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1. Abstract 

This paper covers “Decisions, Counterfactual Explanations and Strategic Behavior” by Stratis Tsirtsis and 

Manuel Gomez-Rodriguez. In this paper, Tsirtsis et al. propose the use of counterfactual explanations for 

maximization of utility with automated decision makers. They show that finding the optimal set of 

counterfactual explanations for a decision policy is NP-Hard. They also show that finding the optimal 

decision policy and set of counterfactual explanations simultaneously is NP-Hard. This is done by reducing 

Set Cover to these problems. However, Tsirtsis et al. showed that a greedy algorithm offers a 1 −
ଵ


  

approximation factor for the first problem and a recent randomized algorithm offers a  
ଵ


  approximation 

factor for the second problem. Lastly, Tsirtsis et al. run experiments on real and simulated data to test the 

affect their approximation algorithms on utility. 

2. Introduction 

Important decisions are increasingly made by computers and automated decision makers. Automated 

decision makers typically have two stages: first, a predictive model predicts what would happen if it took 

each decision, then the decision maker picks a decision that maximizes a utility function according to the 

predictions. Many important institutions are using automated decision makers to assist or fully control the 

decision making process. These include banks giving out loans, judges granting bail, companies hiring 

employees, large investing firms trading stocks, and many more. These decisions have a big impact on 

society; therefore, decision makers are often pressured or legally obligated to provide reasons for their 

decisions. Because of the increased prevalence of automated decision makers, a law in the EU to be passed 

that gives individuals that have been part of a semi-automated decision process a right-to-explanation. This 

has caused a lot of work in the area of interpretable machine learning. Interpretable machine learning 



attempts to explain the prediction of a predictive model. However, this is only one side of the coin. Tsirtsis 

et al. instead attacked the problem by attempting to provide optimal counterfactual explanations. A 

counterfactual explanation is a feature an individual can improve in order to receive a beneficial decision. 

Once an individual receives a counterfactual explanation, it is clear that they may take the advice and 

improve their features, this may increase the utility of the decision maker. Therefore, an optimal 

counterfactual explanation is one that maximizes the utility of the decision maker. 

 In their paper, Tsirtsis et al. attacked three main problems. They first showed that finding an optimal 

set of counterfactual explanations under a fixed decision policy is an NP-Hard problem. They did this with 

a reduction of the Set Cover problem. However, they show that a standard greedy algorithm achieves a 1 −

ଵ


 approximation factor on this problem. Then, they show that finding an optimal decision policy with a 

fixed set of counterfactual explanations can be done in polynomial time. Then they show that the problem 

of finding an optimal decision policy and set of counterfactual explanations is NP-Hard using a reduction 

of the Set Cover problem again. However, they show that a recent randomized algorithm provides an 

approximation factor of 
ଵ


. Lastly, they perform some experiments on their algorithms with some real and 

simulated data.    

3. Definitions 

An individual that desires a decision from an automated decision maker has a feature vector 𝑥 ∈ {1, … , 𝑛},  

a ground truth label 𝑦 ∈ {0, 1}, and a decision 𝑑(𝑥) ∈ {0, 1}. 𝑑(𝑥) = 1 is the beneficial decision. Each 

decision (𝑑(𝑥)) is sampled from a decision policy (𝜋), i.e. 𝑑(𝑥) ~ 𝜋(𝑑 | 𝑥). The ground truth (𝑦) is sampled 

from a conditional probability distribution (𝑃), i.e. 𝑦 ~ 𝑃(𝑦 | 𝑥). Let 𝑋 be the set of all possible feature 

values. 𝑋 = {𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … 𝑥} where 𝑚 is the number of possible feature values. 𝑋 is indexed such that the 

contribution of feature value to the ground truth is in decreasing order, i.e. ∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑚,   𝑖 < 𝑗 →

 𝑃(𝑦 = 1 | 𝑥) ≥ 𝑃(𝑦 = 1 ∣ 𝑥). When an individual with an attribute 𝑥 receives a counterfactual 

explanation 𝜀(𝑥) from the decision maker, it is a guarantee that the individual will receive a beneficial 



decision if it changes its feature from 𝑥 to 𝜀(𝑥). 𝑐൫𝑥, 𝜀(𝑥)൯ is the cost an individual 𝑥 incurs by switching 

from 𝑥 to 𝜀(𝑥). 𝑏(𝜋, 𝑥) is the immediate benefit 𝑥 receives from a decision policy 𝜋. The Region of 

adaptation  (𝑅(𝑥)) is the feature values it would change if told to, i.e. 𝑅(𝑥) ≔ ൛𝑥 ∈ 𝑋 ห 𝑏൫𝜋, 𝑥൯ −

𝑐൫𝑥 , 𝑥൯ ≥ 𝑏(𝜋, 𝑥)}.  An individuals best response is to change their feature value from 𝑥 to 𝜀(𝑥)  if and 

only if 𝜀(𝑥) if in its region of adaption of 𝑥, i.e. 𝜀(𝑥) ∈ 𝑅(𝑥). 𝑢(𝜋, 𝐴) is the expected utility of the 

decision maker. The authors assume the decision maker is rational and wants to maximize their utility. 

Therefore, given a feature value 𝑥 and a set of counterfactual explanation 𝐴, if the region of adaptation of 

𝑥 includes something in 𝐴, the decision maker will choose 𝜀(𝑥) that maximizes their expected utility 

assuming individuals adapt 𝑥 to 𝜀(𝑥).  If the region of adaptation does not intersect with the set of 

counterfactual explanations, the decision maker arbitrarily picks an explanation since the individuals will 

not adapt regardless of choice. Tsirtsis et al. attack the problems of finding the optimal set of counterfactual 

explanations for a given policy, finding the optimal policy for a given set of counterfactual explanations, 

and jointly finding the optimal policy and set of counterfactual explanations. 

4. Finding the optimal set of counterfactual explanations for a decision policy 

Tsirtsis et al. attempt to solve the following problem: given a decision policy 𝜋 and an upper bound on the 

size of the set of counterfactual explanations 𝑘, find a set of counterfactual explanations 𝐴∗ s.t. |𝐴∗| ≤ 𝑘 and 

𝑢(𝜋, 𝐴∗) is maximized. The authors show that assuming the decision maker is rational, if the decision policy 

is outcome monotonic1 or deterministic, this is an NP-Hard problem. They do this by providing a 

polynomial time reduction from set cover to it, i.e. Set Cover ≤ our problem. However, the authors then 

prove that the problem has nice properties that allow a standard greedy algorithm to achieve a 1 −
ଵ


 

approximation factor on it. These properties are non-negativity, monotonicity, and submodularity.  The 

 
1 Outcome monotonic means that if an individual’s ground-truth probability is higher than another’s, then its 
probability of getting a beneficial decision is higher as well. This constraint is reasonable in a perfect information 
setting, however it may not always be the case in the real world. 



greedy algorithm of Nemhauser et al. provides a set 𝐴 s.t. 𝑢(𝜋, 𝐴) ≥ ቀ1 −
ଵ


ቁ 𝑢(𝜋, 𝐴∗), where 𝐴∗ is the 

optimal set of counterfactual explanations (Nemhauser et al., 1978). Algorithm 1 shows their procedure, it 

has time complexity 𝑂(𝑘ଶ𝑚ଶ) because of 𝑂(𝑘𝑚) utility function calls which can be calculated in 𝑂(𝑘𝑚) 

per call.   

5. Finding the optimal decision policy and set of counterfactual explanations 

The authors show that the optimal decision policy for a given set of counterfactual explanations is 

deterministic and can be found in polynomial time. However, the authors believe that jointly optimizing 

decision policy and set of counterfactual explanations offers greater gains in utility for the decision maker 

than optimizing one at a time. Therefore, the authors attack the following problem: given an upper bound 

𝑘 on the size of the set of counterfactual explanations, find 𝜋∗ (optimal decision policy) and 𝐴∗(optimal set 

of counterfactual explanations) such that |𝐴∗| ≤ 𝑘 and 𝑢(𝜋∗, 𝐴∗) is maximized. The authors claim this can 

be proved using a small modification of their other reduction. Therefore, Set Cover ≤ this problem. Define 

the function ℎ as ℎ(𝐴) = 𝑢(𝜋
∗ , 𝐴) where 𝜋

∗ is the optimal decision policy for the set of counterfactual 

explanations 𝐴. The authors have shown that the 𝜋
∗ can be computed in 𝑂(𝑘𝑚) time. The authors show 

that the function ℎ is non-negative and submodular. Unfortunately, the standard greedy algorithm can’t be 

applied to ℎ since it is not outcome monotonic. However, a recent randomized algorithm from Bunchbinder 

et al. provides a 
ଵ


 approximation factor, i.e. the algorithm returns a set 𝐴 s.t. ℎ(𝐴) ≤

ଵ


ℎ(𝐴∗), where 𝐴∗ and 

𝜋∗
∗  are the optimal set of counterfactual explanations and decision policy respectively (Buchbinder et al., 



2014). Algorithm 2 shows the algorithm for this problem, its time complexity follows from the same 

reasoning as Algorithm 1’s, there are 𝑂(𝑘𝑚) calls to the utility function, therefore the time complexity is 

𝑂(𝑘ଶ𝑚ଶ).  

6. Results 

The authors performed experiments on simulated and real data. These experiments measured the utility of 

the decision maker with 5 different decision makers. They tested black box, minimum cost, diverse, 

algorithm 1, and algorithm 2. The black box decision maker was the optimal decision policy in a setting 

without communication between decision maker and individual (referred to as a non-strategic setting), no 

counterfactual explanations were given to individuals.  The minimum cost decision maker used the optimal 

decision policy in a non-strategic setting and provided counterfactual explanations that minimized the cost 

to the individual. The diverse decision maker used the optimal decision policy in a non-strategic setting and 

provided a diverse set of counterfactual explanations that minimized the cost to the individual, this is similar 

to previous work (Russel, 2019; Mothilal et al., 2020). The decision maker that used algorithm 1 used the 

optimal decision policy of a non-strategic setting, the set of counterfactual explanations was computed 

using algorithm 1. Individuals were given counterfactual explanations that maximized the probability of 

their ground truth being beneficial. Lastly, the decision maker that used algorithm 2 used the optimal 

decision policy for the set of counterfactual explanations returned by algorithm 2, individuals were again 

given counterfactual explanations that maximized the probability of their ground truth being beneficial. 



The authors first experimented on synthetic data. This data was generated as follows: 𝑥 =

{0, … , 𝑚 − 1}, 𝑃(𝑥 = 𝑖) =


∑ ೕೕ
.  𝑝 is sampled from a Gaussian distribution 𝑁(𝜇 = 0.5, 𝜎 = 0.1) truncated 

below 0. 𝑃(𝑦 = 1|𝑥)~𝑈[0,1], 𝑐൫𝑥 , 𝑥൯~𝑈[0,1] for half of the pairs and  𝑐൫𝑥, 𝑥൯ = 2 for the rest of the 

pairs. Then the utility of the decision maker was calculated after the procedures described previously ran. 

The experiment was run 20 times. The results (taken from the authors’ paper) can be seen in Figure 1. Fig. 

1a shows the utility of the decision maker vs 𝑚, Fig. 1b shows the utility of the decision maker vs 𝑘, and 

Fig 1c shows the cost incurred by the individual vs 𝑘. The figure clearly shows that Algorithm 2 vastly 

outperforms all other decision makers in terms of maximizing decision maker utility. Furthermore, 

Algorithm 1 outperforms all decision makers except for Algorithm 2. Figure 1b shows that decision makers 

benefit from being more open about the decision making process. Lastly, increased utility of the decision 

maker is directly related to increased cost to the individual, however, the authors argue this is beneficial to 

the individual by making the probability their ground truth is beneficial higher. 

The authors also experimented on real data. They used the LendingClub dataset, this is a public 

dataset available at https://www.kaggle.com/wordsforthewise/lending-club/version/3. At the time, it had 

information accepted and rejected loans in LendingClub from 2007 to 2018. The dataset has various 

features including payment information, FICO credit scores, and current loan status for accepted applicants. 

The authors first built a decision tree classifier that predicts if an applicant will fully pay off a loan based 

on loan amount, employment length, state of residence, debt to income ratio, zip code, and FICO score. 

Their classifier achieved a 90% accuracy. The feature of an individual was the leaf of the decision tree it  

Figure 1. 



maps to. The probability 𝑃(𝑦 = 1|𝑥) is approximated using the decision tree. The cost 𝑐(𝑥, 𝑥) is 

calculated using the features that 𝑥 and 𝑥 are mapped to. The cost is also scaled by 
ଵ

ఈ
. Then, the same 

experiment was run as previously. The results can be seen in Figure 2. Figure 2a shows the utility of the 

decision maker vs 𝛼, higher 𝛼 means individuals are more willing to change their features. Figure 2b shows 

the utility vs the number of counterfactual explanations (𝑘). Figure 3c tests a new idea, in this experiment, 

individuals receive a random extra counterfactual explanation with probability 𝑝 (probability of leakage). 

Individuals take the explanation that benefits them the most. This is meant to simulate the idea of individuals 

communicating their counterfactual explanations with each other. Figure 1a shows that the benefit of 

simultaneously optimizing decision policy and counterfactual explanations increases if individuals are more 

likely to adapt. Figure 1b confirms that the decision makers perform similarly on real data and simulated 

data. Figure 1c tells us that if the probability of leakage is high, the decision maker is better off giving fewer 

counterfactual explanations. 

7. Conclusion 

The work of Tsirtsis et al. is very important, it impacts important aspects of society and begins the path 

towards further explanation of automated decision making. Automated decision making will only become 

a bigger part of society, explaining its decision making process and how to achieve a better decision is a 

crucial human aspect of decision making that is currently missing. Their work is very replicable and has 

strong theoretical foundations. The authors could have made their work more readable. Certain concepts 

were not clearly explained. When formally defining the problem, the authors skipped into defining the input 

Figure 2. 



to the algorithm. Instead, they should have started with an intuitive, and then a formal definition of the 

problem.  

Their paper leaves a multitude of avenues for further research. The authors outlined some of these. 

For example, the authors assume only one feature value per individual (one of the things not clear in the 

definition), this could be extended for multiple feature values per individual. Secondly, the cost of switching 

feature values is usually not given in the real world, it would be interesting to see this assumption removed. 

Also, the current method uses discrete feature values, a method for real valued feature values would be 

more useful. Lastly, the authors suggest that a method that allows information sharing between individuals 

is an interesting and useful goal. Further ideas for extension of this work include counterfactual 

explanations with multiple features and a decision maker that doesn’t limit itself to a set of counterfactual 

explanations, instead finding the optimal counterfactual explanation per individual.  
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