Basic Formal Language Theory
Solutions

James Rogers
jrogers@cs.ucf.edu

PART I

Basic Concepts—Solutions



Basic Formal Language Theory—Solutions



Part 1
Basic Concepts

1

Computation and Languages

. Prove Claim 2. Show how, using an algorithm to solve the problem as

a subroutine, one can construct an algorithm for checking the problem.
This claim depends only on the assumption that there is a unique so-
lution for every instance (1 & 2), not on the assumption that instances
and solutions can be enumerated (3).

(Solution)

Suppose we have an algorithm for solving the problem. Given an in-
stance and a possible solution we can check the solution by running the
algorithm for solving the problem on that instance. If the result is the
same as the proposed solution we answer ‘Yes’ otherwise we answer ‘No’.

To verify correctness of this algorithm we have to show both that we only
answer ‘Yes’ when the proposed solution is correct and that whenever the
proposed solution is correct we will answer yes. The first is a consequence
of the correctness of the algorithm for solving the problem. We only
answer ‘Yes’ if the proposed solution is the same as the solution returned
by the algorithm for solving the problem, which, by assumption, is a
correct solution. The second part depends on the fact that there is a
unique solution for each instance. Thus if the proposed solution is correct
it will be the same as the solution provided by the solving algorithm and
we will answer “Yes’.



Basic FLT—Basic Concepts

Formal Languages

. Is L* ever empty? What about L*t? Under what circumstances does L+
contain €? (Consider the cases: L =) and L = {¢}.)

(Solution)

Since L' C L* and L° % {e}, L* is never empty. L*, on the other hand,
will be empty if L = (), since L it Lforalli>1and L'-0 =0
for any L'.

ee Ltiffe € L.



An Informal Preview

3

An Informal Preview

of this question.

(a) Sketch an algorithm to recognize the language: {(ab)* | i > 0} (that
is, the set of strings in {a, b}* consisting of zero or more repetitions

. First model: Computer has a fixed number of bits of storage. You will
model this by limiting your program to a single fixed-precision unsigned
integer variable, e.g., a single one-byte variable (which, of course, can
store only values in the range [0,...,255]), etc. Limit yourself, further,
to a single call to input() which occurs in the argument of a case (or
switch) statement. The reason for this will become clear in the last part

of ab: {ab, abab, ababab, . ..}).

(Solution)
last :=‘b’;
loop

-——Tracks previous input symbol

{ case (input())

{ ‘a’:

EOF:

if (last == ‘b’) then

{ mnext();

last :=‘a’

}
else
{ exit(False) }
endif;
if (last == ‘a’) then
{ next();

last =D’

}
else
{ exit(False) }
endif;

if (last == ‘b’) then
{ exit(True) }

else

{ exit(False) }
endif;



Basic FLT—Basic Concepts

endcase

}

endloop

(b) How many bits do you need for this (how much precision do you
need)? Can you do it with a single bit integer?

(Solution)

All that is necessary is to keep track of whether the last symbol was
an ‘e’ or an ‘b’. Thus a single bit suffices.

(c) Sketch an algorithm to recognize the language: {(abbba)’ | i > 0}.
(Solution)

Here we can let the variable last range over the set {¢, a, ab, abb, abbb, Fail},

i.e., it is an enumeration type taking values that are proper prefixes
of ‘abbba’ (plus Fail).

last :=¢; -——Tracks previous input
loop
{ case (input())
{ ‘a’: case (last)
{ e: { 1last:=‘a’; next() };
‘a’,‘ab’,‘abb’ ,Fail: { last:=Fail; next() };
“abbb’: { last:=e; next() }
}s
‘b’: case (last)
{ &,‘abbb’ ,Fail: { 1last:=Fail; next() };
‘a’: { last:=‘ab’; next() }
‘ab’: { last:=‘abb’; next() }
“abb’: { 1last:=‘abbb’; next() }
}s
EOF: if (last == ¢) then
{ exit(True) }
else
{ exit(False) }
endif;
¥

endcase

}



An Informal Preview 7

endloop
(d) How many bits do you need for this?

(Solution)
This solution needs to distinguish between the six values of last
so, evidently, three bits are needed.

(e) Suppose we relax the last limitation and allow any (finite) number
of calls to input occurring anywhere in the program. Sketch an al-
gorithm for recognizing the language of part (a) using (apparently)
no data storage. Argue that any algorithm for recognizing this lan-
guage must store at least one bit of information. Where does your
program store it?

(Solution)
while (input()=/= EOF)
{ if (input() == ‘@’) then ---Have seen wa for w € (ab)*
{ mnext();
if (input() == ‘b’) then ---Have seen wab for w € (ab)*
{ next() }
else
{ exit(False) }
endif
}
else
{ exit(False) }
endif
}
endwhile;

exit (True)

While this code uses no variables it must, in any case, distinguish
the situation in which the previous input was an ‘a’ from that in
which it was a ‘b’—in the one case a ‘b’ is expected, in the other
a ‘b’ should result in failure. Here the value of the previous input
symbol is tracked by the position in the code. In effect, the variable
last is being stored in the program counter.

4. Second model: Computer has a single unbounded precision counter
which you can only increment, decrement and test for zero. (You may



Basic FLT—Basic Concepts

assume that it is initially zero or you may include an explicit instruc-
tion to clear.) Limit your program to a single unsigned integer variable,
and limit your methods of accessing it to something like inc (i), dec (i)
and a predicate zero?(i) which returns true iff ¢ = 0. This integer
has unbounded precision—it can range over the entire set of natural
numbers—so you never have to worry about your counter overflowing.
It is, however, restricted to only the natural numbers—it cannot go neg-
ative, so you cannot decrement past zero.

(a) Sketch an algorithm to recognize the language: {a‘b* | ¢ > 0}. This
is the set of strings consisting of zero or more ‘a’s followed by ezactly
the same number of ‘b’s.

(Solution)

Here we need to check the string for two properties: all ‘a’s precede
all ‘b’s and the number of ‘a’s and ‘b’s are equal. The idea is to
increment the counter while scanning the ‘a’s and decrement it while
scanning the ‘b’s. At all points in the computation the value of the
counter will be the number of ‘a’s scanned so far minus the number
of ‘b’s. If it is zero at the end of the string then the string is in the
language.

The variable cnt will be the counter; assume it is initialized to zero.

while (input() == ‘a’)

{ inc(cnt); next() }

endwhile;

while (input() == ‘b’ and not(zero?(cnt)))

---Exits prior to EOF if input not in a*b* or if a’b?, j > i.
{ dec(cnt); next() }
endwhile;
exit(input() == EOF and zero?(cnt))

(b) Can you do this within the first model of computation? Either
sketch an algorithm to do it, or make an informal argument that it
can’t be done.

(Solution)

The reason this cannot be done in the first model is that we can
put no finite bound on the number of ‘a’s we may have to count.
In particular the program will have to be able to distinguish strings



An Informal Preview 9

that start with a sequence of 7 ‘a’s from those that start with j
‘a’s for every 7 and j # i. Why? Because if the rest of the string
is a sequence of 7 ‘b’s we will want to accept it in the first case
but reject it in all the others. But if we we restrict ourselves to a
k-bit variable, one that can hold values between 0 and 2¥ — 1, we
will only be able to distinguish 2* strings altogether. Thus, if we
can correctly recognize a‘b* for 0 < i < 2*, we will have to confuse
strings starting with 2% or more ‘a’s with strings starting with fewer
than 2* in which case we will be bound to accept some string with
fewer ‘b’s than ‘a’s.

Give an informal argument that one can’t recognize the language:
{a'b’c’ | 1 > 0} within this second model of computation (i.e, with
a single counter).

(Solution)

Here the intuition is that in order to check that the number of ‘b’s
is equal to the number of ‘a’s we have to lose the count of ‘a’s. The
counter can be used just once; it can test equality of two strings
but not three.

5. Third model: Computer has a single LIFO stack containing fixed preci-
sion unsigned integers (so each integer is subject to overflow problems)
but which has unbounded depth (so the stack itself never overflows). In
your program you should limit yourself to accessing this with methods
like push(i), top(), pop(), and a predicate like empty?(). These will
push a value into the stack, return the value stored in the top of the
stack (the most recent value pushed), discard the top of stack, and test
the stack for empty, respectively. Don’t forget that you have no storage
outside of the stack, so you need to work directly with the values in the
stack—you can’t pull a value out of the stack and assign it to some other
variable.

(a)

Sketch an algorithm to recognize the language: {wecw® | w €
{a,b}*}. This is the set of strings made up of any sequence of
‘a’s and ‘b’s followed by a ’c’ and then exactly the same sequence of
‘a’s and ‘b’s in reverse order, so these are all palindromes over the
alphabet {a, b, c} in which ¢’ occurs only as the middle symbol. It



10

Basic FLT—Basic Concepts

includes strings like:

abbacabba aca abaabcbaaba ¢ (which, of course, equals ece).

(Solution)

The idea here is to push symbols into the stack until encountering
the ‘¢’ and then pop them and match them to the remainder of the
string. Since they come out of the stack in the opposite order of
the way they went in, the second portion of the string will match
iff it is the reverse of the first.

1

while (input() == ‘@’ or input() == ‘b’)
{ push(input()); next() }
endwhile;
if (input() == ‘c’) then
{ next O;
while (not empty?() and top() == input())
{ popO; next() }
endwhile
}
endif;
exit(empty?() and input == EOF)

What is your intuition about recognizing this language within the
second model (i.e., using just a single counter)?

(Solution)

While it is possible to uniquely represent each possible prefix w
with a counter, by, for instance, letting the binary representation
of the value of the counter represent the string (there are a number
of complicating details, but they are not insurmountable), to make
this work we would evidently need to be able to double the value of
the counter in order to get from one prefix to the next. Note that
we could do this using two counters, since we can use the second
counter to double the value of the first. (How?)

What is your intuition about the possibility of recognizing the lan-
guage {wew | w € {a,b}*}? This is the set of strings made up of
any sequence of ‘a’s and ‘b’s followed by a ’c¢’ and then exactly the



An Informal Preview 11

same sequence of ‘a’s and ‘b’s in exactly the same order; it’s referred
to as the (deterministic) copy language.

(Solution)

Here we would need to access the bottom of the stack somehow—to
access it in FIFO rather than LIFO order. Again, if we were to use
two stacks we could do this, but we cannot do it with just a single
stack.

6. Fourth and final model: Computer has a single FIFO queue of fixed
precision unsigned integers with the length of the queue unbounded.
You can use access methods similar to those in the third model. In this
model you will have something like front () that will return the value
in the front of the queue (the eldest item) rather than top().

(a)

Sketch an algorithm to recognize the copy language ({wew | w €
{a,0}"}).
(Solution)

Following the intuition of the last part of the previous problem, we
can just modify the previous algorithm to call front () instead of
top().

What is your intuition about the possibility of recognizing the palin-
drome language of the previous question ({wcw® | w € {a,b}*})?
(Solution)

Here intuition fails. It turns out that one can recognize wcw™ using
just a queue. Rather than explain how, we’ll let you ponder this
one. (Hint: it is possible to access a queue LIFO.)

R



12 Basic FLT—Basic Concepts

4 Inductive Proof

7. Prove for all w,v € ¥* for any alphabet ¥, that (wv)R =Rk,

(Solution)

Proof: By induction on |v].

(Basis:)

(we)® = w? = ewk,

(IH:)

Let v = uo, 0 € ¥, and assume, for induction, that the lemma is true
for wu.

(Induction:)
Then

(wuo)® = o(wu)® by definition
= o(ulw®) by IH
%)

= (ou wi by associativity of concatenation

= (uo)®w by definition
Rk,

8. Let T, be the set of all binary-branching trees, where

e The trivial tree (consisting of a single node) is in T5.

e If t; and ¢, are trees in 75, then the tree formed by taking ¢, as the
left subtree, t5 as the right subtree, and a new node as a root is also
a tree in T5.

e Nothing else.

For every tree t € T let d(t) be the depth of t defined:

d(t) = 0 if ¢ is trivial,
| 1+ max(d(t1),d(t2)) if ¢ is constructed from ¢; and ¢,.



Inductive Proof 13

The leaves in a tree t € T, are its trivial subtrees—the nodes which have
no descendents. Let [(t) denote the number of leaves in the tree t.
Prove for all t € Ty that d(t) +1 < I(t) < 240),

(Solution)
(Basis:)
Suppose t is trivial. Then it contains exactly one trivial subtree (¢ itself)

and, by definition, d(t) = 0. Thus:

d(t) +1=1=1(t) and 20 =2° =1 = [(1).

(IH:)

Suppose, for induction, that ¢ is constructed from ¢; and ¢ and that the
result is true for both ¢, and 5.

(Induction:)

WLOG! assume d(t;) > d(ts).
Then d(t) = 1+ d(t1), I(t) =
(since I(to) > 1). Thus

l(t1) + l(tg) and l(tl) + l(tz) 2 l(tl) +1

dit)+1=14+d(t:)+1<1(t1) +1 (by IH) <I(t1)+I(t2) = (1),
and

l(t) = l(tl) + l(tQ) < 2d(t1) + Qd(tz) < 2d(t1) + 2d(t1) — 21+d(t1) — 2d(t)‘

'Without Loss Of Generality



14

Basic FLT—Basic Concepts



