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ABSTRACT

We introduce α-Rank, a principled evolutionary dynamics methodology, for the evaluation and ranking of agents in large-scale
multi-agent interactions, grounded in a novel dynamical game-theoretic solution concept called Markov-Conley chains (MCCs).
The approach leverages continuous-time and discrete-time evolutionary dynamical systems applied to empirical games, and
scales tractably in the number of agents, in the type of interactions (beyond dyadic), and the type of empirical games (symmetric
and asymmetric). Current models are fundamentally limited in one or more of these dimensions, and are not guaranteed to
converge to the desired game-theoretic solution concept (typically the Nash equilibrium). α-Rank automatically provides a
ranking over the set of agents under evaluation and provides insights into their strengths, weaknesses, and long-term dynamics
in terms of basins of attraction and sink components. This is a direct consequence of the correspondence we establish to the
dynamical MCC solution concept when the underlying evolutionary model’s ranking-intensity parameter, α, is chosen to be
large, which exactly forms the basis of α-Rank. In contrast to the Nash equilibrium, which is a static solution concept based
solely on fixed points, MCCs are a dynamical solution concept based on the Markov chain formalism, Conley’s Fundamental
Theorem of Dynamical Systems, and the core ingredients of dynamical systems: fixed points, recurrent sets, periodic orbits,
and limit cycles. Our α-Rank method runs in polynomial time with respect to the total number of pure strategy profiles, whereas
computing a Nash equilibrium for a general-sum game is known to be intractable. We introduce mathematical proofs that
not only provide an overarching and unifying perspective of existing continuous- and discrete-time evolutionary evaluation
models, but also reveal the formal underpinnings of the α-Rank methodology. We illustrate the method in canonical games and
empirically validate it in several domains, including AlphaGo, AlphaZero, MuJoCo Soccer, and Poker.

1 Introduction
This paper introduces a principled, practical, and descriptive methodology, which we call α-Rank. α-Rank enables evaluation
and ranking of agents in large-scale multi-agent settings, and is grounded in a new game-theoretic solution concept, called
Markov-Conley chains (MCCs), which captures the dynamics of multi-agent interactions. While much progress has been
made in learning for games such as Go [1, 2] and Chess [3], computational gains are now enabling algorithmic innovations in
domains of significantly higher complexity, such as Poker [4] and MuJoCo soccer [5] where ranking of agents is much more
intricate than in classical simple matrix games. With multi-agent learning domains of interest becoming increasingly more
complex, we need methods for evaluation and ranking that are both comprehensive and theoretically well-grounded.

Evaluation of agents in a multi-agent context is a hard problem due to several complexity factors: strategy and action spaces
of players quickly explode (e.g., multi-robot systems), models need to be able to deal with intransitive behaviors (e.g., cyclical
best-responses in Rock-Paper-Scissors, but at a much higher scale), the number of agents can be large in the most interesting
applications (e.g., Poker), types of interactions between agents may be complex (e.g., MuJoCo soccer), and payoffs for agents
may be asymmetric (e.g., a board-game such as Scotland Yard).

This evaluation problem has been studied in Empirical Game Theory using the concept of empirical games or meta-games,
and the convergence of their dynamics to Nash equilibria [6–9]. A meta-game is an abstraction of the underlying game, which
considers meta-strategies rather than primitive actions [6, 8]. In the Go domain, for example, meta-strategies may correspond
to different AlphaGo agents (e.g., each meta-strategy is an agent using a set of specific training hyperparameters, policy
representations, and so on). The players of the meta-game now have a choice between these different agents (henceforth
synonymous with meta-strategies), and payoffs in the meta-game are calculated corresponding to the win/loss ratio of these
agents against each other over many rounds of the full game of Go. Meta-games, therefore, enable us to investigate the strengths
and weaknesses of these agents using game-theoretic evaluation techniques.
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Micro-model (replicator 
dynamics): provides low-level 
insights into agent interactions, 
but effectively limited to 3 to 4 
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Generalized macro-model: a 
generalization of previous 
discrete models that applies 
even to many-player games and 
asymmetric interactions

Figure 1. Paper at a glance. Numerical ordering of the concept boxes corresponds to the paper flow, with sections and/or
theorems indicated where applicable. The methods and ideas used herein may be classified broadly as either game-theoretic
solution concepts (namely, static or dynamic) and evolutionary dynamics concepts (namely, continuous- or discrete-time). The
insights gained by analyzing existing concepts and developing new theoretical results carves a pathway to the novel
combination of our general multi-agent evaluation method, α-Rank, and our game-theoretic solution concept, Markov-Conley
Chains.

Existing meta-game analysis techniques, however, are still limited in a number of ways: either a low number of players
or a low number of agents (i.e., meta-strategies) may be analyzed [6, 8–10]. Specifically, on the one hand continuous-time
meta-game evaluation models, using replicator dynamics from Evolutionary Game Theory [11–15], are deployed to capture the
micro-dynamics of interacting agents. These approaches study and visualize basins of attraction and equilibria of interacting
agents, but are limited as they can only be feasibly applied to games involving few agents, exploding in complexity in the case
of large and asymmetric games. On the other hand, existing discrete-time meta-game evaluation models (e.g., [16–20]) capture
the macro-dynamics of interacting agents, but involve a large number of evolutionary parameters and are not yet grounded in a
game-theoretic solution concept.

To further compound these issues, using the Nash equilibrium as a solution concept for meta-game evaluation in these
dynamical models is in many ways problematic: first, computing a Nash equilibrium is computationally difficult [21, 22];
second, there are intractable equilibrium selection issues even if Nash equilibria can be computed [23–25]; finally, there is an
inherent incompatibility in the sense that it is not guaranteed that dynamical systems will converge to a Nash equilibrium [26],
or, in fact, to any fixed point. However, instead of taking this as a disappointing flaw of dynamical systems models, we see it as
an opportunity to look for a novel solution concept that does not have the same limitations as Nash in relation to these dynamical
systems. Specifically, exactly as J. Nash used one of the most advanced topological results of his time, i.e., Kakutani’s fixed
point theorem [27], as the basis for the Nash solution concept, in the present work, we employ Conley’s Fundamental Theorem
of Dynamical Systems [28] and propose the solution concept of Markov-Conley chains (MCCs). Intuitively, Nash is a static
solution concept solely based on fixed points. MCCs, by contrast, are a dynamic solution concept based not only on fixed
points, but also on recurrent sets, periodic orbits, and limit cycles, which are fundamental ingredients of dynamical systems.
The key advantages are that MCCs comprehensively capture the long-term behaviors of our (inherently dynamical) evolutionary
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systems, and our associated α-Rank method runs in polynomial time with respect to the total number of pure strategy profiles
(whereas computing a Nash equilibrium for a general-sum game is PPAD-complete [22]).

Main contributions: α-Rank and MCCs While MCCs do not immediately address the equilibrium selection problem, we
show that by introducing a perturbed variant that corresponds to a generalized multi-population discrete-time dynamical model,
the underlying Markov chain containing them becomes irreducible and yields a unique stationary distribution. The ordering
of the strategies of agents in this distribution gives rise to our α-Rank methodology. α-Rank provides a summary of the
asymptotic evolutionary rankings of agents in the sense of the time spent by interacting populations playing them, yielding
insights into their evolutionary strengths. It both automatically produces a ranking over agents favored by the evolutionary
dynamics and filters out transient agents (i.e., agents that go extinct in the long-term evolutionary interactions).

Paper Overview Due to the interconnected nature of the concepts discussed herein, we provide in Fig. 1 an overview of the
paper that highlights the relationships between them. Specifically, the paper is structured as follows: we first provide a review
of preliminary game-theoretic concepts, including the Nash equilibrium (box 1 in Fig. 1), which is a long-standing yet static
solution concept. We then overview the replicator dynamics micro-model ( 2 ), which provides low-level insights into agent
interactions but is limited in the sense that it can only feasibly be used for evaluating three to four agents. We then introduce a
generalized evolutionary macro-model ( 3 ) that extends previous single-population discrete-time models ( 4 ) and (as later
shown) plays an integral role in our α-Rank method. We then narrow our focus on a particular evolutionary macro-model ( 3 )
that generalizes single-population discrete-time models ( 4 ) and (as later shown) plays an integral role in our α-Rank method.
Next, we highlight a fundamental incompatibility of the dynamical systems and the Nash solution concept ( 5 ), establishing
fundamental reasons that prevent dynamics from converging to Nash. This limitation motivates us to investigate a novel solution
concept, using Conley’s Fundamental Theorem of Dynamical Systems as a foundation ( 6 ).

Conley’s Theorem leads us to the topological concept of chain components, which do capture the irreducible long-term
behaviors of a continuous dynamical system, but are unfortunately difficult to analyze due to the lack of an exact characterization
of their geometry and the behavior of the dynamics inside them. We, therefore, introduce a discrete approximation of these
limiting dynamics that is more feasible to analyze: our so-called Markov-Conley chains solution concept ( 7 ). While we
show that Markov-Conley chains share a close theoretical relationship with both discrete-time and continuous-time dynamical
models ( 8 ), they unfortunately suffer from an equilibrium selection problem and thus cannot directly be used for computing
multi-agent rankings. To address this, we introduced a perturbed version of Markov-Conley chains that resolves the equilibrium
selection issues and yields our α-Rank evaluation method ( 9 ). α-Rank computes both a ranking and assigns scores to agents
using this perturbed model. We show that this perturbed model corresponds directly to the generalized macro-model under a
particular setting of the latter’s so-called ranking-intensity parameter α . α-Rank not only captures the dynamic behaviors of
interacting agents, but is also more tractable to compute than Nash for general games. We validate our methodology empirically
by providing ranking analysis on datasets involving interactions of state-of-the-art agents including AlphaGo [1], AlphaZero [3],
MuJoCo Soccer [5], and Poker [29], and also provide scalability properties and theoretical guarantees for the overall ranking
methodology.

2 Preliminaries and Methods
In this section, we concisely outline the game-theoretic concepts and methods necessary to understand the remainder of the
paper. For a detailed discussion of the concepts we refer the reader to [8, 13, 30, 31]. We also introduce a novel game-theoretic
concept, Markov-Conley chains, which we use to theoretically ground our results in.

2.1 Game Theoretic Concepts
2.1.1 Normal Form Games
A K-wise interaction Normal Form Game (NFG) G is defined as (K,∏K

k=1 Sk,∏K
k=1 Mk), where each player k ∈ {1, . . . ,K}

chooses a strategy sk from its strategy set Sk and receives a payoff Mk : ∏
K
i=1 Si→ R. We henceforth denote the joint strategy

space and payoffs, respectively, as ∏k Sk and ∏k Mk. We denote the strategy profile of all players by s = (s1, . . . ,sK)∈∏k Sk, the
strategy profile of all players except k by s−k, and the payoff profile by (M1(s1,s−1), . . . ,MK(sK ,s−K)). An NFG is symmetric
if the following two conditions hold: first, all players have the same strategy sets (i.e., ∀k, l Sk = Sl); second, if a permutation
is applied to the strategy profile, the payoff profile is permuted accordingly. The game is asymmetric if one or both of these
conditions do not hold. Note that in a 2-player (K = 2) NFG the payoffs for both players (M above) are typically represented by
a bi-matrix (A,B), which gives the payoff for the row player in A, and the payoff for the column player in B. If S1 = S2 and
A = BT , then this 2-player game is symmetric.

Naturally the definitions of strategy and payoff can be extended in the usual multilinear fashion to allow for randomized
(mixed) strategies. In that case, we usually overload notation in the following manner: if xk is a mixed strategy for each
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player k and x−k the mixed profile excluding that player, then we denote by Mk(xk,x−k) the expected payoff of player k,
Esk∼xk,s−k∼x−k [Mk(sk,s−k)]. Given these preliminaries, we are now ready to define the Nash equilibrium concept:

Definition 2.1.1 (Nash equilibrium). A mixed strategy profile x = (x1, . . . ,xK) is a Nash equilibrium if for all players k:
maxx′k Mk(x′k,x−k) = Mk(xk,x−k).

Intuitively, a strategy profile x is a Nash equilibrium of the NFG if no player has an incentive to unilaterally deviate from its
current strategy.

2.1.2 Meta-games
A meta-game (or an empirical game) is a simplified model of an underlying multi-agent system (e.g., an auction, a real-time
strategy game, or a robot football match), which considers meta-strategies or ‘styles of play’ of agents, rather than the full
set of primitive strategies available in the underlying game [6–8]. In this paper, the meta-strategies considered are learning
agents (e.g., different variants of AlphaGo agents, as exemplified in Section 1). Thus, we henceforth refer to meta-games and
meta-strategies, respectively, as ‘games’ and ‘agents’ when the context is clear. For example, in AlphaGo, styles of play may be
characterized by a set of agents {AG(r),AG(v),AG(p)}, where AG stands for the algorithm and indexes r, v, and p stand for
rollouts, value networks, and policy networks, respectively, that lead to different play styles. The corresponding meta-payoffs
quantify the outcomes when players play profiles over the set of agents (e.g., the empirical win rates of the agents when played
against one another). These payoffs can be calculated from available data of the agents’ interactions in the real multi-agent
systems (e.g., wins/losses in the game of Go), or they can be computed from simulations. The question of how many such
interactions are necessary to have a good approximation of the true underlying meta-game is discussed in [8]. A meta-game
itself is an NFG and can, thus, leverage the game-theoretic toolkit to evaluate agent interactions at a high level of abstraction.

2.1.3 Micro-model: Replicator Dynamics
Dynamical systems is a powerful mathematical framework for specifying the time dependence of the players’ behavior (see the
Supplementary Material for a brief introduction).

For instance, in a two-player asymmetric meta-game represented as an NFG (2,S1× S2,M = (A,B)), the evolution of
players’ strategy profiles under the replicator dynamics [32, 33] is given by,

ẋi = xi((Ay)i− xT Ay) ẏ j = y j((xT B) j− xT By) ∀(i, j) ∈ S1×S2, (1)

where xi and y j are, respectively, the proportions of strategies i ∈ S1 and j ∈ S2 in two infinitely-sized populations, each
corresponding to a player. This system of coupled differential equations models the temporal dynamics of the populations’
strategy profiles when they interact, and can be extended readily to the general K-wise interaction case (see Supplementary
Material Section 5.2.2 for more details).

The replicator dynamics provide useful insights into the micro-dynamical characteristics of games, revealing strategy
flows, basins of attraction, and equilibria [34] when visualized on a trajectory plot over the strategy simplex (e.g, Fig. 4). The
accessibility of these insights, however, becomes limited for games involving large strategy spaces and many-player interactions.
For instance, trajectory plots may be visualized only for subsets of three or four strategies in a game, and are complex to analyze
for multi-population games due to the inherently-coupled nature of the trajectories. While methods for scalable empirical
game-theoretic analysis of games have been recently introduced, they are still limited to two-population games [8, 9].

2.1.4 Macro-model: Discrete-time Dynamics
This section presents our main evolutionary dynamics model, which extends previous single-population discrete-time models
and is later shown to play an integral role in our α-Rank method and can also be seen as an instantiation of the framework
introduced in [20].

A promising alternative to using the continuous-time replicator dynamics for evaluation is to consider discrete-time
finite-population dynamics. As later demonstrated, an important advantage of the discrete-time dynamics is that they are not
limited to only three or four strategies (i.e., the agents under evaluation) as in the continuous-time case. Even though we lose
the micro-dynamical details of the strategy simplex, this discrete-time macro-dynamical model, in which we observe the flows
over the edges of the high-dimensional simplex, still provides useful insights into the overall system dynamics.

To conduct this discrete-time analysis, we consider a selection-mutation process but with a very small mutation rate
(following the small mutation rate theorem, see [35]). Before elaborating on the details we specify a number of important
concepts used in the description below and clarify their respective meanings in Fig. 2a. Let a monomorphic population denote a
population wherein all individuals play identical strategies, and a monomorphic population profile is a set of monomorphic
populations, where each population may be playing a different strategy (see Fig. 2b). Our general idea is to capture the overall
dynamics by defining a Markov chain over states that correspond to monomorphic population profiles. We can then calculate the
transition probability matrix over these states, which captures the fixation probability of any mutation in any given population
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Concept Meaning

K-wise meta-game An NFG with K player slots.
Strategy The agents under evaluation (e.g., variants of AlphaGo agents) in the meta-game.
Individual A population member, playing a strategy and assigned to a slot in the meta-game.
Population A finite set of individuals.
Player An individual that participates in the meta-game under consideration.
Monomorphic Population A finite set of individuals, playing the same strategy.
Monomorphic Population Profile A set of monomorphic populations.
Focal Population A previously-monomorphic population wherein a rare mutation has appeared.

(a)

...
s1 sKsk

...

... ...f(sK,s-K)f(sk,s-k)

... ...

...
s1 sKsk

...

... ...f(s1,s-1) f(sK,s-K)f(sk,s-k)

K-wise 
Interaction

Monomorphic 
Population 

Profile

Monomorphic 
Population

Individual

Fitnesses

f(s1,s-1)

(b)

...
s1 sKsk

...

... ...f(sK,s-K)f(sk,s-k)

... ...

...
s1 sKsk

...

... ...f(s1,s-1) f(sK,s-K)f(sk,s-k)f(s1,s-1)

Rare
Mutation

Fitness-based 
Selection

Focal
Population

(c)

... ...

(d)

... ...

(e)

Figure 2. Overview of the discrete-time macro-model. (a) Evolutionary concepts terminology. (b) We have a set of
individuals in each population k, each of which is programmed to play a strategy from set Sk. Under the mutation rate µ → 0
assumption, at most one population is not monomorphic at any time. Each individual in a K-wise interaction game has a
corresponding fitness f k(sk,s−k) dependent on its identity k, its strategy sk, and the strategy profile s−k of the other players. (c)
Let the focal population denote a population k wherein a rare mutant strategy appears. At each timestep, we randomly sample
two individuals in population k; the strategy of the first individual is updated by either probabilistically copying the strategy of
the second individual, mutating with a very small probability to a random strategy, or sticking with its own strategy. (d)
Individual in the focal population copies the mutant strategy. (e) The mutant propagates in the focal population, yielding a new
monomorphic population profile.

(i.e., the probability that the mutant will take over that population). By computing the stationary distribution over this matrix
we find the evolutionary population dynamics, which can be represented as a graph. The nodes of this graph correspond to the
states, with the stationary distribution quantifying the average time spent by the populations in each node [17, 36].

A large body of prior literature has conducted this discrete-time Markov chain analysis in the context of pair-wise interaction
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games with symmetric payoffs [17–19, 36, 37]. Recent work applies the underlying assumption of small-mutation rates [35] to
propose a general framework for discrete-time multi-player interactions [20], which applies to games with asymmetric payoffs.
In our work, we formalize how such an evolutionary model, in the micro/macro dynamics spectrum, should be instantiated to
converge to our novel and dynamical solution concept of MCCs. Additionally, we show (in Theorem 2.1.3) that in the case of
identical per-population payoffs (i.e., ∀k,Mk = M) our generalization reduces to the single-population model used by prior
works. For completeness, we also detail the single population model in the Supplementary Material (see Section 5.3). We now
formally define the generalized discrete-time model.

Recall from Section 2.1.1 that each individual in a K-wise interaction game receives a local payoff Mk(sk,s−k) dependent
on its identity k, its strategy sk, and the strategy profile s−k of the other K−1 individuals involved in the game. To account for
the identity-dependent payoffs of such individuals, we consider the interactions of K finite populations, each corresponding to a
specific identity k ∈ {1, . . . ,K}.

In each population k, we have a set of strategies Sk that we would like to evaluate for their evolutionary strength. We also
have a set of individuals A in each population k, each of which is programmed to play a strategy from the set Sk. Without loss
of generality, we assume all populations have m individuals.

Individuals interact K-wise through empirical games. At each timestep t, one individual from each population is sampled
uniformly, and the K resulting individuals play a game. Let pk

sk denote the number of individuals in population k playing
strategy sk and p denote the joint population state (i.e., vector of states of all populations). Under our sampling protocol, the
fitness of an individual that plays strategy sk is,

f k(sk, p−k) = ∑
s−k∈S−k

Mk(sk,s−k) ∏
c∈{1,...,K}\k

pc
sc

m
. (2)

We consider any two individuals from a population k, with respective strategies τ,σ ∈ Sk and respective fitnesses f k(τ, p−k)
and f k(σ , p−k) (dependent on the values of the meta-game table). We introduce here a discrete-time dynamics, where the
strategy of the first individual (playing τ) is then updated by either mutating with a very small probability to a random strategy
(Fig. 2c), probabilistically copying the strategy σ of the second individual (Fig. 2d), or sticking with its own strategy τ . The
idea is that strong individuals will replicate and spread throughout the population (Fig. 2e). While one could choose other
variants of discrete-time dynamics [38], we show that this particular choice both yields useful closed-form representations of
the limiting behaviors of the populations, and also coincides with the MCC solution concept we later introduce under specific
conditions.

As individuals from the same population never directly interact, the state of a population k has no bearing on the fitnesses of
its individuals. However, as evident in (2), each population’s fitness may directly be affected by the competing populations’
states. The complexity of analyzing such a system can be significantly reduced by making the assumption of a small mutation
rate [35]. Let the ‘focal population’ denote a population k wherein a mutant strategy appears. We denote the probability
for a strategy to mutate randomly into another strategy sk ∈ Sk by µ and we will assume it to be infinitesimally small (i.e.,
we consider a small-mutation limit µ → 0). If we neglected mutations, the end state of this evolutionary process would be
monomorphic. If we introduce a very small mutation rate this means that either the mutant fixates and takes over the current
population, or the current population is capable of wiping out the mutant strategy [35]. Therefore, given a small mutation
rate, the mutant either fixates or disappears before a new mutant appears in the current population. This means that any given
population k will never contain more than two strategies at any point in time. We refer the interested reader to [20] for a more
extensive treatment of these arguments.

Applying the same line of reasoning, in the small-mutation rate regime, the mutant strategy in the focal population will
either fixate or go extinct much earlier than the appearance of a mutant in any other population [35]. Thus, at any given time,
there can maximally be only one population with a mutant, and the remaining populations will be monomorphic; i.e., in each
competing population c ∈ {1, . . . ,K}\k,

pc
sc
m = 1 for a single strategy and 0 for the rest. As such, given a small enough mutation

rate, analysis of any focal population k needs only consider the monomorphic states of all other populations. Overloading the
notation in (2), the fitness of an individual from population k that plays sk then considerably simplifies to

f k(sk,s−k) = Mk(sk,s−k), (3)

where s−k denotes the strategy profile of the other populations.
Let pk

τ and pk
σ respectively denote the number of individuals playing τ and σ in focal population k, where pk

τ + pk
σ = m. Per

(3), the fitness of an individual playing τ in the focal population while the remaining populations play monomorphic strategies
s−k is given by f k(τ,s−k) = Mk(τ,s−k). Likewise, the fitness of any individual in k playing σ is, f k(σ ,s−k) = Mk(σ ,s−k).

We randomly sample two individuals in population k and consider the probability that the one playing τ copies the other
individual’s strategy σ . The probability with which the individual playing strategy τ will copy the individual playing strategy σ
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can be described by a selection function P(τ → σ ,s−k), which governs the dynamics of the finite-population model. For the
remainder of the paper, we focus on the logistic selection function (aka Fermi distribution),

P(τ → σ ,s−k) =
eα f k(σ ,s−k)

eα f k(τ,s−k)+ eα f k(σ ,s−k)
=
(

1+ eα( f k(τ,s−k)− f k(σ ,s−k))
)−1

, (4)

with α determining the selection strength, which we call the ranking-intensity (the correspondence between α and our ranking
method will become clear later). There are alternative definitions of the selection function that may be used here, we merely
focus on the Fermi distribution due to its extensive use in the single-population literature [17–19].

Based on this setup, we define a Markov chain over the set of strategy profiles ∏k Sk with ∏k |Sk| states. Each state
corresponds to one of the strategy profiles s ∈ ∏k Sk, representing a multi-population end-state where each population is
monomorphic. The transitions between these states are defined by the corresponding fixation probabilities (the probability of
overtaking the population) when a mutant strategy is introduced in any single monomorphic population k. We now define the
Markov chain, which has (∏k |Sk|)2 transition probabilities over all pairs of monomorphic multi-population states. Denote by
ρk

σ ,τ(s
−k) the probability of mutant strategy τ fixating in a focal population k of individuals playing σ , while the remaining

K−1 populations remain in their monomorphic states s−k. For any given monomorphic strategy profile, there are a total of
∑k(|Sk|−1) valid transitions to a subsequent profile where only a single population has changed its strategy. Thus, letting
η = 1

∑k(|Sk|−1) , then ηρk
σ ,τ(s

−k) is the probability that the joint population state transitions from (σ ,s−k) to state (τ,s−k) after
the occurrence of a single mutation in population k. The stationary distribution over this Markov chain tells us how much time,
on average, the dynamics will spend in each of the monomorphic states.

The fixation probabilities (of a rare mutant playing τ overtaking the focal population k) can be calculated as follows. The
probability that the number of individuals playing τ decreases/increases by one in the focal population is given by,

T k(∓1)(pk,τ,σ ,s−k) =
pk

τ pk
σ

m(m−1)

(
1+ e±α( f k(τ,s−k)− f k(σ ,s−k))

)−1
. (5)

Then, the fixation probability ρk
σ ,τ(s

−k) of a single mutant with strategy τ in a population k of m−1 individuals playing σ is,

ρ
k
σ ,τ(s

−k) =

1+
m−1

∑
l=1

l

∏
pk

τ=1

T k(−1)(pk,τ,σ ,s−k)

T k(+1)(pk,τ,σ ,s−k)

−1

(6)

=

1+
m−1

∑
l=1

l

∏
pk

τ=1

e−α( f k(τ,s−k)− f k(σ ,s−k))

−1

(7)

=

(
1+

m−1

∑
l=1

e−lα( f k(τ,s−k)− f k(σ ,s−k))

)−1

(8)

=

 1−e−α( f k(τ,s−k)− f k(σ ,s−k))

1−e−mα( f k(τ,s−k)− f k(σ ,s−k))
if f k(τ,s−k) 6= f k(σ ,s−k)

1
m if f k(τ,s−k) = f k(σ ,s−k)

(9)

This corresponds to the computation of an m-step transition in the Markov chain corresponding to P(τ → σ ,s−k) [39]. The

quotient T k(−1)(pk,τ,σ ,s−k)

T k(+1)(pk,τ,σ ,s−k)
expresses the likelihood (odds) that the mutation process in population k continues in either direction:

if it is close to zero then it is very likely that the number of mutants (individuals with strategy τ in population k) increases; if it
is very large it is very likely that the number of mutants will decrease; and if it close to one then the probabilities of increase
and decrease of the number of mutants are equally likely. This yields the following Markov transition matrix corresponding to
the jump from strategy profile si ∈∏k Sk to s j ∈∏k Sk,

Ci j =


ηρk

sk
i ,s

k
j
(s−k

i ) if ∃k such that sk
i 6= sk

j and s−k
i = s−k

j

1−∑ j 6=i Ci j if si = s j

0 otherwise

(10)

for all i, j ∈ {1, . . . , |S|}, where |S|= ∏k |Sk|.
The following theorem formalizes the irreducibility of this finite-population Markov chain, a property that is well-known in

the literature (e.g., see [35, Theorem 2] and [20, Theorem 1]) but stated here for our specialized model for completeness.

7/45



Theorem 2.1.2. Given finite payoffs, the Markov chain with transition matrix C is irreducible (i.e., it is possible to get to any
state starting from any state). Thus a unique stationary distribution π (where πTC = πT and ∑i πi = 1) exists.

Proof. Refer to the Supplementary Material Section 5.4.1 for the proof.

This unique π provides the evolutionary ranking, or strength of each strategy profile in the set ∏k Sk, expressed as the
average time spent in each state in distribution π .

This generalized discrete-time evolutionary model, as later shown, will form the basis of our α-Rank method. We would
like to clarify the application of this general model to the single population case, which applies only to symmetric 2-player
games and is commonly used in the literature (see Section 5.1).

Application to Single-Population (Symmetric Two-Player) Games For completeness, we provide a detailed outline of the
single population model in Supplementary Material Section 5.3.

Theorem 2.1.3 (Multi-population model generalizes the symmetric single-population model). The general multi-population
model inherently captures the dynamics of the single population symmetric model.

Proof. (Sketch) In the pairwise symmetric game setting, we consider only a single population of interacting individuals (i.e.,
K = 1), where a maximum of two strategies may exist at any time in the population due to the small mutation rate assumption.
At each timestep, two individuals (with respective strategies τ,σ ∈ S1) are sampled from this population and play a game
using their respective strategies τ and σ . Their respective fitnesses then correspond directly to their payoffs, i.e., fτ = M(τ,σ)
and fσ = M(σ ,τ). With this change, all other derivations and results follow directly the generalized model. For example, the
probability of decrease/increase of a strategy of type sτ in the single-population case translates to,

T (∓1)(p,τ,σ) =
pτ pσ

m(m−1)

(
1+ e±α( fτ− fσ )

)−1
, (11)

and likewise for the remaining equations.

In other words, the generalized model is general in the sense that one can not only simulate symmetric pairwise interaction
dynamics, but also K-wise and asymmetric interactions.

Linking the Micro- and Macro-dynamics Models We have introduced, so far, a micro- and macro-dynamics model, each
with unique advantages in terms of analyzing the evolutionary strengths of agents. The formal relationship between these two
models remains of interest, and is established in the limit of a large population:

Theorem 2.1.4 (Discrete-Continuous Edge Dynamics Correspondence). In the large-population limit, the macro-dynamics
model is equivalent to the micro-dynamics model over the edges of the strategy simplex. Specifically, the limiting model is a
variant of the replicator dynamics with the caveat that the Fermi revision function takes the place of the usual fitness terms.

Proof. Refer to the Supplementary Material Section 5.4.2 for the proof.

Therefore, a correspondence exists between the two models on the ‘skeleton’ of the simplex, with the macro-dynamics
model useful for analyzing the global evolutionary behaviors over this skeleton, and the micro-model useful for ‘zooming into’
the three- or four-faces of the simplex to analyze the interior dynamics.

In the next sections, we first give a few conceptual examples of the generalized discrete-time model, then discuss the need
for a new solution concept and the incompatibility between Nash equilibria and dynamical systems. We then directly link the
generalized model to our new game-theoretic solution concept, Markov-Conley chains (in Theorem 2.5.1).

2.2 Conceptual Examples
We present two canonical examples that visualize the discrete-time dynamics and build intuition regarding the macro-level
insights gained using this type of analysis.
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Player 1
R 0 −1 1
P 1 0 −1
S −1 1 0
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(a) Payoffs (top) and single-population discrete-time dynamics
(bottom) for Rock-Paper-Scissors game. Graph nodes correspond to
monomorphic populations R, P, and S.

Player 2
O M

Player 1 O (3,2) (0,0)
M (0,0) (2,3)
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9
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m

12. 96ρ
m
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m

s1 =O s2 =O

s1 =O s2 =M

s1 =M s2 =O

s1 =M s2 =M

(b) Payoffs (top) and multi-population discrete-time dynamics
(bottom) for Battle of the Sexes game. Strategies O and M
respectively correspond to going to the Opera and Movies. Graph
nodes correspond to monomorphic population profiles (s1,s2). The
stationary distribution π has 0.5 mass on each of profiles (O,O) and
(M,O), and 0 mass elsewhere.

Figure 3. Conceptual examples of finite-population models, for population size m = 50 and ranking-intensity α = 0.1.

2.2.1 Rock-Paper-Scissors
We first consider the single-population (symmetric) discrete-time model in the Rock-Paper-Scissors (RPS) game, with the
payoff matrix shown in Fig. 3a (top). One can visualize the discrete-time dynamics using a graph that corresponds to the
Markov transition matrix C defined in (10), as shown in Fig. 3a (bottom).

Nodes in this graph correspond to the monomorphic population states. In this example, these are the states of the population
where all individuals play as agents Rock, Paper, or Scissors. To quantify the time the population spends as each agent, we
indicate the corresponding mass of the stationary distribution π within each node. As can be observed in the graph, the RPS
population spends exactly 1

3 of its time as each agent.
Edges in the graph correspond to the fixation probabilities for pairs of states. Edge directions corresponds to the flow of

individuals from one agent to another, with strong edges indicating rapid flows towards ‘fitter’ agents. We denote fixation
probabilities as a multiple of the neutral fixation probability baseline, ρm = 1

m , which corresponds to using the Fermi selection
function with α = 0. To improve readability of the graphs, we also do not visualize edges looping a node back to itself, or
edges with fixation probabilities lower than ρm. In this example, we observe a cycle (intransitivity) involving all three agents in
the graph. While for small games such cycles may be apparent directly from the structure of the payoff table, we later show that
the graph visualization can be used to automatically iterate through cycles even in K-player games involving many agents.

2.2.2 Battle of the Sexes
Next we illustrate the generalized multi-population (asymmetric) model in the Battle of the Sexes game, with the payoff matrix
shown in Fig. 3b (top). The graph now corresponds to the interaction of two populations, each representing a player type, with
each node corresponding to a monomorphic population profile (s1,s2). Edges, again, correspond to fixation probabilities, but
occur only when a single population changes its strategy to a different one (an artifact of our small mutation assumption). In
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this example, it is evident from the stationary distribution that the populations spend an equal amount of time in profiles (O,O)
and (M,M), and a very small amount of time in states (O,M) and (M,O).

2.3 The Incompatibility of Nash Equilibrium and Dynamical Systems
Continuous- and discrete-time dynamical systems have been used extensively in Game Theory, Economics, and Algorithmic
Game Theory. In the particular case of multi-agent evaluation in meta-games, this type of analysis is relied upon for revealing
useful insights into the strengths and weaknesses of interacting agents [8]. Often, the goal of research in these areas is to
establish that, in some sense and manner, the investigated dynamics actually converge to a Nash equilibrium; there has been
limited success in this front, and there are some negative results [40–42]. In fact, all known dynamics in games (the replicator
dynamics, the many continuous variants of the dynamics used in the proof of Nash’s theorem, etc.) do cycle. To compound this
issue, meta-games are often large, extend beyond pair-wise interactions, and may not be zero-sum. While solving for a Nash
equilibrium can be done in polynomial time for zero-sum games, doing so in general-sum games is known to be PPAD-complete
[22], which severely limits the feasibility of using such a solution concept for evaluating our agents.

Of course, some dynamics are known to converge to relaxations of the Nash equilibrium, such as the correlated equilibrium
polytope or the coarse correlated equilibria [43]. But unfortunately, this “convergence” is typically considered in the sense of
time average; time averages can be useful for establishing performance bounds for games, but tell us little about actual system
behavior — which is a core component of what we study through games. For certain games, dynamics may indeed converge to
a Nash equilibrium, but they may also cycle. For example, it is encouraging that in all 2×2 matrix games these equilibria,
cycles, and slight generalizations thereof are the only possible limiting behaviors for continuous-time dynamics (i.e., flows).
But unfortunately this clean behavior (convergence to either a cycle or, as a special case, to a Nash equilibrium) is an artifact of
the two-dimensional nature of 2×2 games, a consequence of the Poincaré–Bendixson theorem [44]. There is a wide range of
results in different disciplines arguing that learning dynamics in games tend to not equilibrate to any Nash equilibrium but
instead exhibit complex, unpredictable behavior (e.g., [45–50]). The dynamics of even simple two-person games with three or
more strategies per player can be chaotic [51], that is, inherently difficult to predict and complex. Chaos goes against the core
of our project; there seems to be little hope for building a predictive theory of player behavior based on dynamics in terms of
Nash equilibrium.

2.4 Markov-Conley chains: A Dynamical Solution Concept
Recall our overall objective: we would like to understand and evaluate multi-agent interactions using a detailed and realistic
model of evolution, such as the replicator dynamics, in combination with a game-theoretic solution concept. We start by
acknowledging the fundamental incompatibility between dynamics and the Nash equilibrium: dynamics are often incapable of
reaching the Nash equilibrium. However, instead of taking this as a disappointing flaw of dynamics, we see it instead as an
opportunity to look for a novel solution concept that does not have the same limitations as Nash in relation to these dynamical
systems. We contemplate whether a plausible algorithmic solution concept can emerge by asking, what do these dynamics
converge to? Our goal is to identify the non-trivial, irreducible behaviors of a dynamical system (i.e., behaviors that cannot be
partitioned more finely in a way that respects the system dynamics) and thus provide a new solution concept — an alternative to
Nash’s — that will enable evaluation of of multi-agent interactions using the underlying evolutionary dynamics. We carve a
pathway towards this alternate solution concept by first considering the topology of dynamical systems.

2.4.1 Topology of Dynamical Systems and Conley’s Theorem
Dynamicists and topologists have been working hard throughout the past century to find a way to extend to higher dimensions
the benign yet complete limiting dynamical behaviors described in Section 2.3 that one sees in two dimensions: convergence
to cycles (or equilibria as a special case). That is, they have been trying to find an appropriate relaxation of the notion of a
cycle such that the two-dimensional picture is restored. After many decades of trial and error, new and intuitive conceptions of
“periodicity” and “cycles” were indeed discovered, in the form of chain recurrent sets and chain components, which we define
in this section. These key ingredients form the foundation of Conley’s Fundamental Theorem of Dynamical Systems, which in
turn leads to the formulation of our Markov-Conley chain solution concept and associated multi-agent evaluation scheme.

Definitions To make our treatment formal, we require definitions of the following set of topological concepts, based primarily
on the work of Conley [28]. Our chain recurrence approach and the theorems in this section follow from [52]. We also provide
the interested reader a general background on dynamical systems in Supplementary Material 5.2 in an effort to make our work
self-contained.

Definition 2.4.1 (Flow). A flow on a topological space X is a continuous mapping φ : R×X → X such that:

(i) φ(t, ·) : X → X is a homeomorphism for each t ∈ R.

(ii) φ(0,x) = x for all x ∈ X .
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Player 2
H T

Player 1 H (1,−1) (−1,1)
T (−1,1) (1,−1)

(a) Matching Pennies game.

Player 2
A B

Player 1 A (1,1) (−1,−1)
B (−1,−1) (1,1)

(b) Partnership, coordination game.

Figure 4. Canonical game payoffs and replicator dynamics trajectories. Each point encodes the probability assigned by the
players to their first strategy. The matching pennies replicator dynamics have one chain component, consisting of the whole
domain. The coordination game dynamics have five chain components (corresponding to the fixed points, four in the corners
and one mixed, which are recurrent by definition), as was formally shown by [26].

(iii) φ(s+ t,x) = φ(s,φ(t,x)) for all s, t ∈ R and all x ∈ X .

Depending on the context, we sometimes write φ t(x) for φ(t,x) and denote a flow φ : R×X → X by φ t : X → X , where
t ∈ R.

Definition 2.4.2 ((ε,T )-chain). Let φ be a flow on a metric space (X ,d). Given ε > 0, T > 0, and x,y ∈ X , an (ε,T )-chain from
x to y with respect to φ and d is a pair of finite sequences x = x0,x1, . . . ,xn−1,xn = y in X and t0, . . . , tn−1 in [T,∞), denoted
together by (x0, . . . ,xn; t0, . . . , tn−1) such that,

d(φ ti(xi),xi+1)< ε, (12)

for i = 0,1,2, . . . ,n−1.

Intuitively, an (ε,T ) chain corresponds to the forward dynamics under flow φ connecting points x,y ∈ X , with slight
perturbations allowed at each timestep (see Fig. 5 for an example). Note these deviations are allowed to occur at step-sizes T
bounded away from 0, as otherwise the accumulation of perturbations could yield trajectories completely dissimilar to those
induced by the original flow [53].

Definition 2.4.3 (Forward chain limit set). Let φ be a flow on a metric space (X ,d). The forward chain limit set of x ∈ X with
respect to φ and d is the set,

Ω
+(φ ,x) =

⋂
ε,T>0

{y ∈ X | ∃ an (ε,T )-chain from x to y with respect to φ}. (13)

Definition 2.4.4 (Chain equivalent points). Let φ be a flow on a metric space (X ,d). Two points x,y ∈ X are chain equivalent
with respect to φ and d if y ∈Ω+(φ ,x) and x ∈Ω+(φ ,y).

Definition 2.4.5 (Chain recurrent point). Let φ be a flow on a metric space (X ,d). A point x ∈ X is chain recurrent with respect
to φ and d if x is chain equivalent to itself; i.e., there exists an (ε,T )-chain connecting x to itself for every ε > 0 and T > 0.

Chain recurrence can be understood as an orbit with slight perturbations allowed at each time step (see Fig. 5), which
constitutes a new conception of “periodicity” with a very intuitive explanation in Computer Science terms: Imagine Alice is
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Figure 5. Topology of dynamical systems: an (ε,T )-chain from x0 to x4 with respect to flow φ is exemplified here by the
solid arrows and sequence of points x0,x1,x2,x3,x4. If the recurrent behavior associated with point x0 (indicated by the dashed
arrow) holds for all ε > 0 and T > 0, then it is a chain recurrent point.

using a computer to simulate the trajectory of a dynamical system that induces a flow φ . Every time she computes a single
iteration of the dynamical process with a minimum step-size T , there is a rounding error ε . Consider an adversary, Bob, who
can manipulate the result at each timestep within the ε-sphere of the actual result. If, regardless of ε or minimum step-size T ,
Bob can persuade Alice that her dynamical system starting from a point x returns back to this point in a finite number of steps,
then this point is chain recurrent.

This new notion of “periodicity” (i.e., chain recurrence) leads to a corresponding notion of a “cycle” captured in the concept
of chain components, defined below.

Definition 2.4.6 (Chain recurrent set). The chain recurrent set of flow φ , denoted R(φ), is the set of all chain recurrent points
of φ .

Definition 2.4.7 (Chain equivalence relation ∼). Let the relation ∼ on R(φ) be defined by x ∼ y if and only if x is chain
equivalent to y. This is an equivalence relation on the chain recurrent set R(φ).

Definition 2.4.8 (Chain component). The equivalence classes in R(φ) of the chain equivalence relation ∼ are called the chain
components of φ .

In the context of the Alice and Bob example, chain components are the maximal sets A such that for any two points x,y ∈ A,
Bob can similarly persuade Alice that the flow φ induced by her dynamical system can get her from x to y in a finite number
of steps. For example the matching pennies replicator dynamics (shown in Fig. 4a) have one chain component, consisting of
the entire domain; in the context of the Alice and Bob example, the cyclical nature of the dynamics throughout the domain
means that Bob can convince Alice that any two points may be connected using a series of finite perturbations ε , for all ε > 0
and T > 0. On the other hand, the coordination game replicator dynamics (shown in Fig. 4b) has five chain components
corresponding to the fixed points (which are recurrent by definition): four in the corners, and one mixed strategy fixed point in
the center. For a formal treatment of these examples, see [26].

Points in each chain component are transitive by definition. Naturally, the chain recurrent set R(φ) can be partitioned into a
(possibly infinitely many) number of chain components. In other words, chain components cannot be partitioned more finely in
a way that respects the system dynamics; they constitute the fundamental topological concept needed to define the irreducible
behaviors we seek.

Conley’s Theorem We now wish to characterize the role of chain components in the long-term dynamics of systems, such
that we can evaluate the limiting behaviors of multi-agent interactions using our evolutionary dynamical models. Conley’s
Fundamental Theorem of Dynamical Systems leverages the above perspective on “periodicity” (i.e., chain recurrence) and
“cycles” (i.e., chain components) to decompose the domain of any dynamical system into two classes: 1) chain components, and
2) transient points. To introduce Conley’s theorem, we first need to define the notion of a complete Lyapunov function. The
game-theoretic analogue of this idea is the notion of a potential function in potential games. In a potential game, as long as we
are not at an equilibrium, the potential is strictly decreasing and guiding the dynamics towards the standard game-theoretic
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solution concept, i.e., equilibria [54]. The notion of a complete Lyapunov function switches the target solution concept from
equilibria to chain recurrent sets. More formally:

Definition 2.4.9 (Complete Lyapunov function). Let φ be a flow on a metric space (X ,d). A complete Lyapunov function for φ

is a continuous function γ : X → R such that,

1. γ(φ t(x)) is a strictly decreasing function of t for all x ∈ X \R(φ),

2. for all x,y ∈R(φ) the points x, y are in the same chain component if and only if γ(x) = γ(y),

3. γ(R(φ)) is nowhere dense.

Conley’s Theorem, the important result in topology that will form the basis of our solution concept and ranking scheme, is as
follows:

Theorem 2.4.10 (Conley’s Fundamental Theorem of Dynamical Systems [28], informal statement). The domain of any
dynamical system can be decomposed into its (possibly infinitely many) chain components; the remaining points are transient,
each led to the recurrent part by a Lyapunov function.

The powerful implication of Conley’s Theorem is that complete Lyapunov functions always exist.

Theorem 2.4.11 ([28]). Every flow on a compact metric space has a complete Lyapunov function.

In other words, the space X is decomposed into points that are chain recurrent and points that are led to the chain recurrent
part in a gradient-like fashion with respect to a Lyapunov function that is guaranteed to exist. In game-theoretic terms, every
game is a “potential” game, if only we change our solution concept from equilibria to chain recurrent sets.

2.4.2 Asymptotically Stable Sink Chain Components
Our objective is to investigate the likelihood of an agent being played in a K-wise meta-game by using a detailed and realistic
model of multi-agent evolution, such as the replicator dynamics. While chain components capture the limiting behaviors
of dynamical systems (in particular, evolutionary dynamics that we seek to use for our multi-agent evaluations), they can
be infinite in number (as mentioned in Section 2.4.1); it may not be feasible to compute or use them in practice within our
evaluation scheme. To resolve this, we narrow our focus onto a particular class of chain components called asymptotically
stable sink chain components, which we define in this section. Asymptotically stable sink chain components are a natural
target for this investigation as they encode the possible “final” long term system; by contrast, we can escape out of other chain
components via infinitesimally small perturbations. We prove in the subsequent section (Theorem 2.4.24, specifically) that, in
the case of replicator dynamics and related variants, asymptotically stable sink chain components are finite in number; our
desired solution concept is obtained as an artifact of this proof.

We proceed by first showing that the chain components of a dynamical system can be partially ordered by reachability
through chains, and we focus on the sinks of this partial order. We start by defining a partial order on the set of chain components:

Definition 2.4.12. Let φ be a flow on a metric space and A1,A2 be chain components of the flow. Define the relation A1 ≤C A2
to hold if and only if there exists x ∈ A2 and y ∈ A1 such that y ∈Ω+(φ ,x).

Intuitively, A1 ≤C A2, if we can reach A1 from A2 with (ε,T )-chains for arbitrarily small ε and T .

Theorem 2.4.13 (Partial order on chain components). Let φ be a flow on a metric space and A1,A2 be chain components of the
flow. Then the relation defined by A1 ≤C A2 is a partial order.

Proof. Refer to the Supplementary Material Section 5.4.3 for the proof.

We will be focusing on minimal elements of this partial order, i.e., chain components A such that there does not exist any
chain component B such that B≤C A. We call such chain components sink chain components.

Definition 2.4.14 (Sink chain components). A chain component A is called a sink chain component if there does not exist any
chain component B 6= A such that B≤C A.

We can now define the useful notion of asymptotically stable sink chain components, which relies on the notions of
Lyapunov stable, asymptotically stable, and attracting sets.

Definition 2.4.15 (Lyapunov stable set). Let φ be a flow on a metric space (X ,d). A set A⊂ X is Lyapunov stable if for every
neighborhood O of A there exists a neighborhood O′ of A such that every trajectory that starts in O′ is contained in O; i.e., if
x ∈ O′ then φ(t,x) ∈ O for all t ≥ 0.
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Definition 2.4.16 (Attracting set). Set A is attracting if there exists a neighborhood O of A such that every trajectory starting in
O converges to A.
Definition 2.4.17 (Asymptotically stable set). A set is called asymptotically stable if it is both Lyapunov stable and attracting.
Definition 2.4.18 (Asymptotically stable sink chain component). Chain component A is called an asymptotically stable sink
chain component if it is both a sink chain component and an asymptotically stable set.

2.4.3 Markov-Conley chains
Although we wish to study asymptotically stable sink chain components, it is difficult to do so theoretically as we do not have
an exact characterization of their geometry and the behavior of the dynamics inside them. This is a rather difficult task to
accomplish even experimentally. Replicator dynamics can be chaotic both in small and large games [51, 55]. Even when their
behavior is convergent for all initial conditions, the resulting equilibrium can be hard to predict and can be highly sensitive
to initial conditions [56]. It is, therefore, not clear how to extract any meaningful information even from many trial runs of
the dynamics. These issues are exacerbated especially when games involve more than three or four strategies, where even
visualization of trajectories becomes difficult. While studies of these dynamics have been conducted for these low-dimensional
cases [57, 58], very little is known about the geometry and topology of the limit behavior of replicator dynamics for general
games, making it hard to even make informed guesses about whether the dynamics have, for practical reasons, converged to an
invariant subset (i.e., a sink chain component).

Instead of studying the actual dynamics, a computationally amenable alternative is to use a discrete-time discrete-space
approximation with similar limiting dynamics, but which can be directly and efficiently analyzed. We will start off by the most
crude (but still meaningful) such approximations: a set of Markov chains whose state-space is the set of pure strategy profiles
of the game. We refer to each of these Markov chains as a Markov-Conley chain, and prove in Theorem 2.4.24 that a finite
number of them exist in any game under the replicator dynamics (or variants thereof).

Let us now formally define the Markov-Conley chains of a game, which relies on the notions of the response graph of a
game and its sink strongly connected components.
Definition 2.4.19 (Strictly and weakly better response). Let si,s j ∈∏k Sk be any two pure strategy profiles of the game, which
differ in the strategy of a single player k. Strategy s j is a strictly (respectively, weakly) better response than si for player k if her
payoff at s j is larger than (respectively, at least as large as) her payoff at si.
Definition 2.4.20 (Response graph of a game). The response graph of a game G is a directed graph whose vertex set coincides
with the set of pure strategy profiles of the game, ∏k Sk. Let si,s j ∈∏k Sk be any two pure strategy profiles of the game. We
include a directed edge from si to s j if s j is a weakly better response for player k as compared to si.
Definition 2.4.21 (Strongly connected components). The strongly connected components of a directed graph are the maximal
subgraphs wherein there exists a path between each pair of vertices in the subgraph.
Definition 2.4.22 (Sink strongly connected components). The sink strongly connected components of a directed graph are the
strongly connected components with no out-going edges.

The response graph of a game has a finite number of sink strongly connected components. If such a component is a
singleton, it is a pure Nash equilibrium by definition.
Definition 2.4.23 (Markov-Conley chains (MCCs) of a game). A Markov-Conley chain of a game G is an irreducible Markov
chain, the state space of which is a sink strongly connected component of the response graph associated with G. Many MCCs
may exist for a given game G. In terms of the transition probabilities out of a node si of each MCC, a canonical way to define
them is as follows: with some probability, the node self-transitions. The rest of the probability mass is split between all strictly
and weakly improving responses of all players. Namely, the probability of strictly improving responses for all players are set
equal to each other, and transitions between strategies of equal payoff happen with a smaller probability also equal to each
other for all players.

When the context is clear, we sometimes overload notation and refer to the set of pure strategy profiles in a sink strongly
connected component (as opposed to the Markov chain over them) as an MCC. The structure of the transition probabilities
introduced in Definition 2.4.23 has the advantage that it renders the MCCs invariant under arbitrary positive affine transfor-
mations of the payoffs; i.e., the resulting theoretical and empirical insights are insensitive to such transformations, which is a
useful desideratum for a game-theoretic solution concept. There may be alternative definitions of the transition probabilities
that may warrant future exploration.

MCCs can be understood as a discrete approximation of the chain components of continuous-time dynamics (hence the
connection to Conley’s Theorem). The following theorem formalizes this relationship, and establishes finiteness of MCCs:
Theorem 2.4.24. Let φ be the replicator flow when applied to a K-person game. The number of asymptotically stable sink
chain components is finite. Specifically, every asymptotically stable sink chain component contains at least one MCC; each
MCC is contained in exactly one chain component.
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Proof. Refer to the Supplementary Material Section 5.4.4 for the proof.

The notion of MCCs is thus used as a stepping stone, a computational handle that aims to mimic the long term behavior of
replicator dynamics in general games. Similar results to Theorem 2.4.24 apply for several variants of replicator dynamics [13]
as long as the dynamics are volume preserving in the interior of the state space, preserve the support of mixed strategies, and
the dynamics act myopically in the presence of two strategies/options with fixed payoffs (i.e., if they have different payoffs
converge to the best, if they have the same payoffs remain invariant).

2.5 From Markov-Conley chains to the Discrete-time Macro-model
The key idea behind the ordering of agents we wish to compute is that the evolutionary fitness/performance of a specific strategy
should be reflected by how often it is being chosen by the system/evolution. We have established the solution concept of
Markov-Conley chains (MCCs) as a discrete-time sparse-discrete-space analogue of the continuous-time replicator dynamics,
which capture these long-term recurrent behaviors for general meta-games (see Theorem 2.4.24). MCCs are attractive from a
computational standpoint: they can be found efficiently in all games by computing the sink strongly connected components of
the response graph, addressing one of the key criticisms of Nash equilibria. However, similar to Nash equilibria, even simple
games may have many MCCs (e.g., five in the coordination game of Fig. 4b). The remaining challenge is, thus, to solve the
MCC selection problem.

One of the simplest ways to resolve the MCC selection issue is to introduce noise in our system and study a stochastically
perturbed version, such that the overall Markov chain is irreducible and therefore has a unique stationary distribution that can
be used for our rankings. Specifically, we consider the following stochastically perturbed model: we choose an agent k at
random, and, if it is currently playing strategy sk

i , we choose one of its strategies sk
j at random and set the new system state to

be ε(sk,s−k)+(1− ε)(sk
j,s
−k). Remarkably, these perturbed dynamics correspond closely to the macro-model introduced in

Section 2.1.4 for a particularly large choice of ranking-intensity value α:

Theorem 2.5.1. In the limit of infinite ranking-intensity α , the Markov chain associated with the generalized multi-population
model introduced in Section 2.1.4 coincides with the MCC.

Proof. Refer to the Supplementary Material Section 5.4.5 for the proof.

A low ranking-intensity (α � 1) corresponds to the case of weak selection, where a weak mutant strategy can overtake
a given population. A large ranking-intensity, on the other hand, ensures that the probability that a sub-optimal strategy
overtakes a given population is close to zero, which corresponds closely to the MCC solution concept. In practice, setting the
ranking-intensity to infinity may not be computationally feasible; in this case, the underlying Markov chain may be reducible
and the existence of a unique stationary distribution (which we use for our rankings) may not be guaranteed. To resolve the MCC
selection problem, we require a perturbed model, but one with a large enough ranking-intensity α such that it approximates an
MCC, but small enough such that the MCCs remain connected. By introducing this perturbed version of Markov-Conley chains,
the resulting Markov chain is now irreducible (per Theorem 2.1.2). The long-term behavior is thus captured by the unique
stationary distribution under the large-α limit. Our so-called α-Rank evaluation method then corresponds to the ordering of
the agents in this particular stationary distribution. The perturbations introduced here imply the need for a sweep over the
ranking-intensity parameter α – a single hyperparameter – which we find to be computationally feasible across all of the
large-scale games we analyze using α-Rank.

The combination of Theorem 2.4.24 and Theorem 2.5.1 yields a unifying perspective involving a chain of models of
increasing complexity: the continuous-time replicator dynamics is on one end, our generalized discrete-time concept is on the
other, and MCCs are the link in between.

3 Results
In the following we summarize our generalized ranking model and the main theoretical and empirical results. We start by
outlining how the α-Rank procedure exactly works. Then we continue with illustrating α-Rank in a number of canonical
examples. We continue with some deeper understanding of α-Rank’s evolutionary dynamics model by introducing some further
intuitions and theoretical results, and we end with an empirical validation of α-Rank in various domains.

3.1 α-Rank: Evolutionary Ranking of Strategies
We first detail the α-Rank algorithm, then provide some insights and intuitions to further facilitate the understanding of our
ranking method and solution concept.
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3.1.1 Algorithm
Based on the dynamical concepts of chain recurrence and MCCs established, we now detail a descriptive method, titled α-Rank,
for computing strategy rankings in a multi-agent interaction:

1. Construct the meta-game payoff table Mk for each population k from data of multi-agent interactions, or from running
game simulations.

2. Compute the transition matrix C as outlined in Section 2.1.4. Per the discussions in Section 2.5, one must use a
sufficiently large ranking-intensity value α in (4); this ensures that α-Rank preserves the ranking of strategies with closest
correspondence to the MCC solution concept. As a large enough value is dependent on the domain under study, a useful
heuristic is to conduct a sweep over α , starting from a small value and increasing it exponentially until convergence of
rankings.

3. Compute the unique stationary distribution, π , of transition matrix C. Each element of the stationary distribution
corresponds to the time the populations spend in a given strategy profile.

4. Compute the agent rankings, which correspond to the ordered masses of the stationary distribution π . The stationary
distribution mass for each agent constitutes a ‘score’ for it (as might be shown, e.g., on a leaderboard).

3.1.2 α-Rank and MCCs as a Solution Concept: A Paradigm Shift
The solution concept of MCCs is foundationally distinct from that of the Nash equilibrium. The Nash equilibrium is rooted in
classical game theory, which not only models the interactions in multi-agent systems, but is also normative in the sense that it
prescribes how a player should behave based on the assumption of individual rationality [13, 15, 59]. Besides classical game
theory making strong assumptions regarding the rationality of players involved in the interaction, there exist many fundamental
limitations with the concept of a Nash equilibrium: intractability (computing a Nash is PPAD-complete), equilibrium selection,
and the incompatibility of this static concept with the dynamic behaviors of agents in interacting systems. To compound these
issues, even methods that aim to compute an approximate Nash are problematic: a typical approach is to use exploitability to
measure deviation from Nash and as such use it as a method to closely approximate one; the problem with this is that it is also
intractable for large games (typically the ones we are interested in), and there even still remain issues with using exploitability
as a measure of strategy strength (e.g., see [60]). Overall, there seems little hope of deploying the Nash equilibrium as a solution
concept for the evaluation of agents in general large-scale (empirical) games.

The concept of an MCC, by contrast, embraces the dynamical systems perspective, in a manner similar to evolutionary
game theory. Rather than trying to capture the strategic behavior of players in an equilibrium, we deploy a dynamical system
based on the evolutionary interactions of agents that captures and describes the long-term behavior of the players involved in the
interaction. As such, our approach is descriptive rather than prescriptive, in the sense that it is not prescribing the strategies that
one should play; rather, our approach provides useful information regarding the strategies that are evolutionarily non-transient
(i.e., resistant to mutants), and highlights the remaining strategies that one might play in practice. To understand MCCs requires
a shift away from the classical models described above for games and multi-agent interactions. Our new paradigm is to allow
the dynamics to roll out and enable strong (i.e., non-transient) agents to emerge and weak (i.e, transient) agents to vanish
naturally through their long-term interactions. The resulting solution concept not only permits an automatic ranking of agents’
evolutionary strengths, but is powerful both in terms of computability and usability: our rankings are guaranteed to exist,
can be computed tractably for any game, and involve no equilibrium selection issues as the evolutionary process converges
to a unique stationary distribution. Nash tries to identify static single points in the simplex that capture simultaneous best
response behaviors of agents, but comes with the range of complications mentioned above. On the other hand, the support of
our stationary distribution captures the strongest non-transient agents, which may be interchangeably played by interacting
populations and therefore constitute a dynamic output of our approach.

Given that both Nash and MCCs share a common foundation in the notion of a best response (i.e., simultaneous best
responses for Nash, and the sink components of a best response graph for MCCs), it is interesting to consider the circumstances
under which the two concepts coincide. There do, indeed, exist such exceptional circumstances: for example, for a potential
game, every better response sequence converges to a (pure) Nash equilibrium, which coincides with an MCC. However,
even in relatively simple games, differences between the two solution concepts are expected to occur in general due to the
inherently dynamic nature of MCCs (as opposed to Nash). For example, in the Biased Rock-Paper-Scissors game detailed in
Section 3.2.2, the Nash equilibrium and stationary distribution are not equivalent due to the cyclical nature of the game; each
player’s symmetric Nash is ( 1

16 ,
5
8 ,

5
16 ), whereas the stationary distribution is ( 1

3 ,
1
3 ,

1
3 ). The key difference here is that whereas

Nash is prescriptive and tells players which strategy mixture to use, namely ( 1
16 ,

5
8 ,

5
16 ), assuming rational opponents, α-Rank

is descriptive in the sense that it filters out evolutionary transient strategies and yields a ranking of the remaining strategies
in terms of their long-term survival. In the Biased Rock-Paper-Scissors example, α-Rank reveals that all three strategies are
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equally likely to persist in the long-term as they are part of the same sink strongly connected component of the response graph.
In other words, the stationary distribution mass (i.e., the α-Rank score) on a particular strategy is indicative of its resistance to
being invaded by any other strategy, including those in the distribution support. In the case of the Biased Rock-Paper-Scissors
game, this means that the three strategies are equally likely to be invaded by a mutant, in the sense that their outgoing fixation
probabilities are equivalent. In contrast to our evolutionary ranking, Nash comes without any such stability properties (e.g.,
consider the interior mixed Nash in Fig. 4b). Even computing Evolutionary Stable Strategies (ESS) [13], a refinement of Nash
equilibria, is intractable [61, 62]. In larger games (e.g., AlphaZero in Section 3.4.2), the reduction in the number of agents that
are resistant to mutations is more dramatic (in the sense of the stationary distribution support size being much smaller than the
total number of agents) and less obvious (in the sense that more-resistant agents are not always the ones that have been trained
for longer). In summary, the strategies chosen by our approach are those favored by evolutionary selection, as opposed to the
Nash strategies, which are simultaneous best-responses.

3.2 Conceptual Examples
We revisit the earlier conceptual examples of Rock-Paper-Scissors and Battle of the Sexes from Section 2.2 to illustrate the
rankings provided by the α-Rank methodology. We use a population size of m = 50 in our evaluations.

3.2.1 Rock-Paper-Scissors
In the Rock-Paper-Scissors game, recall the cyclical nature of the discrete-time Markov chain (shown in Fig. 6a) for a fixed
value of ranking-intensity parameter, α . We first investigate the impact of the ranking-intensity on overall strategy rankings, by
plotting the stationary distribution as a function of α in Fig. 6b. The result is that the population spends 1

3 of its time playing
each strategy regardless of the value of α , which is in line with intuition due to the cyclical best-response structure of the
game’s payoffs. The Nash equilibrium, for comparison, is also ( 1

3 ,
1
3 ,

1
3 ). The α-Rank output Fig. 6c, which corresponds to a

high value of α , thus indicates a tied ranking for all three strategies, also in line with intuition.

3.2.2 Biased Rock-Paper-Scissors
Consider now the game of Rock-Paper-Scissors, but with biased payoffs (shown in Fig. 7a). The introduction of the bias moves
the Nash from the center of the simplex towards one of the corners, specifically ( 1

16 ,
5
8 ,

5
16 ) in this case. It is worthwhile to

investigate the corresponding variation of the stationary distribution masses as a function of the ranking-intensity α (Fig. 7c) in
this case. As evident from the fixation probabilities (9) of the generalized discrete-time model, very small values of α cause
the raw values of payoff to have a very low impact on the dynamics captured by discrete-time Markov chain; in this case,
any mutant strategy has the same probability of taking over the population, regardless of the current strategy played by the
population. This corresponds well to Fig. 7c, where small α values yield stationary distributions close to π = ( 1

3 ,
1
3 ,

1
3 ).

As α increases, payoff values play a correspondingly more critical role in dictating the long-term population state; in Fig. 7c,
the population tends to play Paper most often within this intermediate range of α . Most interesting to us, however, is the case
where α increases to the point that our discrete-time model bears a close correspondence to the MCC solution concept (per
Theorem 2.5.1). In this limit of large α , the striking outcome is that the stationary distribution once again converges to ( 1

3 ,
1
3 ,

1
3 ).

Thus, α-Rank yields the high-level conclusion that in the long term, a monomorphic population playing any of the 3 given
strategies can be completely and repeatedly displaced by a rare mutant, and as such assigns the same ranking to all strategies
(Fig. 7d). This simple example illustrates perhaps the most important trait of the MCC solution concept and resulting α-Rank
methodology: they capture the fundamental dynamical structure of games and long-term intransitivities that exist therein, with
the rankings produced corresponding to the dynamical strategy space consumption or basins of attraction of strategies.

3.2.3 Battle of the Sexes
We consider next an example of α-Rank applied to an asymmetric game – the Battle of the Sexes. Figure 8b plots the stationary
distribution against ranking-intensity α , where we again observe a uniform stationary distribution corresponding to very low
values of α . As α increases, we observe the emergence of two sink chain components corresponding to strategy profiles (O,O)
and (M,M), which thus attain the top α-Rank scores in Fig. 8c. Note the distinct convergence behaviors of strategy profiles
(O,M) and (M,O) in Fig. 8b, where the stationary distribution mass on the (M,O) converges to 0 faster than that of (O,M) for
an increasing value of α . This is directly due to the structure of the underlying payoffs and the resulting differences in fixation
probabilities. Namely, starting from profile (M,O), if either player deviates, that player increases their local payoff from 0 to 3.
Likewise, if either player deviates starting from profile (O,M), that player’s payoff increases from 0 to 2. Correspondingly, the
fixation probabilities out of (M,O) are higher than those out of (O,M) (Fig. 8a), and thus the stationary distribution mass on
(M,O) converges to 0 faster than that of (O,M) as α increases. We note that these low-α behaviors, while interesting, have no
impact on the final rankings computed in the limit of large α (Fig. 8c). We refer the interested reader to [63] for a detailed
analysis of the non-coordination components of the stationary distribution in mutualistic interactions, such as the Battle of the
Sexes.

17/45



Domain Results Symmetric? # of Populations # of Strategies

Rock-Paper-Scissors Section 3.2.1 3 1 [3]
Biased Rock-Paper-Scissors Section 3.2.2 3 1 [3]

Battle of the Sexes Section 3.2.3 7 2 [2,2]
AlphaGo Section 3.4.1 3 1 [7]

AlphaZero Chess Section 3.4.2 3 1 [56]
MuJoCo Soccer Section 3.4.3 3 1 [10]

Kuhn Poker Section 3.4.4 7 3 [4,4,4]
Section 3.4.4 7 4 [4,4,4,4]

Leduc Poker Section 3.4.5 7 2 [3,3]

Table 1. Overview of multi-agent domains evaluated in this paper. These domains are extensive across multiple axes of
complexity, and include symmetric and asymmetric games with different numbers of populations and ranges of strategies.

We conclude this discussion by noting that despite the asymmetric nature of the payoffs in this example, the computational
techniques used by α-Rank to conduct the evaluation are essentially identical to the simpler (symmetric) Rock-Paper-Scissors
game. This key advantage is especially evident in contrast to recent evaluation approaches that involve decomposition of a
asymmetric game into multiple counterpart symmetric games, which must then be concurrently analyzed [9].

3.3 Theoretical Properties of α-Rank
This section presents key theoretical findings related to the structure of the underlying discrete-time model used in α-Rank, and
computational complexity of the ranking analysis. Proofs are presented in the Supplementary Material.

Property 3.3.1 (Structure of C). Given strategy profile si corresponding to row i of C, the number of valid profiles it can
transition to is 1+∑k(|Sk|−1) (i.e., either si self-transitions, or one of the populations k switches to a different monomorphic
strategy). The sparsity of C is then,

1− |S|(1+∑k(|Sk|−1))
|S|2

. (14)

Therefore, for games involving many players and strategies, transition matrix C is large (in the sense that there exist |S|
states), but extremely sparse (in the sense that there exist only 1+∑k(|Sk|−1) outgoing edges from each state). For example,
in a 6-wise interaction game where agents in each population have a choice over 4 strategies, C is 99.53% sparse.

Property 3.3.2 (Computational complexity of solving for π). The sparse structure of the Markov transition matrix C (as
identified in Property 3.3.1) can be exploited to solve for the stationary distribution π efficiently; specifically, computing the
stationary distribution can be formulated as an eigenvalue problem, which can be computed in cubic-time in the number of total
pure strategy profiles.

The α-Rank method is, therefore, tractable, in the sense that it runs in polynomial time with respect to the total number of
pure strategies. This yields a major computational advantage, in stark contrast to conducting rankings by solving for Nash
(which is PPAD-complete for general-sum games [22], which our meta-games may be).

3.4 Experimental Validation
In this section we provide a series of experimental illustrations of α-Rank in a varied set of domains, including AlphaGo,
AlphaZero Chess, MuJoCo Soccer, and both Kuhn and Leduc Poker. As evident in Table 1, the analysis conducted is extensive
across multiple axes of complexity, as the domains considered include symmetric and asymmetric games with different numbers
of populations and ranges of strategies.

3.4.1 AlphaGo
In this example we conduct an evolutionary ranking of AlphaGo agents based on the data reported in [1]. The meta-game
considered here corresponds to a 2-player symmetric NFG with 7 AlphaGo agents: AG(r), AG(p), AG(v), AG(rv), AG(rp),
AG(vp), and AG(rvp), where r, v, and p respectively denote the combination of rollouts, value networks, and/or policy networks
used by each variant. The corresponding payoffs are the win rates for each pair of agent match-ups, as reported in Table 9 of [1].

In Fig. 9c we summarize the rankings of these agents using the α-Rank method. α-Rank is quite conclusive in the sense
that the top agent, AG(rvp), attains all of the stationary distribution mass, dominating all other agents. Further insights into the
pairwise agent interactions are revealed by visualizing the underlying Markov chain, shown in Fig. 9a. Here the population
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flows (corresponding to the graph edges) indicate which agents are more evolutionarily viable than others. For example,
the edge indicating flow from AG(r) to AG(rv) indicates that the latter agent is stronger in the short-term of evolutionary
interactions. Moreover, the stationary distribution (corresponding to high α values in Fig. 9b) reveals that all agents but
AG(rvp) are transient in terms of the long-term dynamics, as a monomorphic population starting from any other agent node
eventually reaches AG(rvp). In this sense, node AG(rvp) constitutes an evolutionary stable strategy. We also see in Fig. 9a that
no cyclic behaviors occur in these interactions. Finally, we remark that the recent work of [8] also conducted a meta-game
analysis on these particular AlphaGo agents and drew similar conclusions to ours. The key limitation of their approach is
that it can only directly analyze interactions between triplets of agents, as they rely on visualization of the continuous-time
evolutionary dynamics on a 2-simplex. Thus, to draw conclusive results regarding the interactions of the full set of agents, they
must concurrently conduct visual analysis of all possible 2-simplices (35 total in this case). This highlights a key benefit of
α-Rank as it can succinctly summarize agent evaluations with minimal intermediate human-in-the-loop analysis.

3.4.2 AlphaZero
AlphaZero is a generalized algorithm that has been demonstrated to master the games of Go, Chess, and Shogi without
reliance on human data [3]. Here we demonstrate the applicability of the α-Rank evaluation method to large-scale domains
by considering the interactions of a large number of AlphaZero agents playing the game of chess. In AlphaZero, training
commences by randomly initializing the parameters of a neural network used to play the game in conjunction with a general-
purpose tree search algorithm. To synthesize the corresponding meta-game, we take a ‘snapshot’ of the network at various
stages of training, each of which becomes an agent in our meta-game. For example, agent AZ(27.5) corresponds to a snapshot
taken at approximately 27.5% of the total number of training iterations, while AZ(98.7) corresponds to one taken approximately
at the conclusion of training. We take 56 of these snapshots in total. The meta-game considered here is then a symmetric
2-player NFG involving 56 agents, with payoffs again corresponding to the win-rates of every pair of agent match-ups. We note
that there exist 27720 total simplex 2-faces in this dataset, substantially larger than those investigated in [8], which quantifiably
justifies the computational feasibility of our evaluation scheme.

We first analyze the evolutionary strengths of agents over a sweep of ranking-intensity α (Fig. 10b). While the overall
rankings are quite invariant to the value of α , we note again that a large value of α dictates the final α-Rank evaluations attained
in Fig. 10c. To gain further insight into the inter-agent interactions, we consider the corresponding discrete-time evolutionary
dynamics shown in Fig. 10a. Note that these interactions are evaluated using the entire 56-agent dataset, though visualized only
for the top-ranked agents for readability. The majority of top-ranked agents indeed correspond to snapshots taken near the end
of AlphaZero training (i.e., the strongest agents in terms of training time). Specifically, AZ(99.4), which is the final snapshot in
our dataset and thus the most-trained agent, attains the top rank with a score of 0.39, in contrast to the second-ranked AZ(93.9)
agent’s score of 0.22. This analysis does reveal some interesting outcomes, however: agent AZ(86.4) is not only ranked 5-th
overall, but also higher than several agents with longer training time, including AZ(88.8), AZ(90.3), and AZ(93.3).

We also investigate here the relationship between the α-Rank scores and Nash equilibria. A key point to recall is the
equilibrium selection problem associated with Nash, as multiple equilibria can exist even in the case of two-player zero-sum
meta-games. In the case of zero-sum meta-games, Balduzzi et al. show that there exists a unique maximum entropy (maxent)
Nash equilibrium [64], which constitutes a natural choice that we also use in the below comparisons. For general games,
unfortunately, this selection issue persists for Nash, whereas it does not for α-Rank due to the uniqueness of the associated
ranking (see Theorem 2.1.2).

We compare the α-Rank scores and maxent Nash by plotting each throughout AlphaZero training in Fig. 11a and Fig. 11b,
respectively; we also plot their difference in Fig. 11c. At a given training iteration, the corresponding horizontal slice in each
plot visualizes the associated evaluation metric (i.e., α-Rank, maxent Nash, or difference of the two) computed for all agent
snapshots up to that iteration. We first note that both evaluation methods reach a consensus that the strengths of AlphaZero
agents generally increase with training, in the sense that only the latest agent snapshots (i.e., the ones closest to the diagonal)
appear in the support of both α-Rank scores and Nash. An interesting observation is that less-trained agents sometimes reappear
in the support of the distributions as training progresses; this behavior may even occur multiple times for a particular agent.

We consider also the quantitative similarity of α-Rank and Nash in this domain. Figure 11c illustrates that differences do
exist in the sense that certain agents are ranked higher via one method compared to the other. More fundamentally, however,
we note a relationship exists between α-Rank and Nash in the sense that they share a common rooting in the concept of
best-response: by definition, each player’s strategy in a Nash equilibrium is a best response to the other players’ strategies;
in addition, α-Rank corresponds to the MCC solution concept, which itself is derived from the sink strongly-connected
components of the game’s response graph. Despite the similarities, α-Rank is a more refined solution concept than Nash in
the sense that it is both rooted in dynamical systems and a best-response approach, which not only yields rankings, but also
the associated dynamics graph (Fig. 10a) that gives insights into the long-term evolutionary strengths of agents. Beyond this,
the critical advantage of α-Rank is its tractability for general-sum games (per Property 3.3.2), as well as lack of underlying
equilibrium selection issues; in combination, these features yield a powerful empirical methodology with little room for user
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confusion or interpretability issues. This analysis reveals fundamental insights not only in terms of the benefits of using α-Rank
to evaluate agents in a particular domain, but also an avenue of future work in terms of embedding the evaluation methodology
into the training pipeline of agents involved in large and general games.

3.4.3 MuJoCo Soccer
We consider here a dataset consisting of complex agent interactions in the continuous-action domain of MuJoCo soccer [5].
Specifically, this domain involves a multi-agent soccer physics-simulator environment with teams of 2 vs. 2 agents in the
MuJoCo physics engine [65]. Each agent, specifically, uses a distinct variation of algorithmic and/or policy parameterization
component (see [5] for agent specifications). The underlying meta-game is a 2-player NFG consisting of 10 agents, with payoffs
corresponding to Figure 2 of [5].

We consider again the variation of the stationary distribution as a function of ranking-intensity α (Fig. 12b). Under the large
α limit, only 6 agent survive, with the remaining 4 agents considered transient in the long-term. Moreoever, the top 3 α-Ranked
agents (C, A, and B, as shown in Fig. 12c) correspond to the strongest agents highlighted in [5], though α-Rank highlights 3
additional agents (G, J, and F) that are not in the top-rank set outlined in their work. An additional key benefit of our approach
is that it can immediately highlight the presence of intransitive behaviors (cycles) in general games. Worthy of remark in this
dataset is the presence of a large number of cycles, several of which are identified in Fig. 13. Not only can we identify these
cycles visually, these intransitive behaviors are automatically taken into account in our rankings due to the fundamental role
that recurrence plays in our underlying solution concept. This is in contrast to the Elo rating (which is incapable of dealing with
intransitivities), the replicator dynamics (which are limited in terms of visualizing such intransitive behaviors for large games),
and Nash (which is a static solution concept that does not capture dynamic behavior).

3.4.4 Kuhn Poker
We next consider games wherein the inherent complexity is due to the number of players involved. Specifically, we consider
Kuhn poker with 3 and 4 players, extending beyond the reach of prior meta-game evaluation approaches that are limited to
pairwise asymmetric interactions [8]. Kuhn poker is a small poker game where each player starts with 2 chips, antes 1 chip
to play, and receives one card face down from a deck of size n + 1 (one card remains hidden). Players proceed by betting
(raise/call) by adding their remaining chip to the pot, or passing (check/fold) until all players are either in (contributed as all
other players to the pot) or out (folded, passed after a raise). The player with the highest-ranked card that has not folded wins the
pot. The two-player game is known to have a continuum of strategies, which could have fairly high support, that depends on a
single parameter: the probability that the first player raises with the highest card [66]. The three-player game has a significantly
more complex landscape [67]. The specific rules used for the three and four player variants can be found in [68, Section 4.1].

Here, our meta-game dataset consists of several (fixed) rounds of extensive-form fictitious play (specifically, XFP from [69]):
in round 0, the payoff corresponding to strategy profile (0,0,0) in each meta-game of 3-player Kuhn corresponds to the estimated
payoff of each player using uniform random strategies; in fictitious play round 1, the payoff entry (1,1,1) corresponds to each
player playing an approximate best response to the other players’ uniform strategies; in fictitious play round 2, entry (2,2,2)
corresponds to each playing an approximate best response to the other players’ uniform mixtures over their round 0 strategies
(uniform random) and round 1 oracle strategy (best response to random); and so on. Note, especially, that oracles at round 0 are
likely to be dominated (as they are uniform random). In our dataset, we consider two asymmetric meta-games, each involving 3
rounds of fictitious play with 3 and 4 players (Fig. 14 and Fig. 15, respectively).

Of particular note are the total number of strategy profiles involved in these meta-games, 64 and 256 respectively for the 3
and 4 player games – the highest considered in any of our datasets. Conducting the evaluation using the replicator-dynamics
based analysis of [8] can be quite tedious as all possible 2-face simplices must be considered for each player. Instead, here the
α-Rankings follow the same methodology used for all other domains, and are summarized succinctly in Figs. 14c and 15c.
In both meta-games, the 3-round fictitious play strategies ((3,3,3) and (3,3,3,3), respectively) are ranked amongst the top-5
strategies.

3.4.5 Leduc Poker
The meta-game we consider next involves agents generated using the Policy Space Response Oracles (PSRO) algorithm [29].
Specifically, PSRO can be viewed as a generalization of fictitious play, which computes approximate responses (“oracles”)
using deep reinforcement learning, along with arbitrary meta-strategy solvers; here, PSRO is applied to the game of Leduc
poker. Leduc poker involves a deck of 6 cards (jack, queen, and king in two suits). Players have a limitless number of chips.
Each player antes 1 chip to play and receives an initial private card; in the first round players can bet a fixed amount of 2 chips,
in the second round can bet 4 chips, with a maximum of two raises in each round. Before the second round starts, a public card
is revealed. The corresponding meta-game involves 2 players with 3 strategies each, which correspond to the first three epochs
of the PSRO algorithm. Leduc poker is a commonly used benchmark in the computer poker literature [70]: our implementation
contains 936 information states (approximately 50 times larger then 2-player Kuhn poker), and is non-zero sum due to penalties
imposed by selecting of illegal moves, see [29, Appendix D.1] for details.
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We consider in Fig. 16a the Markov chain corresponding to the PSRO dataset, with the corresponding α-Rank yielding
profile (0,0) as the top-ranked strategy, which receives 1.0 of the stationary distribution mass and essentially consumes the
entire strategy space in the long-term of the evolutionary dynamics. This corresponds well to the result of [8], which also
concluded that this strategy profile consumes the entire strategy space under the replicator dynamics; in their approach, however,
an equilibrium selection problem had to be dealt with using human-in-the-loop intervention due to the population-wise dynamics
decomposition their approach relies on. Here, we need no such intervention as α-Rank directly yields the overall ranking of all
strategy profiles.

4 Discussion
We introduced a general descriptive multi-agent evaluation method, called α-Rank, which is practical and general in the sense
that it is easily applicable in complex game-theoretic settings, including K-player asymmetric games that existing meta-game
evaluation methods such as [8, 9] cannot feasibly be applied to. The techniques underlying α-Rank were motivated due to
the fundamental incompatibility identified between the dynamical processes typically used to model interactions of agents
in meta-games, and the Nash solution concept typically used to draw conclusions about these interactions. Using the Nash
equilibrium as a solution concept for meta-game evaluation in these dynamical models is in many ways problematic: computing
a Nash equilibrium is not only computationally difficult [21, 22], and there are also intractable equilibrium selection issues
even if Nash equilibria can be computed [23–25]. α-Rank, instead, is theoretically-grounded in a novel solution concept called
Markov-Conley chains (MCCs), which are inherently dynamical in nature. A key feature of α-Rank is that it relies on only a
single hyperparameter, its ranking-intensity value α , with sufficiently high values of α (as determined via a parameter sweep)
yielding closest correspondence to MCCs.

The combination of MCCs and α-Rank yields a principled methodology with a strong evolutionary interpretation of
agent rankings, as outlined in Fig. 17; this overarching perspective considers a spectrum of evolutionary models of increasing
complexity. On one end of the spectrum, the continuous-time dynamics micro-model provides detailed insights into the simplex,
illustrating flows, attractors, and equilibria of agent interactions. On the other end, the discrete-time dynamics macro-model
provides high-level insights of the time limit behavior of the system as modeled by a Markov chain over interacting agents. The
unifying link between these models is the MCC solution concept, which builds on the dynamical theory foundations of Conley
[28] and the topological concept of chain components. We provided both scalability properties and theoretical guarantees for
our ranking method. Finally, we evaluated the approach on an extensive range of meta-game domains including AlphaGo [1],
AlphaZero [3], MuJoCo Soccer [5], and Poker [29], which exhibit a range of complexities in terms of payoff asymmetries,
number of players, and number of agents involved. We strongly believe that the generality of α-Rank will enable it to play an
important role in evaluation of AI agents, e.g., on leaderboards. More critically, we believe that the computational feasibility of
the approach, even when many agents are involved (e.g., AlphaZero), makes its integration into the agent training pipeline a
natural avenue for future work.
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Figure 11. AlphaZero (chess) agent evaluations throughout training.
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Agent Rank Score
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· · · · · · · · ·

(c) α-Rank results.

Figure 12. MuJoCo soccer dataset.
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Figure 13. Example cycles in the MuJoCo soccer domain.
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(b) Ranking-intensity sweep.

Agent Rank Score
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(3,2,3)(3,2,3) 33 0.120.12
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· · · · · · · · ·

(c) α-Rank results.

Figure 14. 3-player Kuhn poker (ranking conducted on all 64 pure strategy profiles).
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Agent Rank Score
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(2,3,3,1)(2,3,3,1) 22 0.070.07
(2,3,3,2)(2,3,3,2) 33 0.070.07
(3,3,3,1)(3,3,3,1) 44 0.060.06
(3,3,3,3)(3,3,3,3) 55 0.060.06
(3,2,3,3)(3,2,3,3) 66 0.050.05
(2,3,2,1)(2,3,2,1) 77 0.040.04
(2,3,2,2)(2,3,2,2) 88 0.040.04
(2,2,3,1)(2,2,3,1) 99 0.040.04
(2,2,3,3)(2,2,3,3) 1010 0.030.03
(2,2,2,1)(2,2,2,1) 1111 0.030.03
(2,2,2,2)(2,2,2,2) 1212 0.030.03
· · · · · · · · ·

(c) α-Rank results.

Figure 15. 4-player Kuhn poker (ranking conducted on all 256 pure strategy profiles).

36/45



50. 0ρ
m

50. 0ρ
m

50
. 0ρ

m

50. 0ρm

50. 0ρ
m

50. 0ρ
m

50. 0ρm

50.0ρ
m

50
. 0
ρ m

50. 0ρm

50
. 0
ρ m

50.0ρ
m

50
. 0ρ

m

50. 0ρm

50. 0ρ
m50

. 0
ρ m

50. 0ρ
m

50
. 0
ρ m

s1 = 0 s2 = 0

s1 = 0 s2 = 1

s1 = 0 s2 = 2

s1 = 1 s2 = 0

s1 = 1 s2 = 1

s1 = 1 s2 = 2

s1 = 2 s2 = 0

s1 = 2 s2 = 1

s1 = 2 s2 = 2

(a) Discrete-time dynamics (top 8 agents shown only).

10-4 10-3 10-2 10-1 100 101 102

Ranking-intensity α

0.0

0.2

0.4

0.6

0.8

1.0

S
tr

a
te

g
y
 m

a
ss

 i
n
 s

ta
ti

o
n
a
ry

 d
is

tr
ib

u
ti

o
n
 π

(0,0)

(0,1)

(0,2)

(1,0)

(1,1)

(1,2)

(2,0)

(2,1)

(2,2)

(b) Ranking-intensity sweep.

Agent Rank Score

(0,0)(0,0) 11 1.01.0
(0,1)(0,1) 22 0.00.0
(0,2)(0,2) 22 0.00.0
(1,0)(1,0) 22 0.00.0
(1,1)(1,1) 22 0.00.0
(1,2)(1,2) 22 0.00.0
(2,0)(2,0) 22 0.00.0
(2,1)(2,1) 22 0.00.0
(2,2)(2,2) 22 0.00.0

(c) α-Rank strategy rankings and scores (top
8 agents shown only).

Figure 16. PSRO poker dataset.
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𝛼-Rank: Multi-agent Evaluation by Evolution

Infinite 
population model

Perturbed 
model

[Sec. 2.4 & 3] Unifying ranking model: 
            Markov Conley Chains & 𝛼-Rank

Foundations:
● Conley’s Fundamental Theorem
● Chain recurrent sets and components

Advantages:
● Captures dynamic behavior
● More tractable to compute than Nash
● Filters out transient agents
● Involves only a single hyperparameter, 𝛼 

Ranking-intensity 
parameter 𝛼

Agent
Ranking

𝛼-Rank

[Sec. 2.1.3] Micro-model: 
           Continuous-time Dynamics 

Analytical toolkit:
● Flow diagrams 

sub-graph
● Attractors, equilibria

Applicability:
● 3 to 4 agents max
● Symmetric games 

and 2-population 
asymmetric games

● Existence and uniqueness of ranking [Theorem 2.1.2]
● AlphaRank correspondence to Markov Conley Chain solution 

concept [Theorem 2.5.1]
● Practical applicability of ranking to large-scale interactions 

[Properties 3.3.1, 3.3.2]

AlphaRank Guarantees

Analytical toolkit:
● Markov chain
● Stationary distribution
● Fixation probabilities

Applicability:
● K-wise interactions
● Symmetric/asymmetric 

games

[Sec. 2.1.4] Macro-model: 
            Discrete-time Dynamics      

● Correspondence of Markov Conley Chains & continuous 
dynamics [Theorem 2.4.24]

● Correspondence of Markov Conley Chains & discrete 
dynamics [Theorem 2.5.1] 

● Correspondence of discrete & continuous dynamics 
[Theorem 2.1.4]

Unifying Model Guarantees

Analytical
Formulation

Scalable
Practical 
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Figure 17. A retrospective look on the paper contributions. We introduced a general descriptive multi-agent evaluation
method, called α-Rank, which is practical in the sense that it is easily applicable in complex game-theoretic settings, and
theoretically-grounded in a solution concept called Markov-Conley chains (MCCs). α-Rank has a strong theoretical and
specifically evolutionary interpretation; the overarching perspective considers a chain of models of increasing complexity, with
a discrete-time macro-dynamics model on one end, continuous-time micro-dynamics on the other end, and MCCs as the link in
between. We provided both scalability properties and theoretical guarantees for the overall ranking methodology.
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5 Supplementary Material
5.1 Most Closely Related Work
We describe related work revolving around Empirical Game Theory analysis (EGTA), discrete-time dynamics models and
multi-agent interactions in evolution of cooperation research, and precursors to our new solution concept of MCC.

The purpose of the first applications of EGTA was to reduce the complexity of large economic problems in electronic
commerce, such as continuous double auctions, supply chain management, market games, and automated trading [6, 7, 71, 72].
While these complex economic problems continue to be a primary application area of these methods [73–76], the general
techniques have been applied in many different settings. These include analysis of interactions among heuristic meta-strategies
in poker [77], network protocol compliance [78], collision avoidance in robotics [79], and security games [80–82].

Evolutionary dynamics have often been presented as a practical tool for analyzing interactions among meta-strategies
found in EGTA [6, 34, 79], and for studying the change in policies of multiple learning agents [34], as the EGTA approach is
largely based on the same assumptions as evolutionary game-theory, viz. repeated interactions among sub-groups sampled
independently at random from an arbitrarily-large population of agents.

From the theoretical biology perspective, researchers have additionally deployed discrete-time evolutionary dynamics
models [83]. These models typically provide insights in the macro-dynamics of the overall behavior of agents in strategy space,
corresponding to flow rates at the edges of a manifold [17–19, 36, 37]. These studies usually focus on biological games, the
evolution of cooperation and fairness in social dilemma’s like the iterated prisoner’s dilemma or signalling games, deploying,
amongst others, imitation dynamics with low mutation rates [20, 35]. Similar efforts investigating evolutionary dynamics
inspired by statistical physics models have been taken as well [84, 85].

In the framework of the evolution of conventions [86], a repeated game is played by one-time players who learn from
past plays and are subject to noise and mistakes. Essentially algorithmic, and in the same line of thought as our formalism, it
solves the equilibrium selection problem of weakly acyclic games (in our terminology explained in Section 2.4.3: games whose
sink strongly connected components happen to be singletons), and in this special case it aligns very well with our proposed
solution concept. Another equilibrium selection concept related to MCC is the concept of closed under rational behavior
(CURB) set of strategies [87]. The notion of a sink equilibrium, defined by [88] for the purpose of exploring new variants of
the price of anarchy, is also similar to our MCC — despite differences in mathematical detail, style, and use. A method for
decomposing games was introduced in [89], based on properties of game dynamics on the graph of pure strategy profiles by
exploiting conceptually similarities to the structure of continuous vector fields. Researchers have also carried out studies of
evaluation metrics in the fields of computer science, machine learning, and artificial intelligence [90–92]. PageRank [93], an
algorithm used for ranking webpages, uses a Markov chain where states are webpages and transitions capture links between
these pages; though the Markov chain foundations are related to those used in our work, they are not rooted in an evolutionary
dynamical system nor in a game-theoretic solution concept, and as such are quite different to the method presented here which
also generalizes across several dimensions. The Elo rating system has ubiquitously been used for ranking and predicting
outcomes in board games [94], sports [95–99], and artificial intelligence [3, 100]. This rating system, however, comes with two
key limitations [64]: first, it has no predictive power in games with intransitive (cyclic) relations in the set of evaluated agents
(e.g., in Rock-Paper-Scissors); second, the rating of a given agent can be artificially inflated by including duplicate copies of
weaker agents in the set.

5.2 Background in Dynamical Systems
Definition 5.2.1 (Flow). A flow on a topological space X is a continuous mapping φ : R×X → X such that

(i) φ (t, ·): X → X is a homeomorphism for each t ∈ R.

(ii) φ(0,x) = x for all x ∈ X .

(iii) φ(s+ t,x) = φ(s,φ(t,x)) for all s, t ∈ R and all x ∈ X .

The second property is known as the group property of the flows. The topological space X is called the phase (or state)
space of the flow.

Definition 5.2.2. Let X be a set. A map (or discrete dynamical system) is a function f : X → X .

Typically, we write φ t(x) for φ(t,x) and denote a flow φ : R×X → X by φ t : X → X , where the group property appears as
φ t+s(x) = φ s(φ t(x)) for all x ∈ X and s, t ∈ R. Sometimes, depending on context, we use the notation φ t to also signify the
map φ(t, ·) for a fixed real number t. The map φ 1 is useful to relate the behavior of a flow to the behavior of a map.

Definition 5.2.3. If φ(t, ·) is a flow on a topological space X , then the function φ 1 defines the time-one map of φ .

Since our state space is compact and the replicator vector field is Lipschitz-continuous, we can present the unique solution
of our ordinary differential equation by a flow φ : R×S →S . Fixing starting point x ∈S defines a function of time which
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captures the trajectory (orbit, solution path) of the system with the given starting point. This corresponds to the graph of
φ(·,x) : R→S , i.e., the set {(t,y) : y = φ(t,x) for some t ∈ R}.

If the starting point x does not correspond to an equilibrium then we wish to capture the asymptotic behavior of the system
(informally the limit of φ(t,x) when t goes to infinity). Typically, however, such functions do not exhibit a unique limit point
so instead we study the set of limits of all possible convergent subsequences. Formally, given a dynamical system (R,S ,φ)
with flow φ : S ×R→S and a starting point x ∈S , we call point y ∈S an ω-limit point of the orbit through x if there
exists a sequence (tn)n∈N ∈ R such that limn→∞ tn = ∞, limn→∞ φ(tn,x) = y. Alternatively the ω-limit set can be defined as:
ωΦ(x) = ∩t∪τ≥tφ(τ,x).

We denote the boundary of a set S as bd(S) and the interior of S as int(S). In the case of the replicator dynamics where
the state space S corresponds to a product of agent (mixed) strategies we will denote by φi(x, t) the projection of the state
on the simplex of mixed strategies of agent i. In our replicator system we embed our state space with the standard topology
and the Euclidean distance metric. Since our state space is compact, we can present the solution of our system as a map
Φ : S ×R→S called flow of the system. Fixing starting point x ∈S defines function of time which captures the solution
path (orbit, trajectory) of the system with the given starting point. On the other hand, by fixing time t, we obtain a smooth
map of the state space to itself Φt : S →S . The resulting family of mappings exhibits the standard group properties such as
identity (Φ0) and existence of inverse (Φ−t), and closure under composition Φt1 ◦Φt2 = Φt1+t2 .

Finally, the boundary of a subset S is the set of points in the closure of S, not belonging to the interior of S. An element of
the boundary of S is called a boundary point of S. We denote the boundary of a set S as bd(S) and the interior of S as int(S).

Liouville’s Formula
Liouville’s formula can be applied to any system of autonomous differential equations with a continuously differentiable vector
field ξ on an open domain of S ⊂ Rk. The divergence of ξ at x ∈S is defined as the trace of the corresponding Jacobian at
x, i.e., div[ξ (x)] = ∑

k
i=1

∂ξi
∂xi

(x). Since divergence is a continuous function we can compute its integral over measurable sets
A⊂S . Given any such set A, let A(t) = {Φ(x0, t) : x0 ∈ A} be the image of A under map Φ at time t. A(t) is measurable and
is volume is vol[A(t)] =

∫
A(t) dx. Liouville’s formula states that the time derivative of the volume A(t) exists and is equal to the

integral of the divergence over A(t): d
dt [A(t)] =

∫
A(t) div[ξ (x)]dx.

A vector field is called divergence free if its divergence is zero everywhere. Liouville’s formula trivially implies that volume
is preserved in such flows.

Volume preservation is a useful property that allows us to argue about recurrent (i.e., cycle-like) behavior of the dynamics.

Poincaré’s recurrence theorem
Poincaré [101] proved that in certain systems almost all trajectories return arbitrarily close to their initial position infinitely
often.
Theorem 5.2.4. [101, 102] If a flow preserves volume and has only bounded orbits then for each open set there exist orbits that
intersect the set infinitely often.

5.2.1 Poincaré-Bendixson theorem
A periodic orbit is called a limit cycle if it is the ω-limit set of some point not on the periodic orbit. The Poincaré-Bendixson
theorem allows us to prove the existence of limit cycles in two dimensional systems. The main idea is to find a trapping region,
i.e., a region from which trajectories cannot escape. If a trajectory enters and does not leave such a closed and bounded region
of the state space that contains no equilibria then this trajectory must approach a periodic orbit as time goes to infinity. Formally,
we have:
Theorem 5.2.5. [103, 104] Given a differentiable real dynamical system defined on an open subset of the plane, then every
non-empty compact ω-limit set of an orbit, which contains only finitely many fixed points, is either a fixed point, a periodic
orbit, or a connected set composed of a finite number of fixed points together with homoclinic and heteroclinic orbits connecting
these.

Homeomorphisms and conjugacy of flows
A function f between two topological spaces is called a homeomorphism if it has the following properties: f is a bijection, f is
continuous, and f has a continuous inverse. A function f between two topological spaces is called a diffeomorphism if it has
the following properties: f is a bijection, f is continuously differentiable, and f has a continuously differentiable inverse. Two
flows Φt : A→ A and Ψt : B→ B are conjugate if there exists a homeomorphism g : A→ B such that for each x ∈ A and t ∈ R:
g(Φt(x)) = Ψt(g(x)). Furthermore, two flows Φt : A→ A and Ψt : B→ B are diffeomorhpic if there exists a diffeomorphism
g : A→ B such that for each x ∈ A and t ∈ R g(Φt(x)) = Ψt(g(x)). If two flows are diffeomorphic then their vector fields are
related by the derivative of the conjugacy. That is, we get precisely the same result that we would have obtained if we simply
transformed the coordinates in their differential equations [105].
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Stability of sets of states
Let A⊂ X be a closed set. We define a set O⊂ X a neighborhood of A if it is open relative to X and contains A. We say that A
is (Lyapunov) stable if for every neighborhood O of A there exists a neighborhood O′ of A such that every trajectory that starts
in O′ is contained in O, i.e., of x(0) ∈ O′ then x(t) ∈ O for all t ≥ 0. Set A is attracting if there exists a neighborhood S of A
such that every trajectory starting in S converges to A. A set is called asymptotically stable if it is both Lyapunov stable and
attracting.

Definition 5.2.6 (Sink chain recurrent points). Chain recurrent points that belong to a sink chain component are called sink
chain recurrent points.

Definition 5.2.7 (Lyapunov stable set). Let φ be a flow on a metric space (X ,d). A set A⊂ X is Lyapunov stable if for every
neighborhood O of A there exists a neighborhood O′ of A such that every trajectory that starts in O′ is contained in O; i.e., if
x ∈ O′ then φ(t,x) ∈ O for all t ≥ 0.

Definition 5.2.8 (Attracting set). Set A is attracting if there exists a neighborhood S of A such that every trajectory starting in S
converges to A.

Definition 5.2.9 (Asymptotically stable set). A set is called asymptotically stable if it is both Lyapunov stable and attracting.

5.2.2 Multi-population Replicator Dynamics
For a K-player NFG, one may use a set of K populations with Sk denoting the finite set of pure strategies available to each
agent in population k ∈ {1, . . . ,K}. The mass of players in a given population k that use strategy i ∈ Sk is denoted xk

i , where
∑i∈Sk xk

i = 1. Let S denote the set of all populations’ pure strategy profiles, and x represent the joint population state. Let the
payoff matrix for a given population k be denoted Mk : S→ R. The fitness of an agent in population k playing pure strategy i
given state x is then,

f k
i (x) = ∑

s−k∈S−k

Mk(i,s−k)∏
c6=k

xc
sc . (15)

Namely, the fitness is the expected payoff the agent playing strategy i receives given every competitor population’s state xc. The
k-th population’s average fitness given state x is then,

f̄ k(x) = ∑
i

f k
i (x)x

k
i , (16)

with the corresponding K-population replicator dynamics,

ẋk
i = xk

i ( f k
i (x)− f̄ k(x)) ∀k ∈ {1, . . . ,K} ∀i ∈ sk. (17)

5.3 Single-population discrete-time model
We have a set of strategies (or agents under evaluation) S = {s1, ..,sn}, with |S|= n, which we would like to evaluate for their
evolutionary strength. We also have a population of individuals A = {a1, ..,am}, with |A|= m, that are programmed to play a
strategy from the set S. Individuals interact pairwise through empirical games.

We start from a finite well-mixed population of m individuals, in which p individuals are playing τ . At each timestep t we
randomly choose two individuals τ and σ , with respective strategies sτ and sσ . The strategy of individual τ is then updated by
either probabilistically copying the strategy sσ of individual σ it is interacting with, mutating with a very small probability into
another strategy, or sticking with its own strategy sτ . The idea is that strong individuals will replicate and spread throughout the
population. The probability with which individual τ (playing sτ ) will copy strategy sσ from individual σ can be described by a
selection function P(τ → σ), which governs the dynamics of the finite-population model.

Individual τ will thus copy the behavior of individual σ with probability pτ→σ and stick to its own strategy with probability
1−P(τ → σ). We denote the probability for a strategy to mutate randomly into another strategy s ∈ S by µ and we will
assume it to be infinitesimally small, (i.e., we consider a small-mutation limit µ → 0). If we neglected mutations, the end state
of this evolutionary process would be monomorphic. If we introduce a very small mutation rate this means that either the
mutant fixates and takes over the current population, or the current population is capable of wiping out the mutant strategy [35].
Therefore, given a small mutation rate, the mutant either fixates or disappears before a new mutant appears. This means that the
population will never contain more than two strategies at any point in time.

We now proceed as follows. At any moment in time when two strategies (sτ and ss) are present in the population, we can
calculate the fitness of an individual τ playing strategy sτ in a population of p individuals playing sτ and m− p individuals
playing ss. Fitnesses may be calculated using either knowledge of the global population state (i.e., where every individual is
aware of the number of other individuals playing each strategy, which may be a strong assumption) or local knowledge (i.e., only
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the current opponent’s strategy) [16]. The corresponding fitness for the local case, which we focus on here, is f (τ,σ) = Mτ,σ ,
where Mτ,σ is obtained from the meta-game payoff matrix. Analogously, the simultaneous payoff of an individual σ playing sσ

against sτ is f (σ ,τ) = Mσ ,τ , For the remainder of the paper, we focus on the logistic selection function (aka Fermi distribution),

P(τ → σ) =
eα f (σ ,τ)

eα f (τ,σ)+ eα f (σ ,τ)
= (1+ eα( f (τ,σ)− f (σ ,τ)))−1, (18)

with α determining the selection intensity. While the subsequent empirical methodology extends to general selection functions,
the choice of Fermi selection function enables closed-form characterization of certain properties of the discrete-time model.

Based on this setup, we define a Markov chain over the set of strategies S with n states. Each state represents a monomorphic
population end-state, corresponding to one of the strategies sτ with τ ∈ {1, ..,n}. The transitions between these states are
defined by the corresponding fixation probabilities when a mutant strategy is introduced in a monomorphic population. The
stationary distribution over this Markov chain will tell us how much time on average the dynamics will spend in each of the
monomorphic states.

Considering our set S of n strategies, we define the Markov chain with n2 transition probabilities over the monomorphic
states. Let η = 1

n−1 and denote by ρσ ,τ the probability of mutant strategy sτ fixating (taking over) in a resident population of
individuals playing sσ . So ηρσ ,τ is the probability that a population which finds itself in state sσ will end up in state sτ after
the occurrence of a single mutation. This yields the following Markov transition matrix,

C =


1−η(ρ1,2 +ρ1,3 + ...+ρ1,n) ηρ1,2 ... ηρ1,n

ηρ2,1 1−η(ρ2,1 +ρ2,3 + ...+ρ2,n) ... ηρ2,n
... ... ... ...

ηρn,1 ... ... 1−η(ρn,1 +ρn,2 + ...+ρn,n−1)

 (19)

The fixation probabilities ρσ ,τ can be calculated as follows. Assume we have a population of p individuals playing sτ and
m− p individuals playing sσ . The probability that the number of type sτ individuals decreases/increases by one is given by,

T (∓1)(p,τ,σ) =
p(m− p)
m(m−1)

(
1+ e±α( f (τ,σ)− f (σ ,τ))

)−1
. (20)

Now we can compute the fixation probability ρσ ,τ of a mutant with strategy sτ in a population of m−1 individuals programmed
to playing sσ as follows,

ρσ ,τ =

(
1+

m−1

∑
l=1

l

∏
p=1

T (−1)(p,τ,σ)

T (+1)(p,τ,σ)

)−1

(21)

=

(
1+

m−1

∑
l=1

l

∏
p=1

e−α( f (τ,σ)− f (σ ,τ))

)−1

(22)

This corresponds to the computation of an m-step transition in the Markov chain [39].The quotient T (−1)(p,τ,σ)

T (+1)(p,τ,σ)
expresses the

likelihood (odds) that the mutation process continues in either direction: if it is close to zero then it is very likely that the
number of mutants sτ increases; if it is very large it is very likely that the number of mutants will decrease; and if it close to one
then the probabilities of increase and decrease of the number of mutants are equally likely.

Property 5.3.1. Given finite payoffs, fixation probabilities ρσ ,τ under the Fermi imitative protocol (18) are positive for all σ

and τ ; i.e., any single mutation can cause a transition from any state to another. Markov chain C is, therefore, irreducible, and a
unique stationary distribution π (where πTC = πT and ∑i πi = 1) exists.

This unique π provides the evolutionary ranking, or strength of each strategy in the set S, expressed as the time the population
spends in each state in distribution π . This single population model has been widely studied (see, e.g., [17–19, 36, 37]), both
theoretically and empirically, but is limited to both pairwise interactions and symmetric games.

5.4 Proofs
5.4.1 Proof of Theorem 2.1.2
Theorem 2.1.2. Given finite payoffs, the Markov chain with transition matrix C is irreducible (i.e., it is possible to get to any
state starting from any state). Thus a unique stationary distribution π (where πTC = πT and ∑i πi = 1) exists.
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Proof. Consider any two states (i.e., strategy profiles) si and s j of the K-population Markov chain with transition matrix (10).
Under finite payoffs f k(τ, p) and f k(σ , p), fixation probabilities ρk

σ ,τ under the Fermi imitative protocol (18) are positive.
Let R(s,k,sx) denote the operation of replacing the k-th strategy in a strategy profile s with a different pure strategy sx.
Thus, state s j is accessible from any state si (namely, consider the chain {s0 = si,s1 = R(s0,1,s1

j),s2 = R(s1,2,s2
j) . . . ,sK−1 =

R(sK−2,K−1,sK−1
j ),sK = R(sK−1,K,sK

j ) = s j} connecting strategies si to s j with non-zero probability). The Markov chain is,
therefore, irreducible and a unique stationary distribution exists.

5.4.2 Proof for Theorem 2.1.4
Theorem 2.1.4 (Discrete-Continuous Edge Dynamics Correspondence). In the large-population limit, the macro-dynamics
model is equivalent to the micro-dynamics model over the edges of the strategy simplex. Specifically, the limiting model is a
variant of the replicator dynamics with the caveat that the Fermi revision function takes the place of the usual fitness terms.

Proof. To simplify notation, we prove the theorem for the single-population case without loss of generality. Let xi(t) represent
the fraction of individuals in the population that are playing strategy si at timestep t. Rather than consider the underlying
stochastic evolutionary equations directly, we consider the mean dynamics. An alternative proof path for the single population
case is presented in [16] and may be applied here as well. The mean dynamics constitute a deterministic process governing the
expected evolution of state xi(t), and provide a close approximation of the underlying system over finite time spans under a
large-population limit [44, Chapters 4 and 10]. For a general finite population game, the mean dynamics correspond to the
difference of the expected influx and outflux of individuals playing a strategy i against individuals playing any strategy j ∈ S
given the underlying selection function P(i→ j)(x),

ẋi(t) = ∑
j∈S

x jxiP( j→ i)(x)− xi ∑
j∈S

x jP(i→ j)(x). (23)

Under the low-mutation rate assumption, the finite population model considers only the transitions between pairs of monomor-
phic states sτ and sσ , where xτ + xσ = 1. This yields simplified mean dynamics,

ẋτ = xσ xτP(σ → τ)− xτ xσ P(τ → σ)(xτ) (24)
= (1− xτ)xτ [P(σ → τ)−P(τ → σ)] (25)
= xτ [P(σ → τ)− (xτP(σ → τ)+(1− xτ)P(τ → σ))] (26)
= xτ [P(σ → τ)− p̄] (27)

where,

P(τ → σ) = (1+ eα( f (τ,σ)− f (σ ,τ)))−1 (28)

P(σ → τ) = (1+ e−α( f (τ,σ)− f (σ ,τ)))−1 (29)
p̄ = xτP(σ → τ)+(1− xτ)P(τ → σ) (30)

We, therefore, observe that the discrete large-population mean dynamics (27) correspond to the replicator equations (with the
caveat that Fermi revision protocol takes the place of the usual fitness terms).

Moreover, one can branch off after (25) to yield,

ẋτ = (1− xτ)xτ [P(σ → τ)−P(τ → σ)] (31)

= xτ(1− xτ)

[(
1+ e−α( f (τ,σ)− f (σ ,τ))

)−1
−
(

1+ eα( f (τ,σ)− f (σ ,τ))
)−1

]
(32)

= xτ(1− xτ) tanh
α( f (τ,σ)− f (σ ,τ))

2
(33)

which matches the Itô calculus based derivation of [17] under the large-population limit.

5.4.3 Proof for Theorem 2.4.13
We start by introducing the notion of chain transitivity, which will be useful in the proof of the theorem.

Definition 5.4.1 (Chain transitive). Let φ be a flow on a metric space (X ,d). A set A⊂ X is chain transitive with respect to φ if
for any x,y ∈ A and any ε > 0 and T > 0 there exists an (ε,T )-chain from x to y.

Next we state the following properties of chain components,
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Property 5.4.2 ([52]). Every chain component of a flow on a compact metric space is closed, connected, and invariant with
respect of the flow. Moreover,

• Every chain component of a flow on a metric space is chain transitive with respect to the flow.

• Every chain transitive set with respect to a flow on a metric space is a subset of a unique chain component of the flow.

• If A and B are chain transitive with respect to a flow on a metric space, A⊂ B and C is the unique chain component containing
A, then B⊂C.

Theorem 2.4.13 (Partial order on chain components). Let φ be a flow on a metric space and A1,A2 be chain components of the
flow. Then the relation defined by A1 ≤C A2 is a partial order.

Proof. We will show that the binary relation ≤C is reflective, antisymmetric and transitive.

• A1 ≤C A1. Since any chain component is chain transitive then we have that for any x,y ∈ A1: x∼ y.

• If A1 ≤C A2 and A2 ≤C A1 then A1 = A2. By chain transitivity of A1, A2 we have that for any x,x′ ∈ A1, x ∼ x′ and for any
y,y′ ∈ A2, y∼ y′. Hence if x∼ y then x′ ∼ y′ for any x′ ∈ A1 and any y′ ∈ A2. Hence, A1∪A2 is a chain transitive set and thus
by Theorem 5.4.2 must be a subset of a unique chain component of the flow C such that A1∪A2 ⊂C. However, we assumed
that A1,A2 are chain components themselves. Thus, A1 = A1∪A2 = A2.

• If A1 ≤C A2 and A2 ≤C A3 then A1 ≤C A3. If there exist x ∈ A1 and y ∈ A2 such that x ∈Ω+(φ ,y), as well as y′ ∈ A2 and z ∈ A3
such that y′ ∈Ω+(φ ,z) then by chain transitivity of A2 we have that y ∈Ω+(φ ,y′) and thus x ∈Ω+(φ ,z), implying A1 ≤C A3.

5.4.4 Proof for Theorem 2.4.24
We first present several results necessary for the proof.

Lemma 5.4.3. A chain recurrent (CR) point x is a sink CR point if and only if for any CR point y if y ∈ Ω+(φ ,x) then
x ∈Ω+(φ ,y), i.e., the two points are chain equivalent.

Proof. We will argue the forward direction by contradiction. Suppose not. That is, suppose that x is a sink CR point and there
exists a CR point y such that y ∈Ω+(φ ,x) and x /∈Ω+(φ ,y), then if Cx,Cy are the equivalence classes/chain components of x,y
respectively we have that Cy ≤C Cx and Cy,Cx are clearly distinct chain components since x /∈Ω+(φ ,y). Thus, Cx is not a sink
chain component and x is not a sink chain recurrent point, contradiction.

For the reverse direction, once again by contradiction we have that for any CR point y with y ∈Ω+(φ ,x), x ∈Ω+(φ ,y) and
x is a non-sink CR point. Then there exists another chain component A with A≤C Cx where Cx is the equivalence class/chain
component of x. Hence, there exists y ∈ A such that y ∈Ω+(φ ,x). Since y is a CR point which does not belong to Cx, we have
x /∈Ω+(φ ,y), contradiction.

Lemma 5.4.4. If a sink chain component contains a single vertex si then it contains any vertex s j which is reachable from si via
(weakly)-better response moves. Specifically, it contains an MCC.

Proof. Any state/vertex s j is a chain recurrent (CR) point because it is a fixed point of the replicator dynamics. If s j is
reachable by si via a weakly-better response path, then s j ∈ Ω+(φ ,si) for the replicator flow. In the case of edges that are
strictly improving it suffices to use the ε correction to introduce the improving strategy and replicator will converge to the better
outcome. In the case of edges between outcomes of equal payoff all convex combinations of these strategies are fixed points for
the replicator and we can traverse this edge with d1/εe hops of size ε .

But if s j ∈Ω+(φ ,si) and si is a sink CR point (since it belongs to a CR component) then by Lemma 5.4.3 si ∈Ω+(φ ,s j).
Therefore, state/vertex s j also belongs to the same sink chain component. The set of reachable vertices includes a strongly
connected component with no outgoing edges and thus a MCC.

Theorem 2.4.24. Let φ be the replicator flow when applied to a K-person game. The number of asymptotically stable sink
chain components is finite. Specifically, every asymptotically stable sink chain component contains at least one MCC; each
MCC is contained in exactly one chain component.
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Proof. Since solutions in the neighborhood of an asymptotically stable set, all approach the set, volume is contracted in
this neighborhood, however, replicator dynamics is volume preserving in the interior of the state space [44, 106, 107]; the
formal argument works by transforming the system induces by the replicator dynamics over the interior of the state space
into a conjugate dynamical system that is divergence-free. Any asymptotically stable set cannot lie in the interior of the
simplex, i.e., it cannot consist only of fully mixed strategies. Hence, there must exist some product of subsimplices with
a non-empty intersection with this set. The intersection of the original asymptotically stable set with this subspace is still
asymptotically stable for this invariant subspace and thus we can continue the argument inductively. The intersection of the
attracting neighborhood with this subspace is an attracting neighborhood for the dynamics on this invariant subspace. We
deduce that any asymptotically stable chain component must contain at least one vertex of the simplex (pure strategy profile).
Let si be this vertex. By Lemma 5.4.4, this sink chain component must also include all other vertices reachable from si via
weakly-better replies. Specifically, it must include at least one MCC. Finally, a MCC is a chain transitive set for the replicator
flow via the same argument of the ε hops as in Lemma 5.4.4. By Theorem 5.4.2, it is a subset of a unique chain component of
the flow.

5.4.5 Proof for Theorem 2.5.1
Theorem 2.5.1. In the limit of infinite ranking-intensity α , the Markov chain associated with the generalized multi-population
model introduced in Section 2.1.4 coincides with the MCC.

Proof. Recall from the MCC definition that the probability of strictly improving responses for all players are set equal to each
other, and transitions between strategies of equal payoff happen with a smaller probability also equal to each other for all
players. Let the ratio of the two probabilities be denoted ε for all players. The transition probabilities of the Markov chain of
the macro-model when taking taking the limit of α → ∞ are equal to the transitions probabilities of the Markov chain of the
Markov-Conley chains when setting ε equal to 1

m , where m is the size of the population in the macro-model. Let Asi(k) be the
number of strictly improving moves for player k in state/vertex si. Similarly, let Bsi(k) be the number of deviating moves for
player k in state/vertex si that do not affect her payoff. It suffices to set the probability of a node si self-transitioning equal to
1− ∑k Asi (k)+ε ∑k Bsi (k)

∑k(|Sk|−1) .
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