76 Basic FL'T—Finite and Regular Languages

10 The Pumping Lemma for Regular Languages

We know now how to prove that a language is regular; we have at least two
ways—exhibit a DFA and prove that it accepts the language or exhibit a
regular expression and prove that it denotes it. We know also that every
regular language can be accepted by a DFA, which is to say that there is
a finite bound (independent of the length of the input) on the amount of
memory needed to recognized the strings in the language. But this is not a
very powerful model. It seems likely that there are languages that cannot be
recognized using a finitely bounded amount of memory. One example, from
the informal examples we explored at the start of the tutorial, is the language

Loy = {a'b* | i > 0}.

Here our intuition was that we can put no bound on number of ‘a’s we have to
count in order to recognize the language. Consequently, it appears that this
is not a regular language. The question is how to prove that a language is not
regular.

Potentially, this is a much more difficult problem. To establish that a lan-
guage is regular we need only exhibit a DFA that accepts it; to establish it is
not regular we need to prove that it is not accepted by any DFA. Fortunately,
by looking at the nature of DFAs we can identify properties that are charac-
teristic of the languages they accept. Thus, the fact that regular languages are
all accepted by DFAs implies that they share these properties. The approach
we will use to prove non-regularity of a language is to show that it does not
share at least one of these properties. Consequently, it cannot be accepted by
a DFA. In this section, we will explore a closure property of the following sort:
if a regular language includes strings of a certain type, then it includes all
strings of a related type. We will be able to establish non-regularity of a given
language, then, by exhibiting a string of the first type that is in the language
along with a string of the related type that is not.

Lets start by considering what it means for a string to be accepted by a
DFA. Suppose A = (@, X%, q, 9, F) is a DFA and that @ = {q0,¢1,---,Gn_1}
includes n states. Thinking of the automaton in terms of its transition graph,
a string x is accepted by the automaton iff there is a path through the graph
from g to some ¢y € F that is labeled z, i.e., if (go, z) € F. Suppose z € L(A)
and |z| = [. Then there is a path [edges long from ¢, to g;. Since the path
traverses [edges, it must visit [+ 1 states.

The Pumping Lemma for Regular Languages 77

X =0102" -0}

Suppose, now, that [> n. Then the path must visit at least n + 1 states. But
there are only n states in (Q; thus, the path must visit at least one state at
least twice. (This is an application of the pigeon hole principle: If one places
k objects into n bins, where & > n, then at least one bin must contain at least
two objects.)

R OSNROSR O O

Thus, whenever |z| > n the path labeled w will have a cycle. We can break
the path into three segments: ©r = uvw, where

e there is a path (perhaps empty) from ¢o to p labeled u (i.e., 5(q0, u) = p),

e there is a (non-empty) path from p to p (a cycle) labeled v (i.e., S(p, v) =
p),

e there is a path (again, possibly empty) from p to ¢; labeled w (i.e.,
d(p,w) = qz).

But if there is a path from gy to p labeled v and one from p to gy labeled
w then there is a path from gy to ¢; labeled uw in which we do not take the
loop labeled v, which is to say uw € L(A). Formally

N

S(qu ’U/LU) = 5(8(‘10,15),“)) = 8(]3, w) = Qf € F.

Similarly, we can take the v loop more than once:

§($(QO7 u),v),v), w)
6(p, v),v), w)

6(qo, uvvw) =

Il
Sy Sy Sy O

In fact, we can take it as many times as we like. Thus, uv'w € L(A) for all i.

78 Basic FL'T—Finite and Regular Languages

This implies, then, that if the language accepted by a DFA with n states
includes a string of length at least n then it contains infinitely many closely
related strings as well. We can strengthen this by noting (as a consequence
of the pigeon hole principle again) that the length of the path from ¢q to the
first time a state repeats (i.e., the second occurrence of p) must be no greater
than n. Thus |uv| < n.

Now suppose L is an arbitrary regular language. Then there is some DFA
accepting it and that DFA has some fixed number of states. Thus there is
a constant n (the number of states in a DFA accepting L) such that if L
includes any string of length greater than or equal to n then there is a non-
empty segment of that string falling somewhere in its first n positions that
can be repeated (or pumped) any number of times (including zero) always
producing strings in L. This result is known as the Pumping Lemma for
regular languages.

Lemma 13 (Pumping Lemma) For every regular language L there is a
constant n depending only on L such that, for all strings © € L if |x| > n
then there are strings u, v and w such that

1. z = uwvw,

2. |luv| < n,

3. | >1,

4. foralli >0, w'we L.

What this says is that if there is any string in L “long enough” then there
is some family of strings of related from that are all in L, that is, that there is
some way of breaking the string into segments uvw for which uv‘w is in L for
all 7. It does not say that every family of strings of related form is in L, that
uv'w will be in L for every way of breaking the string into three segments uvw.
It also does not say that every long string in L is of form uv‘w for some i > 1
(i.e., it does not say that every long string in L has some part that repeats).
It does not, in fact, say anything about individual strings at all, it simply lets
us identify families of strings all of which must be in L. The way we will use
this is to identify such a family that should be in L if L is regular for which
we can show at least one string in the family is not in L.

Note that this lemma talks only about the strings in the language. While
we justified it by appealing to the fact that a language is regular iff there is a

The Pumping Lemma for Regular Languages 79

DFA that accepts it, we don’t need to actually come up with such a DFA to
apply it. On the other hand, if we actually have a DFA for the language we
can fix a concrete upper bound on the constant of the lemma—n is no larger
than the number of states in (). Thus we can strengthen the pumping lemma
slightly, by adding:

Lemma 14 Suppose A = (Q,%,9,q, F) is a DFA witnessing the fact that
L is reqular. Then the constant n of the pumping lemma is no greater than

card(Q).

10.1 Applying the Pumping Lemma

To establish that a language L is not regular using the pumping lemma we
need to show that the pumping lemma is not true for that language, i.e., for
any n there is some x € L with |z| > n such that for all u, v and w where
wow =z, |uv| <n and |v| > 1 there is some i for which uv'w ¢ L.

A useful way to think of this is as a game between you, who are trying to
prove that the pumping lemma fails for L, and an adversary that is trying to
prove that it holds. Expressed formally, the lemma says (‘v and ‘3’ should be
read “for all” and “there exists”, respectively):

(VL)[L regular =
@n)|
(Vz)[x € L and |z| > n =
(Fu, v, w)[x = vvw and
luv| < n and
lv| > 1 and
(Vi > 0)[uviw € L]]]]]-

Every V' is your choice—the lemma should be true for any value you choose.
Every ‘3’ is your opponent’s choice—they need only exhibit some value for
which the lemma is true. Each move can depend on all the choices made prior
to it. The game starts with your choice of the L you wish to prove to be
non-regular. You opponent then chooses some n, you choose a string x € L of
length at least n, etc. You win if, at the end of this process, you can choose i
such that uviw ¢ L. To establish that the lemma is not satisfied by L you have
to show that no matter which choices your adversary makes, you can always
have a winning choice of x and 7, that is, you must give a strategy, accounting
for all possible choices of your opponent, that always leads to a win for you.

80 Basic FL'T—Finite and Regular Languages

Of course, your strategy at each step will depend on the choices your opponent,
has made.
What we end up with is a proof by contradiction. For instance:

To show that Ly, = {a’b’ | j > 0} is not regular.

Proof: Suppose, by way of contradiction, L, is regular. (Your choice of L.)

Let n be the constant of the pumping lemma. (Your adversary chooses n. You
can make no assumptions about n but you will base your subsequent choices
on its value.)

Let x = a™b™. (Your choice of z. Note that it depends on n. In fact, if your
choice does not depend n, if n is not a parameter of your definition of z, then
the proof will almost certainly fail.)

Since x € Ly and |z| > n, by the pumping lemma there must be some u,
v and w such that x = wvw, |uv| < n, |v] > 1 and ww'w € Ly for all i.
(You opponent chooses how to split z into uvw subject only to the conditions
that |uv| < n and |v| > 1. Your strategy must account for all ways of doing
this—all you can assume about u, v and w is that they meet the conditions of
the lemma.)

Since |uv| < n, both u and v must fall within the first n symbols of z. Thus,
u and v must consist only of ‘a’s. Furthermore, v must include at least one
‘a’, since |v| > 1. Thus, there must be some j, k and [such that

u=a, v=a", w = alb”, j4+k+1l=n, and k > 1.

But suppose i = 0. (Your choice of i.) Then

uv’w = uw = a’a'b"
where j 4+ | = n — k which is strictly less than n. Thus uviw ¢ Lg, for i = 0

and the pumping lemma does not hold for L,;, contradicting our assumption
that L., was regular. =

In this case our choice of x restricted the adversary’s choice of uvw enough
that all choices can be treated with a single argument. In general this will not
be the case and, even if we can use the same ¢ in all choices, we will have to
account separately for each alternative way of dividing .

The Pumping Lemma for Regular Languages 81

Example: Let L, C {a,b}*{c,d}* be the language in which a string w is in
L, iff the number of occurrences of the substring ab in w is greater than or
equal to the number of occurrences of the substring cd in w. Prove that L, is
non-regular using the pumping lemma.

Proof: Suppose, for contradiction, that L, is regular. Let n be the constant
of the pumping lemma. Let x = (ab)"(cd)". Let |w|,, denote the number of
occurrences of the substring ab in w. Similarly for |w| ;. Then z € Ly, |z| > n,
and |z, = |z[4 = 7.

By the pumping lemma, z = wvw, where |uv| < n, |v| > 1 and uw € Ly.
Consequently, uv is a prefix of (ab)™.
We must now account for every way in which a prefix of (ab)™ can be divided
into wv with |v| > 1. Any way of dividing these possibilities into cases is
acceptable, as long as it is erhaustive. One way that works well for this
language is to note that v must start with either an ‘e’ or a ‘b’ and, similarly,
must end with one or the other. Thus, there are four cases:

v = a(ba)’ v=a(ba)’b v =>b(ab)’a or v = b(ab)’, j>0.

By cases, then:

u=(ab)’ v=ua(ba)! w=0b(ab)*(cd)® = |uw|, = n—1-|v|,
u=(ab)* v=ualba)b w=(ab)*(cd)” = |uw|, = n-|v|, and |v|, > 0.
u=(ab)'a v="blab)ya w="b(ab)*(cd)® = |uw|, = n—1-|v|,
u=(ab)la v=">b(ab)y w=(ab)f(cd)® = |uw|, = n—1-|v|,
Thus in all cases |uw|,, < |[uw|,, =n, vw € Ly and L, is not regular. -
def

36. Prove that Ly = {w € {a,b}* | |w|, < |w|,} is not regular (where |w|,
is the number of ‘a’s occurring in w).

37. Prove that the following language L¢ is not regular.

Le & {w € {a,b}" | |w|, < |wl|, if |w]|, even, |w|, > |w]|, otherwise }

82 Basic FL'T—Finite and Regular Languages

11 The Myhill-Nerode Theorem

As we have defined them, in every DFA there is a path from the start state to
some state of the DFA for every string in ¥*. Since there are infinitely many
strings but only finitely many states many strings must lead to the same state.
Recall that the state represents all the information that the DFA has about
the string leading to that state, so, in a strong sense it is the nature of DFAs
that they are forgetful—they are unable to remember a complete description
of the strings they scan and must, inevitably, fail to distinguish some strings.
The content of the Myhill-Nerode Theorem, the topic of this section, is that
this partitioning of ¥* into finitely many classes of indistinguishable strings is
characteristic of the regular languages.

Suppose L is regular. Then there is some DFA A that accepts it, L = L(.A).
The approach we have taken to proving that a DFA accepts a language is to
identify each state with an invariant, a property that is characteristic of the
strings that label paths from the start state to that state. These invariants
define a relation on strings: two strings are related iff they satisfy the same
invariant, which is to say iff they lead to the same state. We will refer to this

relation as R 4:

R4 < {(w,v) | §(g0, w) = §(g0,v)}

and will use R4 as an ‘infix’ relation symbol:
wR v < (w,v) € Ry.

Two strings are equivalent, from the point of view of A, iff they are related by
R 4. We can verify that R4 is an equivalence relation—it is reflexive: wR w
for all w; it is symmetric: if wR v then vR w as well; and it is transitive:
uR v and vR 4w implies uR qw; so it is consistent with this interpretation.

Let

[wlr, & {v | wRw}.

This is the equivalence class of w wrt R4, the set of all strings equivalent to
w in the R4 sense. Note that, as with all equivalence classes, every string
w € ¥* is in some class (namely [w]g,) and no string is in more than one
(w € [u]r, and w € [v]g, implies [u]r, = [v]r,). Thus the equivalence classes
of R4 partition ¥*—they are disjoint and their union is ¥*.

Now, we potentially have many names for each equivalence class since if
wR4v then [w]|g, = [v]r,. We can capture the set of all classes by choosing an

The Myhill-Nerode Theorem 83

(arbitrary) canonical representative for each class. This set of representatives
is referred to as an index set or spanning set (we will denote it with I) and

= = J [wlral-

wel

Given that R4 is defined by the automaton A, how big is its index set? Cer-
tainly, there can be no more equivalence classes than there are states of A
(there can be fewer, since some states of A may be inaccessible from ¢q). Thus
the number of equivalence classes wrt R4 is finite; we say that R4 has finite
indez (or is spanned by a finite set).

Since the finiteness of the number of equivalence classes of R4 is a conse-
quence of the key characteristic of DFAs—the finiteness of their state sets—it
should seem plausible that the existence of some relation R4 with finite index
is a key property of regular sets. To pin this down we need to look a little
more closely at the nature of R4 and its relationship to L.

First, note that, since two strings w and u are related by R4 iff the paths
(from the start state) they label lead to the same state, it must be the case that
if we extend them both with the same string we will obtain, again, equivalent
strings, i.e.,

wR A u = (Yv)[wvR quv)].

We say that R4 is right invariant wrt concatenation.
Finally, we note that

L= {J [k,

8(q0 aw)EF

which is to say, L is the union of some of the equivalence classes of ¥* wrt R 4.
When we put these all together, we get a lemma.

Lemma 15 If a language L C ¥* is reqular then it is the union of some of
the equivalence classes of a right invariant equivalence relation on X* which is
of finite index.

Note that, while given A accepting L we can immediately produce R4, the
lemma is actually independent of A. If we know that L is regular then we know
that some relation with the properties we have established for R 4 exists, since
some A does. Intuitively, the converse ought to be true as well—if such an
equivalence relation exists then we ought to be able to construct a DFA using

84 Basic FL'T—Finite and Regular Languages

the equivalence classes of the relation as states; the existence of such a relation
ought to imply that L is regular. And, in fact, it does but it is useful to prove
this in a somewhat round-about way.

The fact that R4 is right invariant wrt concatenation implies that

wRu = (Yv)[wv € L < uv € L.

Let’s consider the relation

R ¥ {{w,u) | (Vv)[wv € L & uwv € L]}.

Note that, although this is also an equivalence relation, it is not the same
relation as R4 because it may be the case that A distinguishes two strings
w and u even though wRpu—w and u may lead to different states of A,
even though A behaves the same (in the sense of accepting or not) on all
strings extending them. However, as we just saw, if wR4u then wRyu, thus
every equivalence class wrt R4 is a subset of an equivalence class wrt Ry ; the
equivalence classes of R4 do not break the equivalence classes of Ry, rather
they partition them. We say that R 4 is a refinement of Rp—every equivalence
class wrt Ry, is the union of the equivalence classes of R4 it intersects. Thus,
the number of equivalence classes of Ry, can be no greater than the number of
equivalence classes of R 4. Consequently, the number of equivalence classes of
>* wrt Ry, is also finite. Ry, has finite index. This leads to our second lemma.

Lemma 16 Suppose L C X*. Let R, & {{w,u) | (Vv)[wv € L < uv € L]}.
If L is regular then Ry, has finite index.

This follows from the previous lemma and the fact that right invariance of R 4
implies that R4 refines Ry.

We are close, now, to having characterizations of the regular languages
in terms of both R4 and Rj;. If we can show that whenever R; has finite
index then L is regular we will get not only that this characterizes the regular
sets but also that being the union of some of the classes of a right invariant
equivalence relation of finite index does, since it is implied by regularity and
implies finiteness of index of R;.

To obtain this result, we will follow the idea we sketched for R —we will
construct a DFA accepting L using the equivalence classes of ¥* wrt R as
our state set.

Let Q" = {[w]g, | w € £*}. (Note that while each of these states is
a potentially infinite set, the number of states is finite. To avoid even this

The Myhill-Nerode Theorem 85

vestigial infiniteness, we could take @' to be any index set for R, but this
definition is slightly simpler.)

Let §'([w]g,,0) = [wolg, -

We need to verify that this is, in fact, well defined. In particular, we need
to show that for all u and o, if u € [w]g, then uo € [wo]g,. (In other words,
we need to show that Ry is right invariant, but this does not follow from right
invariance of R4 since uRpw does not imply uR4w.) To see that this is the
case, suppose uRypw. Then, for all v, uv € L < wv € L. And, in particular
(letting v = ov'), for all v/, uov' € L < wov' € L. Thus, ucRpwo.

Finally, let ¢, = [¢]g, and F' = {[w]g, | w € L}.

Lemma 17 Let A' = (Q', X, ¢, ¢, F'), where @', q}, 6" and F' are as described
above. Then L = L(A’).

38. Prove that, for all w € ¥*, 3’((]6,11)) = [w]g, -

39. Use this to prove the lemma.

Putting the three lemmas together we get:
Theorem 2 (Myhill-Nerode) The following are equivalent:
e L is reqular.

e L is the union of some of the equivalence classes of a right invariant
equivalence relation of finite inder.

e The relation R, < {{w,u) | (Vv)[wv € L < uv € L]} has finite index.

Note that with R; we have abandoned the notion of DFA entirely. This
is a relation that is defined directly in terms of the strings that are and are
not in the language, independent of any particular mechanism for defining or
accepting it.

11.1 Using Myhill-Nerode to Prove Non-Regularity

The fact that a language L is regular iff Ry has finite index gives us another
approach to proving languages are not regular. If we can show that there must
be infinitely many equivalence classes of ¥* wrt Ry, then L cannot be regular.
This is often simpler than using the Pumping Lemma.

86 Basic FL'T—Finite and Regular Languages

The most direct approach to doing this is to give an infinite sequence of
strings in X* all of which are distinct wrt to Ry. Since they each must be in
a distinct equivalence class and since there are infinitely many of them, Rj,
cannot have finite index.

Example: To show that
Loy = {a'b" | i > 0}.
is not regular, consider the sequence of strings
(a,a?, ...,d",...|i>0).

We claim that every string in this sequence is distinct wrt R, from every
other string in the sequence. To see this, consider a* and a’ for i # j. Then
a’b’ € L, while a’b* & L. Thus, b® witnesses that a* and o’ are not related
by Ry. Since ¢ and j are arbitrary, every string in the sequence is distinct, wrt
Ry, from every other string in the sequence; no two share the same equivalence
class. It follows that there must be at least as many equivalence classes of Ry,
as there are strings in the sequence; Ry cannot have finite index.

40. Consider, again, the problem of specifying schedules for a machine tool
(see Section 7.3). Suppose, in this instance, that there is just a single
type of part which requires two operations A; and A, to complete. These
can be done in any order, although we will assume that operations always
complete partially completed parts if they can. Thus, at any given time
the partially completed parts will all be waiting for the same operation
(although which operation can change over time). Assume, further, that
there is an unbounded amount of space to store partially completed parts;
the only constraint on a schedule is that every part gets completed.

(a) Describe this language.

(b) Use Myhill-Nerode to show that the set of feasible schedules, given
these constraints, is not regular.

11.2 Using Myhill-Nerode to Prove Regularity

The Myhill-Nerode theorem gives us a characterization of the regular languages—
a language is regular iff the second and third part of theorem are satisfied.

The Myhill-Nerode Theorem 87

Thus, in contrast to the Pumping Lemma, we can use Myhill-Nerode not only
to prove languages are not regular, but also to prove that languages are reg-
ular. In fact, one of the attractive features of this approach is the fact that if
one’s attempt to prove a language is not regular fails then one is likely to be
well along the way to proving that the language is regular.

While it is possible to use either R4 or R to prove a language is regular,
using Ry, is usually much simpler. The idea is to consider the way in which X*
is partitioned by R, and argue that there are only finitely many partitions.

Example: Consider, again, the example of Section 7.3. Let Lo be the set
of feasible schedules under the constraints given there. Following the Myhill-
Nerode Theorem, let

wRyp,u PN (Vo)[wv € Ly < uv € Ly).

Now, for any strings w,v € {A;, A, By, Bo}*, it will be the case that wv € Lo
iff

e v completes w:
|U’|A1 - |w‘,42 = ‘U|A2 - |U|A1 and ‘w‘Bl - ‘w‘Bz = ‘U‘Bz - ‘U‘Bl .
e wv does not satisfy:
FAIL(z) <% 2 = 2/2" where 12" 4, = 12| 0, | + 125, = |2'|5,] > 2,

The first condition says that every part pending at the end of the schedule w
will be completed during the schedule v. The second says that there will never
be more than two pending parts during this process.

Consider, now, an arbitrary strings in w,u € {A;, A, By, By}*. Under
what circumstances will it be the case that wRp,u? Well, if FAIL(w) is true,
then there will be no v for which wv € Ly. On the other hand, if FAIL(u)
is not true, then there is at least one v for which uv € Lo,—the one that
simply completes the parts outstanding at the end of w. Thus, if FAIL(w)
and FAIL(u) then wRp,u, but if FAIL(w) and not FAIL(u) or vice versa then
not wRp,u. It follows that the class of all strings that satisfy FAIL is one of
the equivalence classes of {4, Ay, By, Bo}* wrt Rp,. (This should not be a
surprise, the class corresponds to the state Fail of the DFA we constructed for
this language.)

88 Basic FL'T—Finite and Regular Languages

It remains to consider what determines if two strings neither of which
satisfy FAIL are related by Ry,. First of all, it should be clear that a schedule
v will complete both w and u iff the set of parts outstanding at the end of w
is the same as the set outstanding at the end of u. For example,

(\w\Al—W\Az = ‘U|A2_|U‘A1 and |U‘A1_|U‘A2 = ‘U|A2_|U‘A1) g |w|A1_‘w‘A2 = |u|A2_|u|A1 .

Moreover, if the set of parts outstanding at the end of w is the same as the set
outstanding at the end of u then, for all v, wv will satisfy FAIL iff uv satisfies
FAIL. Conversely, it is not hard to see that if the set of parts outstanding at
the end of w and w are not the same then there will be a schedule v which
completes one while FAILing on the other.

Thus, for w,u € {A;, Ag, By, Bo}*, wRy,u iff

e FAIL(w) and FAIL(u), or

e Not FAIL(w) and not FAIL(u) and
|w‘A1 - ‘w|A2 = |U’|A2 - |U|A1 and |w‘31 - |w‘}32 = ‘“‘Bz - |U‘B1 .

It remains, to count how many equivalence classes this relation generates.
There will be one for strings that satisfy fail plus one for each pair of values of
lw| 4, —|wl|,, and |w|g — |w|g, for w that do not satisfy FAIL. Clearly, since
w does not satisfy FAIL,

It follows that there can be no more than 5-5 = 25 such pairs and 25+ 1 = 26
classes altogether. (There are actually just 14.) Thus, Ry, has finite index
and, by the Myhill-Nerode Theorem, L, is regular.

41. Using the Myhill-Nerode Theorem, prove the language L3 of Problem 25
is regular.

11.3 Minimization of DFAs

Recall that we showed above that R4 was a refinement of Ry ; if two strings
are related by R4 they are necessarily related by R;. The converse of this is
not true—it may be the case that A distinguishes two strings, that the paths
from the initial state labeled with the strings lead to distinct states in A, even
though any string labeling a path to some final state from one of those states

The Myhill-Nerode Theorem 89

also labels a path to some final state from the other and wice versa. But,
certainly, there is no need to distinguish these states. Since the behavior of
the automaton is the same from both states, it should be possible to merge
them into a single state. (This is not as immediate as it seems. The fact that
a path labeled with some string leads to a final state from the one if and only
if it leads to some final state from the other does not imply that they lead to
the same final state. We may, in general, have to merge a number of states in
order to preserve a deterministic transition function.)

Thus, if there is more than a single equivalence class wrt R4 partition-
ing any equivalence class wrt Ry the automaton A includes more states than
necessary; there is a simpler automaton that accepts the same language. Con-
sider, now, whether any of the classes wrt R; are redundant. These are, after
all, the classes we chose as the state set of the automaton we constructed in
the proof of the Myhill-Nerode Theorem. (For that DFA, in fact, R4 = Ry.)
Is it possible to merge any of these states, to construct a simpler automaton
that accepts the same language?

Suppose [w]g, # [u|g,- Then, by the definition of Ry, there must be some
string v such that wv € L while uv € L or vice versa. But if we were to merge
these two states the automaton would have to either accept both wv and uw
or reject them both. Thus, if [w]|g, # [u]gr, then every DFA that accepts L
will need to distinguish them. It follows that the DFA we constructed on the
equivalence classes wrt Ry, is, in fact, minimal—there is no DFA with fewer
states that accepts L. Moreover, while there will be other DFAs with the same
number of states that accept L (since we could take any finite set of the same
size to be @), every one of these will have to distinguish exactly the same
sets of strings; necessarily R4 = Ry for all of them. It follows, then, that the
only distinction between the minimal DFAs accepting L is the labeling of the
states. We say that they are isomorphic.

Lemma 18 The DFA constructed on Ry is minimal in the size of its state
set among DFAs accepting L. Moreover, up to isomorphism, it is the unique
minimal DFA accepting L.

This gives us a technique for minimizing DFAs, for eliminating redundant
states. As DFAs employed in applications can get quite large, such minimal-
ization can have a significant effect on efficiency. The idea is to identify classes
of Ry, states of A, that are indistinguishable wrt Ry, where a pair of states
q,p € Q are distinguished wrt Ry iff there is a string v which leads to a final

90 Basic FL'T—Finite and Regular Languages

state from one and to a non-final state from the other, i.e., iff §(¢,v) € F and
d(p,v) € F, or vice versa. As we noted above, whether such a string exists
is not necessarily obvious. The length of the string v could, potentially, be
quite long. The approach we will take to identifying pairs of states that are
distinguished wrt Ry, is to iterate through 7 > 0 identifying all those pairs that
are distinguished by strings of length ¢ and then using those to identify those
pairs distinguished by strings of length ¢ 4+ 1, etc. This leads to a dynamic
programming algorithm, which we will lay out by example.
Let A be the DFA:

@/“‘.

:\b

We will construct a table relating pairs of states in which the entry in the
g row and the p column will be non-empty iff we have distinguished states ¢
and p. Since the relation of being distinguished is symmetric, we need only
the lower triangular of this table.

=W N

0123

In the first iteration ¢ = 0. We will mark each pair of states that are
distinguished by a string of length 0, which is to say we will mark the entry
for (p,q) iff 8(p,e) € F and §(q,e) ¢ F or vice versa. In other words, we
distinguish every state in F' from every state not in F.

1]|e

2 €

3¢ €

4 € €
011123

The Myhill-Nerode Theorem 91

(We have marked them with the string that distinguishes them.)

In the subsequent iterations we identify states that are distinguished by
increasingly long strings. A pair of states (p,q) will be distinguished by a
string of length 7+ 1 iff there is some o € ¥ for which the state reached from p
on ¢ and the state reached from ¢ on o are distinguished by a path of length
i, i.e., if §(p,0) and 6(q,0) were distinguished in iteration 7. Thus, in each
iteration, we work our way through the table marking each entry (p,q) for
which the entry (§(p, o), (g, 0)) (or vice versa) is already marked.

1]|e¢

1] ¢
2lale

2| a |¢
3| ¢ €

3| € €
4 €| a €

4| bale]|a €
01112 3 BERE 3
0(0,a) =1 6(2,a) =

5(0,6) =2 6(4,b) =0

We repeat this until some iteration fails to distinguish any new pairs of
states. It should be clear that from that point on no more pairs will be
distinguished. That all distinguishable pairs will have been marked at that
point follows from the invariant:

An entry (p,q) will be marked in the table at iteration ¢ iff there
is a string v of length no greater than ¢ for which 6(p,v) € F while
d(q,v) ¢ F or vice versa

which can be easily established by induction on 7. That the algorithm always
terminates follows from the fact that the table is finite—one cannot distinguish
any more pairs than there are entries in the table, thus, the algorithm converges
after no more than that many iterations.

In the example, the pair (3,1) is left unmarked, thus, these states are
indistinguishable wrt R; and can be merged. Note, also, that, while state 4
is distinguished from every other state it is unreachable from the initial state
and is, therefore, useless. We can simply eliminate it.

92 Basic FL'T—Finite and Regular Languages

Note that, in merging state p and ¢ the new transition function will be well
defined iff 6(p,0) and 6(q, o) are equivalent states. The algorithm guarantees
this will be the case (why?).

42. Minimize the following DFA.

Closure Properties of the Class of Regular Languages 93

12 Closure Properties of the Class of Regular
Languages

The pumping lemma gives a kind of closure property for individual regular
languages: if the language includes a string of a particular form then it includes
all strings of a related form. In this section we will look at some of the
closure properties of the class of regular languages—properties of the form: if
Ly, ..., Ly are in that class (are regular) then the languages formed from the
L; by some particular operation are all in the class as well.

12.1 Boolean Operations

Theorem 3 The class of reqular languages is closed under union, concatena-
tion, and Kleene closure.

Proof: This follows immediately from the definition of regular languages. -
Note that we actually gave constructive proofs of these closure results as part
of the proof that every regular language is accepted by some DFA.

Theorem 4 The class of reqular languages is closed under intersection.

Proof (sketch): Suppose L; and L, are regular. Then there are DFAs M; =

(Q,%,61,q0, F1) and My = (P, X, 09, pg, F») such that L; = L(M;) and L, =

L(M5). We construct M’ such that L(M') = Ly N Ly. The idea is to have M’

run M; and M in parallel—keeping track of the state of both machines. It

will accept a string, then, iff both machines reach a final state on that string.
Let M' = <Q X P, 2,5,, <CIO;P0> ,Fl X FQ), where

5I(<Q1p>) 0) = <(51 (Q> 0)7 52(]77 0)) .
Then §'({(g,p),w) = <31(q, w), b2(p, w)> (You should prove this; it is an

easy induction on the structure of w.) It follows then that

w € L(MI) = Sl(<q0,p0> ,’U)) - F1 X FQ
& 51(qo,w) € F| and 52(p0,w) e F,
& weliandw e Ly
< we L1 N LQ.

94 Basic FL'T—Finite and Regular Languages

Corollary 1 The class or reqular languages is closed under relative comple-
ment.

Since w € L; \ Ly iff w e L, and w & Ly iff Sl(qo,w) € F; and 52(p0,w) ¢ F,
iff ¢'({qo, po) , w) € Fy x (P\ F3), we can use essentially the same construction
changing only F' to Fy X (P \ F3).

Theorem 5 The class of regular languages is closed under complement.

Proof (sketch): Following the insight of the corollary, w € L, if w ¢ L, iff
01(qo, w) € Fi. Thus we can let M' = (Q, %, 61,9, @\ F1), that is M with
the set of final states complemented wrt Q). o

Note that if we had proved closure under complement first we could have
gotten closure under intersection using DeMorgan’s Theorem.

Ly, Ly reg. = Ly, Ly reg. = Ly U Ly reg. = L U Ly reg. = Ly N Ly teg..

Definition 45 A class of languages is closed under Boolean Operations iff it
18 closed under union, intersection, and relative complement.

Corollary 2 Any class of languages closed under relative complement and
either union or intersection is closed under Boolean operations.

Corollary 3 The class of reqular languages is closed under Boolean opera-
tions.

12.2 Using Closure Properties to Prove Regularity

The fact that regular languages are closed under Boolean operations simplifies
the process of establishing regularity of languages; in essence we can augment
the regular operations with intersection and complement (as well as any other
operations we can show preserve regularity). All one need do to prove a
language is regular, then, is to show how to construct it from “obviously”
regular languages using any of these operations. (A little care is needed about
what constitutes “obvious”. The safest thing to do is to take the language
back all the way to @, {e}, and the singleton languages of unit strings.)

Example: Let L C {a,b}* such that

Closure Properties of the Class of Regular Languages 95

e ‘ga’ never occurs in any string in L,

e if ‘ab’ occurs anywhere in a string in L then ‘ba’ also occurs somewhere
in that string.

To show that L is regular, note first that L is the intersection of two languages:
one in which only the first property (no ‘aa’) is enforced and one in which only
the second (‘ab’ implies ‘ba’) is.

L:leLQ,

where Ly is the set of strings over {a, b} in which ‘aa’ never occurs and L is
the set in which ‘ba’ occurs whenever ‘ab’ does.

Ll = L_37
where Lj is the set of strings over {a, b} in which ‘aa’ does occur.
Ls = L((a + b)*aa(a + b)*).

L, is the set of strings over {a,b} in which either ‘ab’ does not occur or ‘ba’
does (P = Q =-PV Q).
L2 - L4 U L5,

where Ly is the set of strings over {a,b} in which ‘ab’ never occurs and Lj is
the set in which ‘ba’ does.
Ly = Lg, Lg = L((a + b)*ab(a + b)*).
and
Ls = L((a + b)*ba(a + b)*).

Thus -
L:Lgﬂ(L6UL5)

and each of L3, Lg and Lj are regular. Hence L is regular as well.

43. Using this approach, show that the set of strings over {a, b} in which the
number of ‘a’s is divisible by three but not divisible by two is regular.

44. Starting with simple automata for your “obviously” regular languages
and using the constructions of the proofs of the closure properties, build
a DFA for this language.

96 Basic FL'T—Finite and Regular Languages

45. Consider the two languages:

L,: The set of strings over {a, b} in which the last symbol is not ‘b’.

L,z The set of strings over {a, b} in which the last symbol is not ‘a’.

Using the approach of the previous problem, construct a DFA accepting
the language of strings that satisfy both of these descriptions.

46. What is that language? Explain why it is not empty.

12.3 Quotient and Prefix
Definition 46 The (right) quotient of a language Ly wrt Lo (both over X)) is

Li/Ly ¥ {w e S| (Fv € Ly)[wv € Ly]}.

So the quotient of L; wrt Ly is the set of prefixes one is left with when one
removes suffixes of strings in L; that are found in Ls.

Example: Let L; = L(a*(bc)*) and Ly = L((cb*)"). Then
Li/Ly = {w € {a,b,c}* | (3v € L((cb*)*))[wv € L(a*(bc)*)]}-

If wv € Ly then wv = a*(be)’ for some 7,5 € N.
If v € Ly then v = (cb*)(cb*?) - - - (cb*) for some ky, ky,..., ki €N, [> 0.
It follows that

wv = a'b(ch)™c = a'b(ch)™ " (cb') " (cb®) and w = a'b(ch)™ ', m—1—1 >0,

Thus
Ll/LQ = L(a*b(cb)*)

47. Let Ly = L(a*ba*) and Ly = L(b*a). What is Ly/Ly?
48. Let L3 = L(ba*b) and L; remain the same. What is L;/L3?

Theorem 6 The class of reqular languages is closed under quotient with ar-
bitrary languages.

Closure Properties of the Class of Regular Languages 97

That is, as long as L is regular, Ly can be any language whatsoever and L /Ly
will be regular. (It is not required that it even be possible to effectively decide
if a given word is in L.)

Proof (sketch): Let L1 = L(M;) and M; =(Q, %, 6, qo, F).
Let M'=(Q, %, 4, q, F') where

F'={qe Q]| (3ve Ly)[d(q,v) € F]}.

It is easy to show, then, that w € L(M') < w € Ly /L. .

49. Show it.

Note that if it is not possible to effectively decide if v € L, then we will not be
able to effectively decide if ¢ € F’. But there are only 2°24®@) subsets of Q.
One of these is the right one. Thus there is some DFA that recognizes L/ Lo,
although we may not be able to effectively decide which one. Of course, if Ly
is regular we can tell if w € Ly and the construction is effective.

Corollary 4 The class of reqular languages is closed under the operation
Prefix(L) € {w € ¥* | (3v € £%)[wv € L]}.
Since Prefix(L) = L/X*.
50. Suppose L is any nonempty language. What is ¥*/L?
51. What is L/0?
52. What is L/{e}?
53. Suppose L, L, and L3 are arbitrary languages. Show that
L1/(Lz U Ls) = (L1/L2) U (L1/Ls)

and that
Li/(LyN L3) = (L1/Ly) N (Ly1/Ls).

54. Suppose, again, that L;, L, and L3 are arbitrary languages. What is
Li/(Ly/L3)?

55. What is (Ll/LQ)/LE;?

98 Basic FL'T—Finite and Regular Languages

12.4 Substitution and Homomorphism

Let f be a function that maps each o0 € ¥ to some regular language L,. In
general, each L, may be over its own alphabet [, distinct from the others, but
we can understand all of the L, to be languages over I' = | .x.[I';]. So while
the function may map symbols in ¥ to languages over some other alphabet I,
we can take the range of f to be languages over that single alphabet:

f:X—=P().
f is a substitution of reqular languages for 2.

Definition 47 If w € ¥X* then
def [{e} ifw=¢,
fm”‘{ﬂwwﬂw Jw=u'-o
Definition 48 If L C ¥* then

FL) < {f(w) |we L}.

Note that if f(o) includes € then f may erase ‘o’s occurring in strings in L,
while if f(o) = () then f has the effect of deleting every string in L in which
‘o’ occurs.

Example: Let f(a) = L(a™ca™) and f(b) = (b*cb'). Let L = ((ab + ba)*).
Then abab € L and

acaaab\bbfc_@aaacaab\cbfbﬁ € f(w).
€f(a) €f(b) €f(a) €f(b)
And
((ab + ba)*))
({ab} U {ba}))*
E{ab}) U f({ba}))*
(

) - f(O)U f(b) - f(a))®
atca™)L(bTeb) U L(bTeb™)L(aTca™))*
(atea™dteb® + btebtatcat)r).

f(L

(f

= (f
(f

(L

L(

Theorem 7 The class of reqular languages is closed under substitution by
reqular languages.

Closure Properties of the Class of Regular Languages 99

Proof (sketch): If L is regular then L = L(r) for some regular expression 7.
Then f(L) = L(f(r)) where f(r) is, in essence, the result of applying f to r. -

56. Let L = L(((a + ba)*ba)*) and f = {a — L(ab*a),b — L(b*ab*)}. Give
a regular expression for the language f(L).

Definition 49 Let h : X — I'* map symbols of ¥ to strings over some alphabet
. We say that h is a homomorphism of ¥ to I'*, the homomorphic image of
w € X* (under h) is

def | € ifw=¢
h(w) = { h(w')-h(o) fw=w"-0o

and the homomorphic image of L C X* (under h) is

L) ¥ {h(w) |w e L}.

Corollary 5 The class of reqular languages is closed under homomorphisms.

This is because a homomorphism is, in essence, a substitution in which card(f (o)) =
1 for all o € ¥. Thus closure under substitution implies closure under homo-
morphism.

12.5 Reversal

Theorem 8 The class of regular languages is closed under reversal.

Proof (sketch): Let L = L(r) for some regular expression r. Let

(0 ifr=10
€ ifr=c¢
TRd§f< o ifr=o0

(sR+tR) ifr = (s+1)
(tR.sR) ifr=(s-1)
(sR) if r = (s*).

VA

\

It follows by an easy induction on the structure of w that w € L(r) < w® €
L(r®). Thus

100 Basic FL'T—Finite and Regular Languages

Proof (sketch, alternate): Let L = L(A) for some DFA A = (Q, %, , qo, F).
Let A =(Q', %, ¢, q), F') be an NFA with:

Q = QU{g}
(g, e) = F
§'(q,0) = {p|d(p,o)=q}
P = {QO}-

So A’ is, in essence, the NFA one gets by reversing the edges of A.
57. Why is A’ an NFA rather than another DFA.
58. Complete the proof by showing that

w e L(A) & w® e L(A).

[Hint: Prove first that 6(¢, w) = p < ¢ € §'(p, w®) for all ¢, p € Q (that
is, every state but gj).]

59. Prove that the class of regular languages is closed under Suffix.
[Hint: Why is this question here rather than in Section 12.37]

12.6 Using Closure Results to Prove Languages are Non-
regular

Let Ly, = {a'd* | i > 0}. We will take L, to be our canonical non-regular
language. We can then use the known closure results for the class of regular
languages to prove, by contradiction, that some language L is not regular by
showing how to reduce L to L, using operations that preserve regularity.

Example: Let L = {w € {a,b,c,d}* | |w|, > |w|,}. To show that L is not
regular.
Let Ly = LN L((ab)*(cd)*). Then

Ly = {(ab)"(cd)? | 0 < j < i}.

Closure Properties of the Class of Regular Languages 101

Let Ly = hy(L;) where hy = {a — a,b+> &,¢+— b,d — ¢}. Then
Ly ={d'¥ | 0 < j <i}.
Let Ly = ho(Ly) where hy = {a +— b,b+— e,¢— a,d — ¢}. Then
Ly = {bFd" |0 <1 <k}
Then
LoNLs® ={a¥ |0<j<i}n{a'b* |0<I<k}={a't |0<j=1i} = La.

As the class of regular languages is closed under intersection, homomorphism
and reversal if L were regular L., would be regular as well. But L, is our
canonical non-regular language and, consequently, L cannot be regular.

60. Consider again a system of two processes (A and B) exchanging messages
as in Exercise 25. Again A sends either ‘m;’ or ‘my’ and B acknowledges
with ‘a;’, ‘ay’ or ‘aiy’, where ‘a;’ acknowledges ‘m;’, ‘ay’ acknowledges
‘moy’ acknowledges both. In contrast to Exercise 25, we will

b

mo’ and ‘aqo
now allow any number of ‘m;’s or ‘ms’s to be outstanding. We require
only that every message is eventually acknowledged and that no ac-
knowledgment is sent unless there is some outstanding message(s) of the
corresponding type. Show that the set of finite sequences of messages
that satisfy this protocol is not regular.

[Hint: Start by taking an intersection with a regular set to simplify the
language. (Get rid of all the ‘my’s, ‘as’s, and ‘a;5’s.)]

102 Basic FL'T—Finite and Regular Languages

13 Some Decision Problems for the Class of
Regular Languages

We’ll close this study of the regular languages by considering whether certain
questions concerning given regular languages can be decided algorithmically.
We will focus on a few questions, with you doing a couple more as exercises.

Membership: Given a string and a finite representation of regular lan-
guage, is the string in the language?

Emptiness: Given a finite representation of a regular language, is that
language empty?

Finiteness: Given a finite representation of a regular language, is that
language finite?

Equivalence: Given finite representations of two regular languages, do
they represent the same language?

We will generally assume that the representation used in the instances of
these problems are DFAs. This is usually the easiest form to handle and, as
we have already established that there are algorithms for translating other
representations into the form of DFAs, if the problem can be decided given
DFAs it can be decided given any other representation.

61. Why don’t the instances of these problems just include the languages
themselves rather than representations of the languages?

62. Which of these properties are algorithmically decidable for the class of
finite languages?

These problems are all of the type we called “checking problems” in Sec-
tion I. They are more properly known as decision problems: given some in-
stance decide if it satisfies some property. If such a problem can be solved
algorithmically the corresponding property is said to be decidable.

13.1 Membership
Given a string and a DFA, is the string in the language accepted by the DFA?

Some Decision Problems for the Class of Regular Languages 103

The question here is whether the computation of the DFA on the string
terminates in an accepting state. The obvious way of approaching this is
to simply simulate the DFA: start with the initial ID, calculate its successor
(using the transition function), repeat until a terminal ID is reached, and
answer yes iff the terminal ID includes an accepting state. This is an effective
procedure—each step can actually be carried out—and it will certainly give
the right answer when it finishes. The issue we need to address is whether
it will always finish-—is it an algorithm? Here we can appeal to our initial
discussion of computations in Section 7. If an ID has a successor the length
of the remaining input in that successor is exactly one less than the length of
the remaining input in the ID. Thus, there are exactly |w| successors in the
computation of any DFA on w.

63. Which is to say, the length of the computation in transitions (steps) of
the DFA is |w|. What is the length of the computation in terms of its
representation as a sequence of IDs; how many IDs are in the sequence?

Consequently, in simulating the DFA the process of computing the successor
will be repeated exactly |w| times. Since strings have finite length, we are
guaranteed to reach a terminal ID in a finite number of steps.

Theorem 9 Membership is decidable for the class of reqular languages.

It is useful to consider this approach from the perspective of transition
graphs as well. In exploring the computation of the DFA on w we are simply
following the path labeled w in the transition graph of the DFA that starts at
¢o- For DFAs there is only one such path and it consists of exactly |w| edges.

64. Can we establish such a bound on the computations of NFAs without
e-transitions? With them? On paths in transition graphs?

13.2 Emptiness

Given a DFA, is the language accepted by that DFA empty? Membership
asks us to decide whether there is an accepting computation on a given input.
Emptiness asks us to decide whether there is a accepting computation on
any input. Since there are infinitely many strings that might be accepted,
this is, in general, more difficult: there are systems of computation for which
membership (or its equivalent) is decidable but emptiness is not. While we
might approach this by applying our algorithm for membership systematically

104 Basic FL'T—Finite and Regular Languages

to all strings over the alphabet of the DFA—starting with the empty string,
say, and then all strings of length one, then two, etc.—we cannot check all such
strings in finitely much time. For this approach to work we need to identify a
finite subset of the strings that suffices: a set we can check exhaustively which
is guaranteed to include some string in the language if the language includes
any string.

We can identify such a subset by thinking back to the Pumping Lemma
(Section 10, Lemma 13). This says that there is number n that depends only
on the DFA, such that if some string x with length n or more is in the language
accepted by the DFA then there is some string shorter than z in the language
(the string in which v is pumped zero times). Moreover, the length of that
string is no less than |z| — n (since, |uv| < n, and a fortiori |v| < n).

Suppose, then, that there is some string of length n or more in the language.
Let wp be such a string with minimal length, i.e. wy is in the language, |wy| > n
and every string with length n or more that is in the language is at least as
long as wy. How long is wy with v pumped zero times? Since this is strictly
shorter than wy and is in the language, and, by choice of wy, every string in
the language shorter than wy is shorter than n, it must be the case that wy
with v pumped zero times is shorter than n. Thus, we can limit our search to
strings of length strictly less than n.

All that remains is to figure out what n is for the given DFA. In proving
the pumping lemma we used a pigeon hole principle argument to show that the
computation of a DFA on any string longer than the number of states (that
is card(Q)) must include a loop. Cutting out this loop is what gave us the
accepting computation of the DFA on the string with v pumped zero times.
Thus, n can be taken to be equal to card(Q).

The algorithm, then, consists of applying the membership algorithm to all
strings over the alphabet of the DFA that are no longer than the size of its
state set. If any of these strings are in the language they witness the fact
that it is non-empty. If, on the other hand, none of them are, we know as a
consequence of the pumping lemma that no longer string is in the language
either.

This is even simpler if we think in terms of the transition graph. In that
context the emptiness problem is simply asking if there is any path in the
graph from the start state to an accepting state. Algorithms for solving this
problem (on finite graphs) should be well-known to you (e.g., Dijkstra’s or
Floyd’s algorithms). One of the attractions of representing DFAs as transition
graphs is the fact that known graph algorithms can be employed to solve their

Some Decision Problems for the Class of Regular Languages 105

decision problems.

13.3 Finiteness

Given a DFA, is the language accepted by that DFA finite? Just as the empti-
ness problem can be seen as a (potentially more difficult) generalization of
the membership problem, the finiteness problem is, in a particular sense, a
generalization of the emptiness problem. Here we need to determine not only
if any string is in the language accepted by the DFA but how many of them
there are, in particular, if there are only finitely many of them.

Thinking, again, in terms of the pumping lemma, if there are any strings
in the language of length n or greater then there will be infinitely many of
them (since we can pump v any number of times). Conversely, if there is no
string in the language of length greater than n then there are but finitely many
strings in the language (since the number of strings over a given alphabet of
length less than n is finite). So again, we can use the membership algorithm,
now searching for strings of length n or greater. And again, our problem is to
establish an upper bound on the length of the strings we test.

Consider, again, wy, a string of minimal length among those of length n or
greater in the language. How long is wy? We have established that, by choice
of wy, the length of wy with v pumped zero times is strictly less than n, and,
by the hypothesis of the pumping lemma, the length of v is no greater than
n, we can simply calculate that n < |wy| < 2n. Thus we need only search for
some string in the language of length between n and 2n.

65. Give an algorithm for deciding finiteness that is based on known algo-
rithms for deciding problems for graphs.

13.4 Equivalence

Given two DFAs, do they accept the same language? Here, again, we have a
sort, of generalization of the emptiness problem. We need not only to establish
whether there is any string in the language accepted by a DFA, but whether
the set of such strings for one DFA is the same as those accepted by another. In
this case the pumping lemma is not much help. Instead, we will appeal to the
Myhill-Nerode Theorem (Section 11) and, in particular, the result of Lemma 18
(Section 11.3). This tells us that the result of minimizing a DFA using the
construction of Section 11.3 is unique up to isomorphism, that is to say, is

106 Basic FL'T—Finite and Regular Languages

identical to all other minimal size DFAs accepting the same language except,
possibly, for the actual names of the states. Isomorphism of edge-labeled
graphs is another problem for which an algorithm is known (although perhaps
not as familiar). We can solve equivalence of DFAs, then, by minimizing them
and using the graph algorithm to test isomorphism.

66. Sketch an algorithm to decide isomorphism of DFAs.

We can establish decidability of emptiness even more easily if we combine
the closure results of the previous section with earlier results of this section.

67. Suppose L(A;) C L(Az). What is L(A;) \ L(A2)?
68. Suppose L(A2) C L(A;). What is L(As) \ L(A;)?

69. Show that there is an effective construction that, given DFAs A; and As,
builds a DFA accepting L(A;) \ L(A2) U L(Az) \ L(A;1). (This is known
as the symmetric difference of the languages.) You do not need to give
the actual construction, simply show how the constructions of Section 12
can be combined to make such a construction.

70. Use this result, along with decidability of emptiness, to show that equiv-
alence of DFAs is decidable.

We close with a couple of exercises.

71. In Section 12 we established that the class of regular languages was
closed under reversal: L regular implies L® regular. Let us say that a
language L is closed under reversal iff w € L implies w® € L. Prove that
the question of whether a given regular language is closed under reversal
is decidable.

[Hint: Use the closure properties and decision procedures we have al-
ready established.]

72. Show that decidability of both emptiness and membership is a conse-
quence of decidability of equivalence, i.e., show how an algorithm for
equivalence can be used (as a subroutine) to build an algorithm for empti-
ness or an algorithm for membership.

[Hint: For emptiness start out by giving a DFA that accepts the empty
language. For membership start out by sketching and algorithm that,
given w, constructs a DFA accepting {w}.]

