ̸∈ I and j ∈ {1, . . . , m} are different.

The following are examples of full sets:
a 4-full set is the set of 4-tuples (1, 2, 3, 4), (1, 2, 5, 6), (1, 2, 7, 8), in that case I = {1, 2};
a 5-full set containing one tuple (3, 7, 2, 10, 8), any set of indices I ⊆ [1, 5] works here;
a 2-full set containing tuples (2, 1), (3, 1), (4, 1), (5, 1), in that case I = {2}.

For a location ℓ and set of tuples T ⊆ Dk
⊥ we write ℓ(T ) = {ℓ(t) | t ∈ T}. The following

lemma delivers the key observation, which uses the notion of k-full sets.
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▶ Lemma 12. If A is a pruned universal k-URA, then there exists no configuration C

reachable in A such that ℓ(T ) ⊆ C for some location ℓ ∈ L and some k-full set of tuples
T ⊆ Dk

⊥ of size more than k.

Proof. Let A be a pruned universal k-URA, and suppose towards contradiction that there
exists a configuration C reachable in A such that ℓ(T ) ⊆ C for some location ℓ and some
k-full set T ⊆ Dk

⊥ of size more than k. Let w be the data word such that C = SuccA(Cinit, w).
Assume without loss of generality that the indices on which tuples from T are identical are
I = {1, . . . , n} for some n ≤ k. Let us choose some k + 1 tuples from T , let the i-th of it
be of the form ti = (c1, . . . , cn, oi

1, . . . , oi
m), where n + m = k. We call the cj the common

data values and the oi
j the own data values of ti. A is pruned and ℓ(t1) is reachable in A, so

there must exist a data word w1 ∈ (Σ × D)∗ that is accepted from ℓ(t1). Without loss of
generality we can assume that w1 does not contain the own data values of any of the other
tuples t2, . . . , tk+1. Indeed, if this is the case, we can replace synchronously all occurrences
of such a data value by a fresh data value not occurring in data(w); the resulting data word
is still accepted from ℓ(t1). For every i ∈ [2, k + 1], let wi be the word w1 in which for
each j ∈ [1, m] the own data value o1

j is replaced by the data value oi
j . Clearly, for every

i ∈ [2, k + 1] ⟨ℓ(t1), w1⟩ ∼ ⟨ℓ(ti), wi⟩, so that by Corollary 6 the data word wi is accepted
from ℓ(ti).

Let us now consider the data word wfresh that is obtained from w1 by replacing synchron-
ously every occurrence of every o1

j is by some fresh data value each. As A is universal, also
the data word wfresh needs to be accepted from some state in C. Let qfresh = ℓ′(e1, . . . , ek)
be the state in C from which wfresh is accepted. Notice that we do not enforce ℓ ̸= ℓ′,
similarly ei may be equal to some of the ci or oj

i , but this does not have an effect on our
reasoning. For each tuple ti = (c1, . . . , cn, oi

1, . . . , oi
m), let the set of its own data values be

Oi = {oi
1, . . . , oi

m}. By assumption all the sets O1, . . . , Ok+1 are pairwise disjoint. As there
are k + 1 of them, we know that at least one of them is disjoint from the set of data values
in the state qfresh, namely with E = {e1, . . . , ek}. Assume without loss of generality that
O1 ∩ E = ∅. This however means that ⟨qfresh, w1⟩ ∼ ⟨qfresh, wfresh⟩, so that by Corollary 6
w1 is also accepted from qfresh. In consequence, there are at least two accepting runs over
w1 from configuration C, one from ℓ(t1) and one from qfresh. Hence there are at least two
initialized accepting runs over w · w1. This is a contradiction to the unambiguity of A. ◀

We give here the argument showing that Mk is bounded by some doubly-exponential
function in k. We show this argument in order to illustrate the techniques, which needed
to be refined in our proof of Lemma 9. First recall that the Ramsey number Rm(n) is the
smallest number of vertices k of the graphs such that any clique of k vertices with its edges
coloured on m different colours contain a monochromatic subgraph G of n vertices, namely
such that all the edges in G are of the same colour. It can be shown by induction that Rm(n)
is finite, and indeed its growth is bounded by 2nO(m) . For the definition of k-full set consider
page 8.

▶ Proposition 13. Every set T ⊆ Dk
⊥ of size at least Rk+1(4k(k + 1)! + 1) contains a k-full

subset of size at least k + 1.

Proof. Construct a graph with vertices being tuples from T and edge between t and t′ be
coloured by the number of data values that t and t′ have in common. Clearly the colour
belongs to the set {0, . . . , k}, so there are k + 1 colours. Because |S| ≥ Rk+1(4k(k + 1)! + 1)
we know from Ramsey’s theorem that there are at least 4k(k + 1)! + 1 tuples such that every
intersection is of the same size - assume this size to be m. Let S be a set of 4k(k + 1)! + 1
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such tuples and let s ∈ S be one of them. Let s = (d1, . . . , dk). Divide all the other tuples s′

into
(

k
m

)2 · m! sets depending on which m data values from {d1, . . . , dk} belong to s′ (there
are

(
k
m

)
options), on which positions they are located in s′ (also

(
k
m

)
options) and in which

order (m! options). It is easy to see that
(

k
m

)2 · m! ≤ 4kk!, as
(

k
m

)
≤ 2k and m! ≤ k!. We

divide 4k(k + 1)! tuples (we omit s) into at most 4kk! sets, so by the pigeonhole principle
at least one of them contains at least k + 1 elements: let these elements be s1, . . . , sk+1.
Notice now that the tuples s1, . . . , sk+1 form a k-full set: indeed on positions on which they
have the m shared data they are identical and on the other positions all the data values are
totally different. Thus T contains a k-full set of size k + 1, which finishes the proof. ◀

By refining the reasoning, we obtain the following result that directly implies Lemma 9,
when setting B = n = k.

▶ Lemma 14. Every set T ⊆ Dn
⊥ of size at least (B · 4n · n!)n + 1 contains an n-full subset

of size bigger than B.

Proof. Let us denote by DB,n the maximal size of the set of n-tuples such that any n-full
subset has size at most B; in other words, DB,n is the least integer such that if X is a set of
n-tuples of size DB,n + 1, then X contains an n-full subset of size B + 1. Our aim is to show
that DB,n ≤ (B · 4n · n!)n. We show it by induction on n.

For the induction base assume n = 1. Then any set of data values is a full set, so clearly
DB,1 ≤ B ≤ B · 41 · 1!.

Assume now that DB,m ≤ (B · 4m · m!)m for all m < n and consider some set T ⊆ Dn
⊥ of

n-tuples. Assume that T contains no n-full subset of size bigger than B. Pick some tuple
t = (d1, . . . , dn) ∈ T . We first show that there can be at most 4n · n! · DB,n−1 tuples in T

whose data intersect data(t). Let us denote N = 4n · n! · DB,n−1. Let S be the set of those
tuples, assume towards contradiction that the size of S exceeds the bound N . For each tuple
s ∈ S there are at most 2n − 1 choices for data(s) ∩ data(t), so by the pigeonhole principle
there are more than 2n · n! · DB,n−1 tuples which have the same set data(s) ∩ data(t). Those
data values can occur in tuples from S on at most 2n different sets of indices, and in at most
n! different orders, so by the pigeonhole principle more than DB,n−1 tuples from S have
the same data values shared with t on the same indices. After ignoring the indices shared
with t at most n − 1 indices remain on these tuples. So by induction assumption there is
some full set of size more than B among these tuples, which leads to the contradiction with
assumption that for more than N tuples from T their data intersects data(t).

Therefore we know that all the tuples but the mentioned N ones have data disjoint
with data(t). Let use denote t1 = t and T1 to be the set of tuples with data disjoint from
data(t1). Let t2 ∈ T1. We now repeat the argument for t2 similarly as for t1 and get that
there are at most N tuples with data intersecting data(t2). Repeating this argument we get
a sequence of tuples t1, t2, . . . , tm such that for each i ≠ j we have data(ti) ∩ data(tj) = ∅.
After adding each tuple tj to the sequence we define the set Tj+1 of elements, which have
disjoint data with all the tuples t1, . . . , tj . As long as Tj+1 is nonempty we can continue the
process. It is easy to see that |Tj+1| ≥ |Tj | − N . Assume now towards contradiction that
DB,n > (B · 4n · n!)n, which implies that DB,n > (B · 4n · n!) · DB,n−1 = B · N . We can see
now that |TB | > 0, which means that we can construct tuples t1, t2, . . . , tB, tB+1 such that
for each i ̸= j we have data(ti) ∩ data(tj) = ∅. This however means that {t1, . . . , tB+1} is a
full set of size B + 1, which is more than B. This contradicts the assumption, which shows
that DB,n ≤ (B · 4n · n!)n and finishes the proof. ◀
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We can now apply a reduction from containment to universality provided by Barloy and
Clemente (Lemma 8 in [1]) to obtain Theorem 1 from the introduction.

5 Universality for URA over (Q; <, =)

In this section, we prove Theorem 2 by using the techniques developed in the preceding
section. Let us define constants MO

k for k-URA with order similarly as Mk for k-URA. The
main technical lemma is the following; Theorem 2 follows.

▶ Lemma 15. MO
1 = 1.

Proof. Towards contradiction suppose that for some pruned universal 1-URA A with order
there is a configuration C reachable in A by a data word wpref ∈ (Σ × Q)∗, such that
ℓ(d1), ℓ(d2) ∈ C for some location ℓ and data values d1 < d2. Because A is pruned, there
exists a data word w1 ∈ (Σ × Q)∗ that is accepted from ℓ(d1). Without loss of generality
we can assume that w1 does not contain any data in (d1, d2]. Indeed, if w1 contains some
datum in (d1, d2], then we can replace it synchronously by some datum greater than d2,
while taking care that that the relative order of all data in w1 is preserved, so that, for the
resulting data word w, we have ⟨ℓ(d1), w1⟩ ∼ ⟨ℓ(d1), w⟩. By Corollary 6, the resulting data
word w is also accepted from ℓ(d1). Notice that for similar reasons, also the data word w2
obtained from w1 by replacing every occurrence of d1 by d2 is accepted from ℓ(d2). Now,
if w1 does not contain d1, then w1 = w2. Hence w1 is accepted from both ℓ(d1) and ℓ(d2),
contradiction to unambiguity of A. So let us assume w1 contains d1. Pick some data value
dfresh that is fresh, i.e., it does not occur in wpref, and additionally d1 < dfresh < d2. We
clearly can choose such a fresh data value, as there are infinitely many rational numbers
between d1 and d2 and only finitely many of them occur in wpref. Let wfresh be the word
obtained from w1 by synchronously replacing every occurrence of d1 by dfresh. The word
wfresh is accepted from some configuration in C, let it be ℓ′(d′). Notice now that if d′ < dfresh,
then ⟨ℓ′(d′), wfresh⟩ ∼ ⟨ℓ′(d′), w2⟩, so that ℓ′(d′) accepts also w2 by Corollary 6; in the other
case, i.e., if d′ > dfresh, then we have ⟨ℓ′(d′), wfresh⟩ ∼ ⟨ℓ′(d′), w1⟩, so that ℓ′(d′) also accepts
w1. Therefore in the first case automaton A has two accepting runs over wpref · w2 and in
the second case over wpref · w1. This is a contradiction to the unambiguity of A. ◀

The following lemma shows that our techniques by itself are not sufficient to solve the
case of 2-URA with order.

▶ Lemma 16. MO
2 = ∞.

Proof. For all n ≥ 1, consider the configuration Cn := {ℓ′(1, n), ℓ(1, 2), . . . , ℓ(n − 1, n)},
which is for all n ≥ 1 a subset of a configuration reachable in the following pruned universal
2-URA.

ℓ

ℓ′

ṙ2 = #
ṙ1 = #

r1 = #

r1 < #, ṙ2 = #

r1 > #, ṙ1 = #

r1 < #
ṙ2 = #

r1 > #
ṙ1 = #

r1 > # ∨ r2 ≤ #

r1 ≤ # < r2

r1 ≥ # ∨ r2 ≤ #

r1 < # < r2
ṙ2 = #

r1 < # < r2
ṙ1 = #

¬(r1 = #)
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The state ℓ′(d1, d2) keeps track of the first two distinct data read, with d1 < d2. It is
responsible for accepting any datum d outside the interval [d1, d2). The state ℓ(x, y) is
such that d1 ≤ x < y ≤ d2 and it is responsible for accepting every datum d′ in the
interval [x, y). Moreover, if d′ ∈ (x, y), then ℓ(x, y) splits into ℓ(x, d′) and ℓ(d′, y). The
automaton ensures that no two intervals [x, y), [x′, y′) overlap, and that all the intervals [x, y)
present in a configuration cover the interval [d1, d2), thus the automaton is unambiguous
and universal. ◀

6 Containment for GURA over (N; =)

In this section, we aim to prove the decidability of the universality problem for the more
expressive model of GURA. Let us first argue that the techniques developed in Section 4 do
not work for GURA.

▶ Example 17. One can easily construct a universal 1-GURA with reachable configuration
C containing ℓ(0), ℓ(1), and ℓ′ × {n ∈ N | n ≠ 0, 1}. If from both ℓ and ℓ′ there are outgoing
edges with constraint r = # to some accepting state, then every data word n is accepted
from C. In particular, the word 0 is accepted from ℓ(0), but we cannot replace 0 by some
fresh datum to obtain a contradiction as in Example 11.

The example shows that we need more sophisticated methods to solve the universality
problem. Moreover, and in contrast to the result for RA, we cannot rely on the reduction
from containment to universality by Barloy and Clemente [1], as it holds for RA without
guessing only. We hence present a direct proof for containment as stated in Theorem 3. The
idea is based on exploring a sufficiently big part of the infinite synchronized state space of
both automata A and B, following the approach in [13]. The main difference with [13] lies in
the complications that arise due to the fact that a configuration of a GURA may be infinite.

6.1 Synchronized Configurations and Bounded Supports
For the rest of this section, let A = (RA, LA, ℓA

init, LA
acc, EA) be a GRA with RA =

{r1, . . . , rm}, and let B = (RB, LB, ℓB
init, LB

acc, EB) be a GURA with a single register r.
We aim to reduce the containment problem L(A) ⊆ L(B) to a reachability problem in

(S, ⇒) where:
S is the set of synchronized configurations (ℓ(d), C), where ℓ(d) ∈ (LA × NRA

⊥ ) is a single
state of A, and C is a configuration of B,
(ℓ(d), C) ⇒ (ℓ′(d′), C ′) if there exists a letter (σ, d) ∈ (Σ ×N) such that ℓ(d) σ,d−−→A ℓ′(d′),
and SuccB(C, (σ, d)) = C ′.

We define Sinit := (ℓA
init(vinit), Cinit) to be the initial synchronized configuration of A and

B. We say that a synchronized configuration S′ is reachable from S if there is a ⇒-path
from S to S′. S is reachable if it is reachable from Sinit. Call a synchronized configuration
(ℓ(d), C) bad if ℓ ∈ LA

acc is an accepting location and C is non-accepting, i.e., ℓ′ ̸∈ LB
acc for

all (ℓ′, u) ∈ C. Thus, a bad synchronized configuration is reachable iff L(A) ̸⊆ L(B).
We extend the equivalence relation ∼ defined in Section 3 to synchronized configurations

in a natural manner, i.e., given a partial isomorphism π of N⊥ such that data(d)∪data(C) ⊆
dom(π), we define (ℓ(d), C) ∼π (ℓ(d′), C ′) if π(C) = C ′ and π(d) = d′. We shortly write
S ∼ S′ if there exists a partial isomorphism π of N⊥ such that S ∼π S′. Clearly, an analogon
of Corollary 6 holds for this extended relation. In particular, we have the following:

▶ Proposition 18. Let S, S′ be two synchronized configurations of (S, ⇒) such that S ∼ S′.
If S reaches a bad synchronized configuration, so does S′.
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The support of a configuration C of B is the set supp(C) of data d′ such that at least one
of the following two conditions holds:

ℓ(d′) ∈ C for some ℓ ∈ L such that ({ℓ} × D) ∩ C is finite,
ℓ(d′) ̸∈ C for some ℓ ∈ L such that ({ℓ} × D) ∩ C is cofinite.

Note that supp(C) ⊆ data(w) whenever C = SuccA(Cinit, w).
Let S = (ℓ(d), C) be a synchronized configuration, and let a, b ∈ supp(C) be two data

values in the support of C. We say that a and b are indistinguishable in S, written a ≡S b,
if a, b ̸∈ data(d) and {ℓ ∈ L | ℓ(a) ∈ C} = {ℓ ∈ L | ℓ(b) ∈ C}.

Given a configuration C of B, we define for every datum d ∈ N the sets

C+
d := {ℓ(d) ∈ L × {d} | ℓ(d) ∈ C and data(C ∩ ({ℓ} × N)) is finite}

C−
d := {ℓ(d) ∈ L × {d} | ℓ(d) ̸∈ C and data(C ∩ ({ℓ} × N)) is infinite}.

We give here an example for the definition of C+
d and C−

d .

▶ Example 19. Let C = {ℓ1(0), ℓ1(1)} ∪ {ℓ2(d) | d ∈ N\{1, 2}} ∪ {ℓ3(d) | d ∈ N\{0, 1}}.
Then

C+
0 = {ℓ1(0)} C+

1 = {ℓ1(1)} C+
2 = ∅

C−
0 = {ℓ3(0)} C−

1 = {ℓ2(1), ℓ3(1)} C−
2 = {ℓ2(2)}

We say that a configuration C is essentially coverable if for every two ℓ(u), ℓ′(u′) ∈ C, the
set {ℓ(u), ℓ′(u′)} is coverable.

▶ Proposition 20. Let C be an essentially coverable configuration, and let b ∈ supp(C).
Then ((C\C+

b ) ∪ C−
b ) is essentially coverable, too.

Proof. Let ℓ(c), ℓ′(c′) ∈ ((C\C+
b )∪C−

b ). If ℓ(c), ℓ′(c′) ∈ C\C+
b , then {ℓ(c), ℓ′(c′)} is coverable

by essential coverability of C. Suppose ℓ(c), ℓ′(c′) ∈ C−
b . By definition of C−

b , c = c′ = b.
Pick some value e ∈ N\{b} such that ℓ(e), ℓ′(e) ∈ C. Note that such a value e must exist, as
by definition of C−

b , the sets data(({ℓ} × N) ∩ C) and data(({ℓ′} × N) ∩ C) are cofinite, and
hence their intersection is non-empty. By essential coverability of C, {ℓ(e), ℓ′(e)} is coverable.
There must thus exist some data word w such that {ℓ(e), ℓ′(e)} ⊆ Succ(ℓinit(⊥), w). Let π

be any partial isomorphism satisfying π(e) = b and whose domain contains data(w). Clearly,
{ℓ(b), ℓ′(b)} ⊆ Succ(ℓinit(⊥), π(w)), and hence {ℓ(b), ℓ′(b)} is coverable. Finally, suppose
ℓ(c) ∈ C \ C+

b and ℓ′(c′) ∈ C−
b . By definition, we have c ̸= b = c′. Since data((ℓ′ × N) ∩ C)

is cofinite, there is d ̸= c such that ℓ′(d) ∈ C. By essential coverability of C, there exists a
data word w such that {ℓ(c), ℓ′(d)} ⊆ Succ(ℓinit(⊥), w). By picking a partial isomorphism π

such that π(d) = c′ and π(c) = c, we obtain that {ℓ(c), ℓ′(c′)} ⊆ Succ(ℓinit(⊥), π(w)), which
concludes the proof. ◀

The following is the main technical result of this section.

▶ Proposition 21. Let S = (ℓA(d), C) be a synchronized configuration of A and B such that
C is essentially coverable, and let a ̸= b be such that a, b ∈ supp(C) and a ≡S b. Then S

reaches a bad configuration in (S, ⇒) if, and only if, S′ := (ℓA(d), (C \ C+
b ) ∪ C−

b ) reaches a
bad configuration in (S, ⇒).

Proof. (⇐) Suppose there exists some data word w such that there exists an accepting run
of A on w that starts in ℓA(d), and SuccB(C\C+

b ∪ C−
b , w) is non-accepting. We assume in

the following that SuccB(C+
b , w) is accepting; otherwise we are done. Let ℓ+(b) ∈ C+

b be
the unique state such that SuccB(ℓ+(b), w) is accepting. In the following, we prove that we
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can without loss of generality assume that w does not contain any a’s. Pick some a′ ∈ N
such that a′ ̸∈ data(w) ∪ supp(C) ∪ data(d). Let π be the isomorphism defined by π(a) = a′,
π(a′) = a, and π(d) = d for all d ∈ N⊥\{a, a′}. Then ⟨ℓA(d), w⟩ ∼π ⟨ℓA(d), π(w)⟩ (as
a ̸∈ data(d) by a ≡S b), and ⟨ℓ+(b), w⟩ ∼π ⟨ℓ+(b), π(w)⟩. By Corollary 6, there exists an
accepting run of A on π(w) that starts in ℓA(d), and SuccB(ℓ+(b), π(w)) is accepting. We
prove that SuccB(ℓ(c), π(w)) is non-accepting, for every ℓ(c) ∈ C \ {ℓ+(b)} ∪ C−

b : first, let
ℓ(c) ∈ C \ {ℓ+(b)}. By essential coverability of C, {ℓ+(b), ℓ(c)} is coverable. By unambiguity
of B, SuccB(ℓ(c), π(w)) must be non-accepting. Second, let ℓ(c) ∈ C−

b . But then c = b, and
hence ⟨ℓ(c), w⟩ ∼π ⟨ℓ(c), π(w)⟩. By assumption, SuccB(ℓ(c), w) is non-accepting, so that by
Corollary 6, SuccB(ℓ(c), π(w)) is non-accepting, too. Note that π(w) indeed does not contain
any a’s. We can hence continue the proof assuming that w does not contain any a’s.

Next, we prove that if we replace all b’s occurring in w by some fresh datum not occurring
in supp(C) ∪ data(w) ∪ data(d), we obtain a data word that guides S to a bad synchronized
configuration. Formally, pick some datum b′ ̸∈ data(w) ∪ supp(C) ∪ data(d), and let π be the
isomorphism defined by π(b) = b′, π(b′) = b, and π(d) = d for all d ∈ N⊥\{b, b′}. Note that
π(w) does not contain any a’s or b’s. Clearly, ⟨ℓA(d), w⟩ ∼π ⟨ℓA(d), π(w)⟩. By Corollary
6, there still exists an accepting run of A on π(w) that starts in ℓA(d). We prove that
SuccB(C, π(w)) is non-accepting. Let ℓ(c) ∈ C. We distinguish three cases.
1. Let c ̸∈ {b, b′}. Then ⟨ℓ(c), w⟩ ∼π ⟨ℓ(c), π(w)⟩. Since SuccB(ℓ(c), w) is non-accepting by

assumption, so that by Corollary 6 also SuccB(ℓ(c), π(w)) is non-accepting.
2. Let c = b. By a ≡C b, the state ℓ(a) is in C and ℓ(a), π(w) ∼ ℓ(c), π(w) since a and c

do not appear in w. By essential coverability of C, {ℓ(a), ℓ(c)} ⊆ C is coverable. By
unambiguity of B, we obtain that SuccB(ℓ(c), π(w)) is non-accepting.

3. Let c = b′. Note that ⟨ℓ(b), w⟩ ∼π ⟨ℓ(b′), π(w)⟩. Recall that b′ ̸∈ supp(C). This implies
that data(C ∩ ({ℓ} × N⊥)) is cofinite. We distinguish two cases.

b ∈ data(C ∩ ({ℓ} × N⊥)), i.e., ℓ(b) ∈ C. But note that ℓ(b) ̸∈ C+
b by cofiniteness of

data(C ∩ ({ℓ} × N⊥)). Hence ℓ(b) ∈ C\{ℓ+(b)}.
b ̸∈ data(C ∩ ({ℓ} × N⊥)), i.e., ℓ(b) ∈ C−

b .
In both cases, we have proved above that Succ(ℓ(b), w) is non-accepting. By ⟨ℓ(b), w⟩ ∼π

⟨ℓ(b′), π(w)⟩ and Corollary 6, SuccB(ℓ(b′), π(w)) is non-accepting, too.

Altogether we have proved that SuccB(C, π(w)) is non-accepting, while there exists some
accepting run of A on π(w) starting in ℓA(d). This concludes the proof for the (⇐)-direction.

(⇒) Suppose there exists some data word w such that there exists some accepting
run of A on w starting in ℓA(d), and SuccB(C, w) is non-accepting. We assume in the
following that SuccB(C \ C+

b ∪ C−
b , w) is accepting; otherwise we are done. Let ℓ−(b) be a

state in C−
b such that SuccB(ℓ−(b), w) is accepting. Pick some datum a′ ∈ N⊥ such that

a′ ̸∈ data(w) ∪ supp(C) ∪ data(d). Let π be the isomorphism defined by π(b) = a, π(a) = a′,
π(a′) = b, and π(d) = d for all d ∈ N\{a, b, a′}. Clearly, ⟨ℓA(d), w⟩ ∼π ⟨ℓA(d), π(w)⟩, so that
by Corollary 6, there exists some accepting run of A on π(w) starting in ℓA(d). We prove
that SuccB(C\C+

b ∪ C−
b , π(w)) is non-accepting. Let ℓ(c) ∈ C\C+

b ∪ C−
b . We distinguish the

following cases:
1. Let c = a, i.e., ℓ(a) ∈ C. By a ≡S b, we also have ℓ(b) ∈ C. Note that ⟨ℓ(b), w⟩ ∼π

⟨ℓ(a), π(w)⟩. Note that ℓ(b) ̸= ℓ−(b). By assumption, SuccB(ℓ(b), w) is non-accepting. By
Corollary 6, SuccB(ℓ(a), π(w)) is non-accepting, too.

2. Let c ̸= a. Note that also ⟨ℓ−(b), w⟩ ∼π ⟨ℓ−(a), π(w)⟩. Recall that SuccB(ℓ−(b), w)
is accepting. By Corollary 6, SuccB(ℓ−(a), π(w)) is accepting. We prove below that
{ℓ−(a), ℓ(c)} is coverable. By unambiguity of B, this directly implies that SuccB(ℓ(c), π(w))
is non-accepting.



W. Czerwiński, A. Mottet, K. Quaas 15

Recall that {d ∈ N | ℓ−(d) ∈ C} is cofinite. Pick some datum d ∈ N\{c} such that
ℓ−(d) ∈ C. We distinguish two cases.

Assume ℓ(c) ∈ C\C+
b . Since C is essentially coverable, the set {ℓ−(d), ℓ(c)} is coverable.

Hence there must exist some data word u such that {ℓ−(d), ℓ(c)} ⊆ SuccB(ℓinit(⊥), u).
Let π′ be a partial isomorphism satisfying π′(d) = a, π′(a) = d, and π′(e) = e for all
e ∈ data(u) ∪ {c}. Then {ℓ−(a), ℓ(c)} ⊆ SuccB(ℓinit(⊥), π′(u)), hence {ℓ−(a), ℓ(c)} is
coverable.
Second suppose ℓ(c) ∈ C−

b , i.e., c = b. This implies that {e ∈ N | ℓ(e) ∈ C} is cofinite.
Pick some datum e ∈ N\{d} such that ℓ(e) ∈ C. Since C is essentially coverable,
the set {ℓ−(d), ℓ(e)} is coverable. Hence there must exist some data word u such
that {ℓ−(d), ℓ(e)} ⊆ SuccB(ℓinit(⊥), u). Let π′ be a partial isomorphism satisfying
π′(d) = a, π′(a) = d, π′(b) = e, π′(e) = b, and π′(f) = f for all f ∈ data(u). Then
{ℓ(b), ℓ−(a)} ⊆ SuccB(ℓinit(⊥), π′(u)), hence {ℓ(c), ℓ−(a)} is coverable.

Altogether we have proved that SuccB((C\C+
b ) ∪ C−

b , π(w)) is non-accepting, while there is
an accepting run of A on π(w) starting in ℓA(d). This finishes the proof for the (⇒)-direction,
and thus the proof of the Proposition. ◀

As in [13], Proposition 21 is enough to obtain an ExpSpace algorithm deciding containment,
proving Theorem 3.
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