PART II

Finite and Regular Languages
Solutions

16

Basic FL'T—Finite and Regular Languages—Solutions

17

Part 11
Finite and Regular Languages

5

9.

10.

11.

12.

Finite Languages

card(L; - Ly) < card(L; x Lg) = card(L;) - card(Ly).
Why is it < and not just =7

(Solution)

Because there may be strings wq,v; € L; and ws,v9 € Ly such that
WiW2 = V109, €.8., W1 = Vg = ¢ and Wo = V.

card(L, U Ly) < card(L;) + card(Ly).
Again, why is it < and not =7

(Solution)
Because any string in the both L; and L, shows up only once in their

union.

Why does this proof not work for infinite languages as well?

(Solution)

Because if the language is not finite then the induction is not well
founded. If L is infinite then L \{w} is infinite as well. Consequently,
the induction never reaches the base case.

Recall that we require alphabets to be finite. What happens to this defi-
nition if ¥ is infinite—does the class it defines include infinite languages?

(Solution)

The proof of Lemma 1 does not depend, in any way, on finiteness of
3. Thus the lemma is valid whether ¥ is finite or not; the class of the
definition is still all and only the finite languages over .. The finiteness

18

13.

14.

15.

16.

Basic FL'T—Finite and Regular Languages—Solutions

of the languages in the class is a consequence of the finiteness of the
construction. A language is in the class iff it can be constructed in
finitely many steps and each step can add only finitely many strings to
the languages that have already been constructed.

Regular Languages and Regular Expressions

Is it possible for a given language to be the denotation of more than one
regular expression? If so, give a simple example.

(Solution)

This follows immediately from the algebraic properties of the set oper-
ations, associativity of concatenation, for instance, or associativity and
commutativity of union:

L(a-(a-a)) = {a} - ({a} - {a}) = {a} - {aa} = {aaa}
= {aa} - {a} = ({a} - {a}) - {a} = L((a - a) - a).
L(a+b) ={a} U{b} ={a,b} ={b} U{a} = L(b+ a).

Show that the basis expression ‘c’ is redundant; every set that can be
defined using it can also be defined without it.

(Solution)

L(07) = (L))" = (0)" = {e}-

Thus every occurence of ‘¢’ can be replaced with ‘(§*)’. Note that this
is another example of distinct regular expressions that denote the same
set.

What is the denotation of ‘(b*((ab*)*a + €))*’?

(Solution)

({6} - (({a} - {b}7)" - {a} U {e})".

Show that R* = R + R*.

Regular Languages and Regular Expressions 19

17.

18.

(Solution)
To show that L(R*) = L(R+ R*) we will first show that L(R) C L(R*):

L(R) = L(R)' C L(R)* = L(R").

Then
L(R+R")=L(R)UL(R") = L(R").

Show that (R + S)* = (R*S*)*.
(Solution)

To show that L((R + S)*) C L((R*S*)*), suppose w € L((R + S)*).
Then w € (L(R) U L(S))* and, in particular, w € (L(R) U L(S))* for
some k > 0.
Consequently, we can divide w into w; - wy - - -+ - w, where each w; is
either in L(R) or in L(S).
If w; € L(R) then w; € L(R)'L(S)° C L(R*S*).
Similarly, if w; € L(S) then w; € L(R)°L(S)! C L(R*S*).
Evidently, then,

w € L(R*S*)* C L((R*S*)*).

To show that L((R*S*)*) C L((R + S)*), suppose that w; € L((R*S*)*)
and, in particular, that w; € L((R*S*)¥) for some k. Again we can divide
w into wy - - - - - wy; here each of the w; are in L(R*S™).

Then each w; is in L(R)%L(S)™ for some I;, m; € N and

w; € L(R)“L(S)™ C L(R+S)“L(R+S)™ = L(R+S)"“*t™ C L(R+S)*.
It follows that w € (L(R + S)*)*, which, by the identity of the second
example of Section 7.1, is just L(R+ S)* = L((R+ 5)*).

Show that R* = R* + ¢

(Solution)
R* = R'R+¢ (R12)
= R‘R+c+¢ (R3)
= R +¢ (R12).

Alternatively, working as we did in Exercise 16, since ¢ € L(R*):

R*+e=L(R")U{e} = L(R").

20

Basic FL'T—Finite and Regular Languages—Solutions

19. Write a regular expression for the language over {a, b} in which no string

contains the sequence ‘bab’ as a substring. Prove that the regular ex-
pression denotes exactly that language.

(Solution)

Let’s call this language L;_;. The main insight is that whenever ‘a’s occur
between ‘b’s they must occur in blocks of at least two. So strings in this
language look like: a block of zero or more ‘a’s, followed by alternations
of blocks of any number of ‘b’s and blocks of at least two ‘a’s and ending
with a block of any number of ‘a’s. Thus:

R =a"(bb*aaa™)* (e + bb*a®).

(This can be simplified, but it is useful to choose a form that supports
an easy proof.)

Claim 1 Ly; = L(R).

Proof: (L(R) C L)

If w € L(R) then w = wvx where u € L(a*), v € L((bb*aaa*)*) and
x € L(e+bb*a*). Note that no ‘b’s precede any ‘a’ in u, that all ‘a’s in v
occur in blocks of at least two, and that no ‘0’ follows any ‘a’ in . Thus
no ‘bab’ occurs anywhere in w.

(Lyas € L(R))

Suppose w contains no ‘bab’. Divide w into substrings between the ‘a’
and ‘b’ in every occurrence of ‘ab’. Then w = wiwy - - - wy, Where wy is
a block of zero or more ‘a’s, wy is a block of one or more ‘b’s followed
by any number of ‘a’s, and, for 1 < ¢ < k, w; is a block of one or more
‘b’s followed by some positive number of ‘a’s. Note that when w; is con-
catenated with w; 1 the block of ‘a’s it contains will be both preceded
and followed by a ‘b’. Since ‘bab’ does not occur in w, this block must
contain at least two ‘a’s.

It follows, then, that w; € L(a*), wy € L(e + bb*a*), and, for 1 < i < k,
each w; € L((bb*aaa*)*). Hence w € L(R). =

Deterministic Finite-State Automata (DFAs) 21

7

20.

21.

Deterministic Finite-State Automata (DFAs)

Sketch a proof that if w € L(A) according to Definition 29 then w €
L(A) according to Definition 31. (Just give the base case(s), the IH, and
an outline of the inductive step.)

(Solution)

(I will give the full proof.) R
To show that (g, w) \—:l (p,e) = (¢, w) = p (induction on the length of

the computation):

(Basis:)

Suppose (¢, w) X (p,e). Then w =¢, p = ¢ and 3(q, g) =q.
(IH:)

Suppose (g, w) [* (p,€) = b(g,w) = p.

(Ind:)

To show that (g, w) [(p,e) = d(q, w) = p:

2+ (p,e). Then (p,e) is the (n + 1) successor of

h

Suppose (g, w)

(g, w). Consequently, there must be an n’
is some p’ such that

successor: w = vo and there

(g,v) ¥ (¥',e) and (p',0) = (p,¢)

and thus, by the definition of |- , 6(p,0) = p.
By the IH, 6(g,v) = p' and, consequently, (g, vo) = p, by the definition
of §.

Using this result

w € L(A) (Def. 29) qg,w) = (p,e), for some p € F
w

(w)=p€eF
L(A) (Def. 31)

Sy o~

=
= q,
= €

g

Sketch a proof of the converse: that if w € L(A) according to Defini-
tion 31 then w € L(A) according to Definition 29.

22

22.

Basic FL'T—Finite and Regular Languages—Solutions

(Solution)

(I will, again, give the full proof.)
To show that (g, w) =p = (¢, w) \—; (p,e) (induction on the length of

the path, i.e., |w|):
(Basis:)
Suppose w = €. Then §(q,¢) = ¢ and (g,) 2 (g,).

(IH:)

Suppose w = vo and, for all strings u of length |v|, that
5((]’ u) = p= (g, u) |_; (pla £)-

(Ind:)

Suppose 3(q,va) = p. By the definition of 5 it must be the case that
d(6(q,v),0) = p. Let p' =6(q,v). Then 6(p,0) = p.
By the IH, then, (g, v) \M (p',€) and, by the definition of |- , (p,0) -

(p,). It follows, then, from the definition of | | that (g, v) |£’|Jr1 (p,€).
Using this result:

w e L(A) (Def. 31) = é(qw)=peF
= {(q,w)|* (p,e), for some p € F

= w € L(A) (Def. 29)

Prove for all DFAs A, that ¢ € L(A) < ¢y € F. (Do not forget that you
must prove both directions of the ‘<’.)

(Solution, using computations)
e € L(A) < (q,¢) E {(g,e) for some q € F.
But {(qo,€) & {¢,€) & ¢ = qo- Hence, ¢ € L(A) < ¢qo € F.

(Solution, using paths)
Since 8(go, €) =€,

ee L(A) < 6(gp,e) e FeqeF

Deterministic Finite-State Automata (DFAs) 23

23.

24.

Our interest, in defining DFAs, is in defining L(A). But L(A) is defined
in terms of 4 rather than 6. Why, then, don’t we define DFAs in terms
of ¢ instead of 67

(Solution)

The edge function 0 being of type @@ x ¥ — (@, is finite. The path
function 5, on the other hand, is of type () x ¥* — (), which, assuming
Y # () has infinite domain. If we were to include § in the definition of
the automaton it would be an infinite object and we may as well just list
the language itself. In a very strong sense, automata are finite means of
defining infinite languages.

Suppose A = (Q, X, 6, qo, F') is a DFA and that § is defined accordingly.
Prove that, for any strings x and y in 3%,

A

5(q, zy) = 6(6(q,2),)-
[Hint: use induction on |y|.]
(Solution)
(Basis:)

Suppose |y| = 0.

A

o(g,zy) = o
(

(

,) since zy = x
(g,2),e) def. of ¢
(¢,7),y) sincey=e.

Il
Sy Sy O
Sy S

(Induction:)

Assume |y| = n, y = y'o, 0 € ¥ and that the result holds for all
zy' € I, |y <yl

8(g,29) = b(g,ay'0) .
= 6(d(q,zy"),0) def. of 0
= 3(6(5(q,2),),0) IH
= 6(8(q,),y'0) def. of 6
= 0(0(¢), y).

24

Basic FL'T—Finite and Regular Languages—Solutions

25. Show that this is a regular set by providing an automaton and showing

that it accepts all and only the strings in Ls.
(Solution)
aiz

mo Mo

m

/% O

a1 S
4 ®

mi, gz, a12
a1, G2, A12 my, Mo

mg, a1, Q12

Invariants:
Qo: 6 (o, w) = qo < All messages have been ack’d properly
Q1: (g, w)=¢q. < Only m; is outstanding
Q2 (g, w) =¢2 < Only my is outstanding
Qs : (g, w) =¢q3 < Both m; and my are outstanding
Qs (g, w) =¢q; < Some m; without a; or v.v.
To show that these invariants hold for all w € ¥* (by induction on |w|):
(Basis:)
Suppose w = ¢, then:
Qo: 0 (qo,€) = and All messages have been ack’d properly (vacuously).
Q1: (qo,¢€) 75 and No m; is outstanding.
Q2: (qo,€) # g2 and No my is outstanding.
Qs : (go,€) # g3 and Neither m; or my are outstanding.
Qr: (go,€) #q;r and No m,; without a; or v.v.

Deterministic Finite-State Automata (DFAs) 25

(Induction:)

Suppose w = w'a, a € ¥ and invariants hold for all w' such that |w'| <

jw].

Qo :

Q1 :

Qo :

Qs :

Qy :

A

(g0, w'a) = qo
d(qo, w'a) = ¢
8(qo, w'a) = g
d(qo, w'a) = g3
d(qo, w'a) = qy

=

4y

R

4y

4l

5(q0,w') =¢q and a = a; or

S(qo,w') =gy and a = ay or
5(%, w’) =g3 and a = ap
Only m; was outstanding and a acks it, or
only my was outstanding and a acks it, or
both m; and my were outstanding and a acks both.

All messages have been ack’d properly

5(qo,w’) =¢qp and a = m, or
S(qo, w') = g3 and a = ay
All messages were ack’d and a is m, or
both m; and my were outstanding and a acks ms.

Only m; is outstanding

5(q0,w') = ¢y and a = my or
S(qo,w’) =gz and a = a;
All messages were ack’d and a is ms, or
both m; and my were outstanding and a acks m;.

Only ms is outstanding

5(q0,w’) = ¢, and a = my or
5(q0, w') = go and a = my
Only m; was outstanding and a is ms, or
only my was outstanding and a is m;.
Both m; and m, are outstanding
6(go, w'") = qo and a € ay, as, sz or
(o, w'") = ¢1 and a =€ my, ay, a;y or
(go, w") = q2 and a =€ my, a1, a1y Or
(go,w") = g3 and a =€ my, my or
6(QO’ U)’) =4y
All messages ack’d and a is ack, or
only m; was outstanding and a is m; or acks my, or
only my was outstanding and a is moy or acks my, or
both m; and my were outstanding and a is m; or msy, or
Some m; without a; or v.v. in w'
Some m; without a; or v.v. in w

Sy O Oy

26

Basic FL'T—Finite and Regular Languages—Solutions

To show that L(M) = Ls:
w € L(M) = 5((10, w) = gop = All messages have been ack’d properly = w € Ls.

w¢ L(M) = 5((10, w) # go = Some message outstanding or out of order = w ¢ Ls.

