
Complexity Theory
Introduction

Charles E. Hughes
COT6410 – Spring 2021 Notes

1/11/21 © UCF CS 2

Who, What, Where and When
• Instructor: Charles Hughes;

HEC-247C (but will be virtual)
charles.hughes@ucf.edu
(e-mail is a good way to get me)
Use Subject: COT6410
Office Hours: T 10:45AM-11:45AM; R 12:15PM-1:30PM

• Web Page: https://www.cs.ucf.edu/courses/cot6410/Spring2021
• Meetings: TR 9:00AM-10:15AM, Virtual

28 periods, each 75 minutes long.
Final Exam (Thursday, April 29 from 7:00AM to 9:50AM) is
separate from class meetings

• GTA: Daniel Gibney
Use Subject: COT6410
Office Hours: MW 1:30-3:00

2

mailto:charles.hughes@ucf.edu
https://www.cs.ucf.edu/courses/cot6410/Spring2021

Zoom Meeting Links
• Class (TR 9:00-10:15)

– https://ucf.zoom.us/j/92647255891?pwd=YVdSVWY2cWVWS
UhXM3ZtbXFCZE4xQT09

• My Office Hours (T 10:45-11:45; R 12:15-1:30)
– https://ucf.zoom.us/j/94885874930?pwd=UW10elpWbzM0SzF

RenQ4RW4zVVpGQT09

• GTA’s Office Hours (MW 1:30-3:00)
– https://ucf.zoom.us/j/94756865717?pwd=c0NzNGlXZU9kRGx

nOTJCZmtBWkhZUT09

1/11/21 © UCF CS 3

https://www.google.com/url?q=https://ucf.zoom.us/j/92647255891?pwd%3DYVdSVWY2cWVWSUhXM3ZtbXFCZE4xQT09&sa=D&source=calendar&usd=2&usg=AOvVaw3lhp1dS5mITlzXIkbKvw5y
https://ucf.zoom.us/j/94885874930?pwd=UW10elpWbzM0SzFRenQ4RW4zVVpGQT09
https://ucf.zoom.us/j/94756865717?pwd=c0NzNGlXZU9kRGxnOTJCZmtBWkhZUT09

1/11/21 © UCF CS 4

Text Material
References:
• My Notes and videos
• Sipser, Introduction to the Theory of Computation 3rd Ed., Cengage Learning, 2013.
• Hopcroft, Motwani&Ullman, Intro to Automata Theory, Languages and Computation 3rd Ed.,

Prentice-Hall, 2006.
• Cooper, Computability Theory 2nd Ed., Chapman-Hall/CRC Mathematics Series, 2003.
• Garey&Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H.

Freeman & Co., 1979.
• Davis, Sigal&Weyuker, Computability, Complexity and Languages 2nd Ed., Acad. Press (Morgan

Kaufmann), 1994.
• Papadimitriou & Lewis, Elements of the Theory of Computation, Prentice-Hall, 1997.
• Bernard Moret, The Theory of Computation, Addison-Wesley, 1998.
• Oded Goldreich, Computational Complexity: A Conceptual Approach, Cambridge University Press, 2008.
• Oded Goldreich, P, NP, and NP-Completeness: The Basics of Complexity Theory, Cambridge University

Press, 2010.
• Arora&Barak, Computational Complexity: A Modern Approach, Cambridge University Press, 2009.
• Various other people’s notes on web

4

Goals of Course
• Introduce Computability and Complexity Theory, including

– Review background on automata and formal languages
– Basic notions in theory of computation

• Algorithms and effective procedures
• Decision and optimization problems
• Decision problems have yes/no answer to each instance

– Limits of computation
• Turing Machines and other equivalent models
• Determinism and non-determinism
• Undecidable problems
• The technique of reducibility; The ubiquity of undecidability (Rice’s Theorem)
• The notions of semi-decidable (re) and of co-re sets

– Complexity theory
• Order notation (quick review)
• Polynomial reducibility
• Time complexity, the sets P, NP, co-NP, NP-complete, NP-hard, etc., and the question

does P=NP? Sets in NP and NP-Complete.
• Gadgets and other reduction techniques

1/11/21 © UCF CS 55

1/11/21 © UCF CS 6

Expected Outcomes
• You will gain a solid understanding of various types of

computational models and their relations to one another.
• You will have a strong sense of the limits that are

imposed by the very nature of computation, and the
ubiquity of unsolvable problems throughout CS.

• You will understand the notion of computational
complexity and especially of the classes of problems
known as P, NP, co-NP, NP-complete and NP-Hard.

• You will (hopefully) come away with stronger formal
proof skills and a better appreciation of the importance of
discrete mathematics to all aspects of CS.

6

1/11/21 © UCF CS 7

Keeping Up
• I expect you to visit the course web site regularly

(preferably daily) to see if changes have been made or
material has been added.

• Attendance is preferred, although I do not take roll.
• I do, however, ask lots of questions in class and give lots

of hints about the kinds of questions I will ask on exams.
It would be a shame to miss the hints, or to fail to
impress me with your insightful in-class answers.

• You are responsible for all material covered in class,
whether in the notes or not.

7

1/11/21 © UCF CS 8

Rules to Abide By
• Do Your Own Work

– When you turn in an assignment, you are implicitly telling me
that these are the fruits of your labor. Do not copy anyone else's
homework or let anyone else copy yours. In contrast, working
together to understand lecture material and solutions to
problems not posed as assignments is encouraged.

• Late Assignments
– I will accept no late assignments, except under very unusual

conditions, and those exceptions must be arranged with me in
advance unless associated with some tragic event.

• Exams
– No communication during exams, except with me or a

designated proctor, will be tolerated. A single offense will lead to
termination of your participation in the class, and the assignment
of a failing grade.

8

1/11/21 © UCF CS 9

Grading
• Grading of Assignments and Exams

– I will endeavor to return the midterm exam within a
week of its taking place and each assignment within a
week of its due date.

• Exam Weights
– The weights of exams will be adjusted to your

personal benefits, as I weigh the exam you do well in
more than one in which you do less well.

• Paper, Presentation Slides, Video
– This should be informative for you and me.

9

1/11/21 © UCF CS 10

Important Dates
• Midterm – Thursday, March 11 (tentative)
• Withdraw Deadline – Friday, March 26
• Spring Break – April 11-18
• Final – Tues., April 29, 7:00AM – 9:50AM

10

1/11/21 © UCF CS 11

Evaluation (tentative)
• MidTerm – 125 points ; Final – 125 points
• Assignments – 75 points
• Paper and Presentation – 125 points
• Extra – 50 points used to increase weight of exams

or maybe paper/presentation, always to your benefit
• Total Available: 500 points
• Grading will be A >= 90%, B+ >= 85%,

B >= 80%, C+ >= 75%, C >= 70%,
D >= 50%, F < 50% (Minuses might be used)

11

Decision Problems
• A set of input data items ("instances” from some universe of

discourse, e.g., natural numbers, strings over alphabet, graphs, …)
• Each input data item defines a question with an answer Yes/No or

True/False or 1/0.
• A decision problem can be viewed as a relation between its universe

of discourse and its binary range
• A decision problem can also be viewed as a partition of the universe

of discourse into those that give rise to true instances and those that
give rise to false instances.

• In each case, we seek an algorithmic solution (in the form of a
predicate) or a proof that none exists

• When an algorithmic solution exists, we seek an efficient algorithm,
or proofs of the problem’s inherent complexity

• Sometimes, when the problem appears to be intractable, we seek
out fast heuristic approximate solutions

1/11/21 © UCF CS 12

Instances vs Problems
• Each instance has an 'answer.‘

– An instance’s answer is the solution of the
instance - it is not the solution of the problem.

– A solution of the problem is a computational
procedure that finds the answer of any
instance given to it – the procedure must halt
on all instances – it must be an 'algorithm.'

1/11/21 © UCF CS 13

Assignment # 1 is Required
for Financial Aid

Complete questionnaire (in quizzes category) on Webcourses.

Complete all questions on time for a few free points out of total points
for all assignments.

Complete and submit by one minute before Midnight Friday, 1/15.

1/11/21 © UCF CS 14

S
Subset of interest,

maybe with ordered
elements

UNIVERSE OF DISCOURSE
USUALLY STRINGS OR NATURAL NUMBERS

For some element,
x, is x in S?

DECISION PROBLEMS

Example 1: S is set of Primes and x is a natural number; is x in S (is x a prime)?
Example 2: S is an undirected graph (pairs of neighbors); is S 3-colorable?
Example 3: S is a program in C; is S syntactically correct?
Example 4: S is program in C; does S halt on all input?
Example 5: S is a set of strings; is the language S Regular, Context-Free, … ?

Question: How many
subsets of Natural
Numbers are there?
How many languages are
there over some finite
alphabet?

Recognizer and Generators
1. When we discuss languages and classes of languages, we discuss

recognizers and generators
2. A recognizer for a specific language is a program or computational model

that differentiates members from non-members of the given language
3. A portion of the job of a compiler is to check to see if an input is a legitimate

member of some specific programming language – we refer to this as a
syntactic recognizer

4. A generator for a specific language is a program that generates all and only
members of the given language, (usually based on a grammar)

5. In general, it is not individual languages that interest us, but rather classes
of languages that are definable by some specific class of recognizers or
generators

6. One type of recognizer is called an automata and there are multiple classes
of automata

7. One type of generator is called a grammar and there are multiple classes of
grammars

8. Our first journey will be a review of automata and grammars

1/11/21 16© UCF CS

UNIVERSE OF LANGUAGES

Non-RE

RE = Semi-Dec = Phrase-Structured

Recursive = Decidable

Context-Sensitive

Context-Free

DCFL

REGULAR

AUTOMATA
Recognizers

Turing Machines (DTM = NDTM)

LBAs (DLBAs = NDLBAs)

NPDAs

DFAs =
NDFAs

DPDAs

MODELS OF COMPUTATION

Of these models, only TMs can do general computation

GRAMMARS
Generators Type 0=Phrase-Structured

Type 1=Context-Sensitive

Type 2=Context-Free

LR(k)

Type 3=
Regular =

Right Linear

Deterministic CFG

REWRITING SYSTEMS

What We are Studying
Computability Theory

The study of what
can/cannot be done
via purely
computational means.

Complexity Theory

The study of what
can/cannot be done
well via purely
computational means.

1/11/21 © UCF CS 20

Three Classes of Problems
Problems are often classified in one of three
groups (classes):

Undecidable (impossible), Exponential (hard),
and Polynomial (easy).

Theoretically, all problems belong to exactly
one of these three classes and our job is often
to find which one.

1/11/21 © UCF CS 21

Why do we Care?
When given a new problem to solve (design an algorithm
for), if it's undecidable, or even exponential, you will
waste a lot of time trying to write a polynomial solution
for it!!

If the problem really is polynomial, it will be worthwhile
spending some time and effort to find a polynomial
solution and, better yet, the lowest degree polynomial
solution.

You should know something about how hard a problem
is before you try to solve it.

1/11/21 © UCF CS 22

1/11/21 © UCF CS 23

Effective Procedure
• A process whose execution is clearly specified to the

smallest detail
• Such procedures have, among other properties, the

following:
– Processes must be finitely describable, and the language used

to describe them must be over a finite alphabet.
– The current state of the machine model must be finitely

presentable.
– Given the current state, the choice of actions (steps) to move to

the next state must be easily determinable from the procedure’s
description.

– Each action (step) of the process must be capable of being
carried out in a finite amount of time.

– The semantics associated with each step must be clear and
unambiguous.

23

1/11/21 UCF @ CS 24

Algorithm
• An effective procedure that halts on all input
• The key term here is “halts on all input”
• By contrast, an effective procedure may halt on

all, none or some of its input.
• The domain of an algorithm is its entire universe

of possible inputs
• The domain of a procedure is the inputs on

which it converges (stops).

24

Sample Algorithm/Procedure
{ Example algorithm:

Linear search of a finite list for a key;
If key is found, answer “Yes”;
If key is not found, answer “No”; }

{ Example procedure:
Linear search of a finite list for a key;
If key is found, answer “Yes”;
If key is not found, try this strategy again; }

Note: Latter is not unreasonable if the list can be
increased in size by some properly synchronized
concurrent thread.

1/11/21 © UCF CS 25

Procedure vs Algorithm
Looking back at our approaches to “find a key in a finite
list,” we see that the algorithm always halts and always
reports the correct answer. In contrast, the procedure
does not halt in some cases, but never lies.

What this illustrates is the essential distinction between
an algorithm and a procedure – algorithms always halt in
some finite number of steps, whereas procedures may
run on forever for certain inputs. A particularly silly
procedure that never lies is a program that never halts
for any input.

1/11/21 © UCF CS 26

Notion of Solvable
• A problem is solvable if there exists an algorithm that

solves it (provides the correct answer for each instance).
• The fact that a problem is solvable or, equivalently,

decidable or, equivalently, recursive does not mean it is
solved. To be solved, someone must have produced a
correct algorithm.

• The distinction between solvable and solved is subtle.
Solvable is an innate property – an unsolvable problem
can never become solved, but a solvable one may or
may not be solved in an individual’s lifetime.

1/11/21 © UCF CS 27

An Old Solvable Problem
Does there exist a set of positive whole numbers, a, b,
c and an n>2 such that an+bn = cn?

In 1637, the French mathematician, Pierre de Fermat, claimed that
the answer to this question is “No”. This was called Fermat’s Last
Theorem, even though he never produced a proof of its correctness.
While this problem remained unsolved until Fermat’s claim was
verified in 1995 by Andrew Wiles, the problem was always solvable,
since it had just one question, so the solution was either “Yes” or
“No”, and an algorithm exists for each of these candidate solutions.

1/11/21 © UCF CS 28

Research Territory
Decidable – vs – Undecidable

(area of Computability Theory)

Exponential – vs – polynomial
(area of Computational Complexity)

For “easy” problems, we want to
determine lower and upper bounds on
complexity and develop best Algorithms

(area of Algorithm Design/Analysis)
1/11/21 © UCF CS 29

Computability vs Complexity
Computability focuses on the distinction between
solvable and unsolvable problems, providing tools that
may be used to identify unsolvable problems – ones that
can never be solved by mechanical (computational)
means. Interestingly, unsolvable problems are
everywhere as you will see.
In contrast, complexity theory focuses on how hard it is
to solve problems that are known to be solvable. Hard
solvable problems abound in the real world. We will
address computability theory for the first part of this
course, returning to complexity theory later in the
semester.

1/11/21 © UCF CS 30

