
Designing RNA Structures is Hard

• A report on the paper by Édouard Bonnet, Paweł
Rzążewski, and Florian Sikora

RNA Secondary Structure Design

• Secondary structure is important in the biological
function of the molecule

• Solving the problem has real world applications:
• Pharmaceutical research
• Biochemistry
• Synthetic biology
• RNA nanostructures

RNA Structures

• RNA is made up of 4 nucleotides, labeled A, U, C, and G
• The primary structure of an RNA molecule is just a string

over the alphabet {A, U, C, G} – each element is a base
• Nucleotides can bind together: A with U, C with G in the

Watson-Crick energy model
• Each binding reduces the free energy of the molecule
• The secondary structure of a molecule is the set of

positional pair bindings

RNA Structures

• This structure is called a stem loop
• In a pseudo-knot-free structure, no stem contains part of a stem

from another stem loop
• A minimum free energy (MFE) structure is one with the maximal

number of bases paired (each pair is worth -1 energy)
• Sequences want to fold into an MFE configuration

RNA Structures

• The RNA-DESIGN problem
• Given a secondary structure, fill in the bases
• The solution cannot fold into any other structure with more

bound pairs
• RNA-DESIGN-EXTENSION (RDE): we are given some fixed bases

in the sequence
• Thesis: RNA-DESIGN-EXTENSION is NP-Complete

Robustness of Proof

• Uses Watson-Crick energy model (simplest)
• Other models are not uniform, more complex
• Prove hardness independently of energy model

• Ignore pseudo-knots
• Again, proving hardness in the easier case

• Reductions structure maps well to stem loops
• This is realistic, stem loops are a basic RNA building block

RNA-DESIGN-EXTENSION is in NP

• The inverse problem is RNA-FOLDING
• Given an RNA sequence, compute its MFE folding
• Can be solved with DP in polynomial time

• We can use RNA-FOLDING as an oracle to verify solutions to RNA-
DESIGN-EXTENSION

• Having such an oracle means that RNA-DESIGN-EXTENSION is in
NP

Proving RDE is NP-Complete

• Reduce from E3-SAT
• Each clause contains 3 distinct variables
• Known NP-Hard if each variable is used up to 4 times

• Map SAT instance onto a string representation of RDE
• Label the string representation with bases
• Show that the base sequence labels are a solution to the RDE

instance iff the SAT instance is satisfiable

Representing Secondary Structures

• A structure a well-parenthesized expression with dots (((..)(..)))
• ()’s represent a base pair, . represents an unpaired base
• A sequence is a string of the same length from {1,2,3,4}

• 1=A, 2=C, 3=G, 4=U so proper pairs sum to 5
• Sequence w corresponds to structure S if proper pairs match

• Sequence is a design if it can’t fold into anything with more pairs
• A partial sequence is a sequence with some ?’s (unassigned)
• A partial sequence w’ is a design extension if the ?’s can be filled

in to turn it into a design.

Building the RDE instance: variables
• Start with a E3-SAT instance with n variable and m clauses
• Define t := n^2 and y := (n+3m)t

• Note t=Θ(n^2), y=Θ(n^3); y >> t >> n
• A variable gadget V<Xi> is:

• Where (‘s are labeled 1,)’s are labeled 4, and .’s are labeled 2 if
the variable is true, else 3

• The parentheses are the arch of the variable

Building the RDE instance: clauses
• Let a clause Cj contain three literals la, lb, lc; a < b < c

• la is the same gadget as V<Xa>
• lb and lc are V<Xb>, V<Xc> with jy parentheses pairs remove
• The clause is

• Define t := n^2 and y := (n+3m)t
• Note t=Θ(n^2), y=Θ(n^3); y >> t >> n

• A variable gadget V<Xi> is:

• The jy+q parentheses are the arch of the clause
• The outer jy parentheses are the first arch layer
• The inner q parentheses are the second arch layer

Building the RDE instance

• The entire instance is clauses interleaved with variables such that every
clause is between the corresponding V<Xb> and V<Xc> gadgets

SAT unsatisfiable -> no design extension
• Black lines are by given construction, red lines are a re-matching by removing

some parentheses
• If clause is unsatisfiable, then it is possible to rematch to a better structure
• This implies the originally constructed structure is NOT a design extension

SAT satisfiable -> design extension
• This direction is too gory for full details
• Given a structure S with a satisfiable SAT instance, assume

• There is a better structure S’ for the corresponding sequence w
• Assume wlog that S’ actually is the maximal matching

• By an argument of counting matching parts of S’, can prove that there exists
S’’ which matches even MORE bases in w

• But this is a contradiction, so S’ cannot exist
• Therefore S itself must be the maximal matching and is a design extension
• We have proven SAT satisfiable iff the corresponding sequence is a design

extension, thus RDE is NP-Hard
• We showed earlier than RDE is in NP, thus RDE is NP-Complete

Algorithmic Consequences
• Taking advantage of the structures in the proof leads to a faster algorithm
• Naïve: ∗

• Using insights from the proof, can prune search space
• (), where n is the length of the input structure
• (), where s is the number of unlabeled elements in the input

structure
• RNA-DESIGN is known to be in P for saturated structures

• Using DP based on ideas from the proof, RDE is also tractable on saturated
structures

• There are many other tree-structured problems in computer science
• This gadget mapping may have uses elsewhere

Questions?

