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Abstract. An RNA secondary structure is the shape that a given strand of RNA will fold
into, and largely determines an RNA molecule’s function. The ability to design an RNA
molecule is an important research topic in many subfields of biology and medicine.
Central to this process is the problem of discovering an RNA sequence that will fold into
a desired secondary structure. In this report, we will discuss a paper which proves that
this problem is NP-Complete, and then gives a practical algorithm for reducing the

exponential complexity of the problem.
Introduction

RNA —ribonucleic acid — is one of the fundamental building blocks of life. RNA molecules are the
templates from which proteins are built. Proteins, in turn, perform most of the complex work that
occurs at the cellular level — from metabolism to recognizing neurotransmitters in nerve cell
membranes. Some viruses are strands of foreign RNA which invade a host organism and use that

organism’s resources to replicate. [2]

A strand of RNA is a sequence of four nucleotides (A, C, G and U) called bases. Bases can bind together in
pairs; each pair reduces the free energy of the molecule. In the simplest energy model, Watson-Crick,
the only allowed pairs are AU and CG, and each pair of bases decreases the free energy of the molecule
by 1. Minimum free energy is achieved by maximizing the number of pairs in the strand [1]. More
complex, realistic models, such as the Nussinov-Jacobson model, have been developed which take into

consider the locality of bases which are not actually paired [3].



In the simplest form of pairing, called a stem loop, the RNA strand loops back on itself, resulting in a
hairpin loop of unpaired bases and a stem of paired bases. An RNA molecule consists of many stem
loops. A molecule is said to be pseudo-knot free if no part of a stem participates as a stem in a second
stem loop. The primary structure of an RNA molecule is the sequence of bases which comprise the
unfolded strand. The secondary structure is the minimum free energy configuration the strand folds

into.

The RNA-FOLDING problem is, given a sequence of bases, finding the minimum free energy,
pseudoknot-free secondary structure that the sequence folds into. This problem is known to be solvable
in O(n”3) time by dynamic programming [4] (where n is the length of the base sequence), or in slightly

less polynomial time by more clever methods [5].

The inverse problem of RNA-FOLDING is RNA-DESIGN. In RNA-FOLDING we have a sequence and would
like to find the optimal structure it will fold into; in RNA-DESIGN we have a secondary structure and
would like to find a sequence of bases that folds into that structure. RNA-FOLDING can determine what
a sequence of RNA might do by finding its shape; RNA-DESIGN determines how to implement an
engineered secondary structure in terms of bases. A specialization of RNA-DESIGN, RNA-DESIGN-
EXTENSION, is the problem solved in practice. This is RNA-DESIGN with the additional constraint that

some of the bases in the solution sequence are predetermined and may not be changed.

Motivation

The secondary structure of RNA largely determines its biological function. The earlier problem, RNA-
FOLDING, allowed researchers to determine what function a sequenced strand of RNA might perform.
RNA-DESIGN-EXTENSION, on the other hand, allows researchers to design a secondary structure which
performs some function, and compute an RNA sequence which implements that function. This has

applications in nanostructures and synthetic biology [6], as well as pharmaceutical research [7]. RNA



structures can be quite large; the largest known gene in the human body is for a muscle protein called
titin, containing over 80,000 base pairs [8]. Existing solutions used in these areas fall into one of three

categories:

e Models which use heuristics.
e Models which take exponential time.
e Models which are crowd sourced, such as EteRNA, where the folding problem is presented in a

video game interface and humans try to solve it [9].

Given the importance of the problem in growing medical fields and problem sizes which are large in the
context of an exponential algorithm, decisively proving that the problem is NP-Complete can both direct
resources to developing heuristic algorithms (rather than wasting time searching for a probably non-
existent polynomial-time solution) and provide deeper insight into the problem structure to inform

algorithm design.

Usefulness of problem as stated

The authors argue that proving the complexity of the problem as stated is a useful result. The Watson-
Crick energy model is simple and reduces to maximal pairings; the proof does not depend on more
complex energy models to prove hardness. Similarly, the proof is valid for pseudo-knot free structures;
structures containing pseudo-knots will be at least as complex. Finally, the problem as presented at this

level of simplicity is still useful in real-world structure design [1].

Terminology

To specify a problem instance, we need two things: a way to represent the desired structure, and an
encoding of a potential solution. The paper uses the dot-bracket notation, also used in the popular

open-source RNA toolkit ViennaRNA [10]. In this notation, parentheses and dots represent the



secondary structure. A matching pair of parentheses represent a base pair, and a dot represents an
unpaired base. For example, the structure (((....))) represents a stem loop with three matched base pairs

in the stem part and a loop of 4 unpaired bases.

A potential solution is a string of bases of the same length as the structure. The canonical way to do this
would be the letters A, U, C, and G; however, the authors chose to represent the solution as the digits 1,
2, 3, and 4 such that valid base pairs sum to 5. This simplifies discussion of some of the more detailed

parts of the proof.

A problem instance has, as well as a structure, an initial labeling. The alphabet for this labeling includes
the letter ‘?’ as well as {1,2,3,4}. A “?’ may be assigned any base to form a solution; however, if a base is
specified in the initial labeling, it may not be changed. This represents the real-world constraint that
there are some restrictions on the sequences which may be used to build a structure. The paper uses
the term partial sequence to refer to a solution that has ‘?”’s, and sequence to refer to a solution that
just has bases. A partial sequence is said to be extended to a sequence by replacing all instances of ‘?’

with a base.

A sequence qualifies as a design if it is compatible with the desired structure and can fold into no other
structure with more base pairs. A partial sequence can be extended into a design if there exists an

extension to it which is a design.

Proof of Hardness

Bonnet et al. prove that RNA-DESIGN-EXTENSION, as specified here, is NP-Complete [1].

As mentioned above, the inverse problem of RNA-DESIGN-EXTENSION — RNA-FOLDING — can be solved
in polynomial time. RNA-FOLDING can be used to check if a proposed solution to RNA-DESIGN-

EXTENSION is correct, so RNA-DESIGN-EXTENSION is in NP.



The authors prove that RNA-DESIGN-EXTENSION is NP-Complete by reduction from E3-SAT. E3-SAT is 3-
SAT with the restriction that each clause contains three distinct variables. From an arbitrary E3-SAT
instance, an RNA-DESIGN-EXTENSION (henceforth RDE) instance is constructed. The proof proceeds by

showing that the RDE instance has a design if and only if the SAT instance is satisfiable.

The construction of the RDE instance is done by defining gadgets for the SAT instance variables, literals
and clauses in the RNA bracket-dot form. Assume the instance has n variables x; and m clauses C;.
Define t = n? and y = (n + 3m)t. In the construction that follows, it will turn out that there will be y
unpaired bases. A variable gadget is of the form V < x; > = ((...)) where there are i(m + 1)y pairs of
parentheses and t dots. The open parentheses are labeled 1 and the close parentheses are labeled 4.
The dots are labeled 2 if the variable is assigned a true value; else they are labeled 3. Note that by
construction, the parentheses are properly labeled with matching base pairs and the dots match

nothing.

There are two forms of the literal gadget depending on the literal’s position in the clause. The middle
literal (L < I, > in the paper) is identical to the variable gadget the literal maps to. The exterior (L_;,, <

lp >and (L_;, <. >) literals are the same but remove jy pairs of parentheses.

-Jjy
A clause gadget is the concatenation of three literals — see Figure 1 from the original paper.

The entire SAT instance is encoded by concatenating all the variable and clause gadgets together, such
that every clause gadget is between the two variable gadgets matching the outer literals of the clause.
The entire structure can be viewed as a tree, where every subexpression inside a pair of parentheses is a

child of that pair. The authors claim as obvious that such an ordering can be found in polynomial time.
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Figure 1: A Clause Gadget

The first half of the proof argues that if the SAT instance is unsatisfiable, then the labeling of the
corresponding RDE instance does not have a design extension. Call the structure of the RDE instance S. If
the SAT instance is not satisfiable, then there will be some clause C; which is unsatisfied. If we remove
the g parentheses around the outer literals, then it becomes possible to build a new structure §’,
identical to S except that the literals can now pair with the surrounding variables they map to. Careful
counting of the parentheses we removed (just over g) and the pairings we add reveals that S’ has more
pairings than S. This means that the RDE solution implied by the labeling of S cannot be a design

extension, as there exists a structure that is also compatible with it that has more base pairs.

The proof in the other direction, that if the SAT instance is satisfied then the labeling of the
corresponding RDE instance can be extended to a design, is similar but with more edge cases. This half
of the proof is by contradiction. Assume there is a satisfying assignment for the SAT instance. Also
assume that there is some structure S’, also compatible with the RDE instance labeling, that matches
more base pairs. Without loss of generality we can take S’ to be the structure that matches the most
base pairs. The paper proves, via a counting argument, a bound on a the number of unpaired letters in
any subtree (R) (i.e. any expression R inside parentheses) of S’, and use that argument to prove that dots
associated with a variable can only match with other dots for that variable (or their literals). A similar

argument is used to show that the arches around clauses must only match with themselves. Both these



cases would cause more than y unpaired letters, and therefore S’ would not be better than S. Finally,
with these restrictions in place, the authors show a construction of a structure S”’, which has more pairs
than §’, contradicting the existence of S’ as a maximal matching better than S. Therefore S’ cannot exist

and S, having the maximal number of matched pairs, can be extended to a design.
Results

A naive solution to RNA-DESIGN is 0*(4™). In the last section of their paper, the authors show how the
tree structures used in the proof can be used to design a more efficient algorithm. The same properties
of the structure used in the proof to show that a structure can or cannot be rematched to a better
solution can be used to prove that a configuration in the search space can never yield a design. This
allows early pruning of the search tree, greatly reducing the exponent base. Their proposed algorithm

has the bounds

1. V3 -n%M, nbeing the length of the input structure, and

2. 25-n%D s peing the number of unlabeled elements in the input structure
This is still necessarily exponential, but far better than 4™.

The authors also note that [7] gives a polynomial algorithm for RNA-DESIGN of saturated structures (i.e.
structures with no unpaired bases) and claim that dynamic programing can, using the structures in the

proof, extend this polynomial time solution to the RNA-DESIGN-EXTENSION problem.
Final thoughts

To summarize, the proof maps a version of SAT to a well-parenthesized, tree-like expression, and then
uses that structure to prove something about the labeling of the expression. Tree-like structures and
matching problems occur frequently in computer science, so it’s likely that this kind of mapping could be

used for problems outside the scope of bioinformatics. The authors do not mention this possibility.



It is inarguable that RNA-DESIGN-EXTENSION is an important problem. At the time of this writing,
EteRNA’s focus is a folding problem related to the COVID-19 pandemic [9]. Proving a long-suspected
bound on the problem (per the authors, this has been an open problem for 20 years), while giving
insight into the problem’s structure, will help guide future research into finding better heuristics and not

spending time looking for a polynomial-time solution that likely does not exist.

The paper is very well presented, with precise language and little ambiguity. The authors make their
case well for both the importance of the problem and the real-world applicability of their formulation;
their results depend solely on the design problem itself, not added complexities such as a more complex
energy model or pseudo-knots. The high-level sketch of the proof makes the details of the proof itself
(and this is a non-trivial proof) understandable after only two or three readings. The applicability of the
proof structures to improved algorithms are a nice bonus in the conclusion. The only thing lacking is

perhaps a section on future directions and work.
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