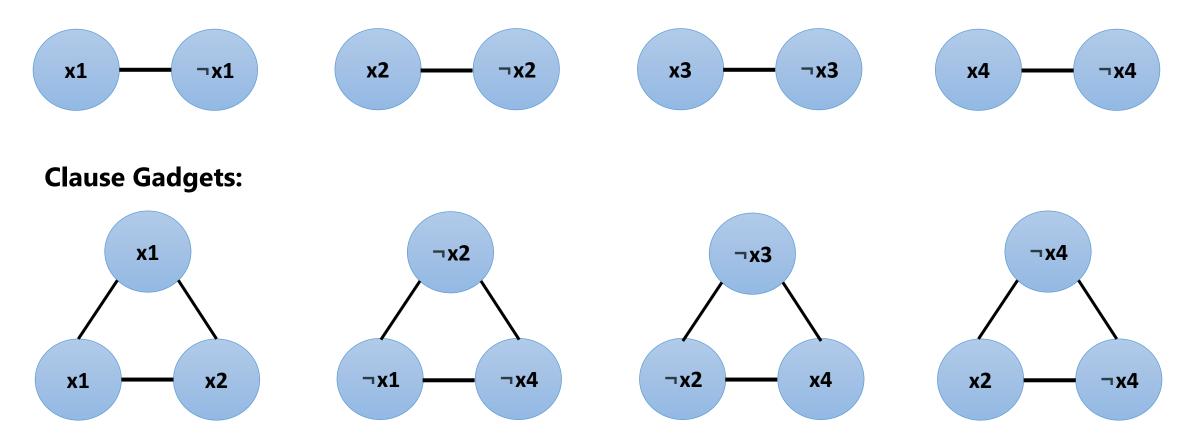
COT6410 Assignment # 6

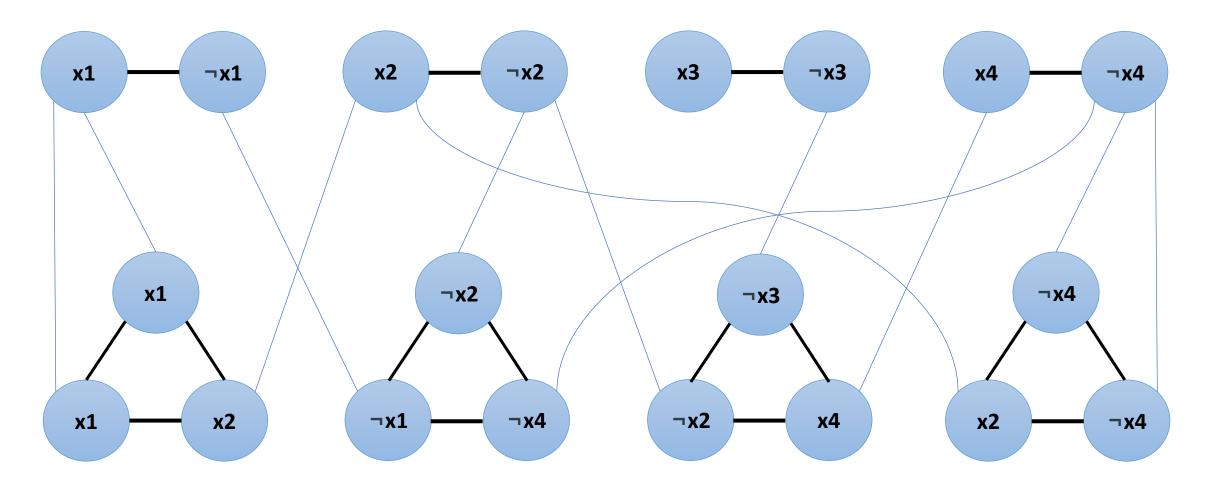
Submitted By: Aleenah Khan

Question 01:

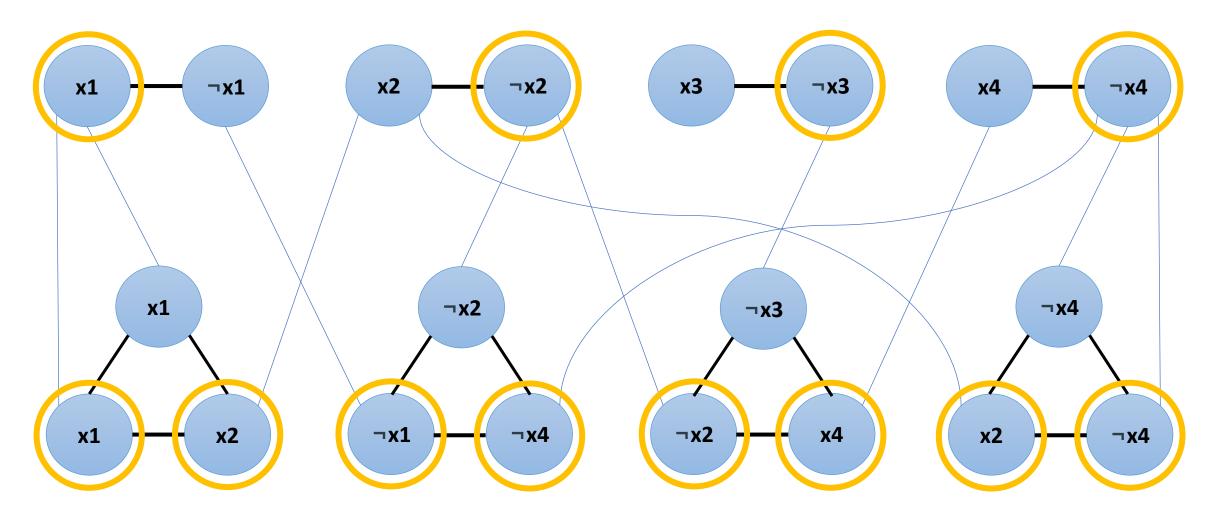

Consider the 3SAT instance: **E = (x1 ∨ x1 ∨ x2) & (¬x1 ∨ ¬x2 ∨ ¬x4) & (¬x2 ∨ ¬x3 ∨ x4) & (x2 ∨ ¬x4 ∨ ¬x4)**

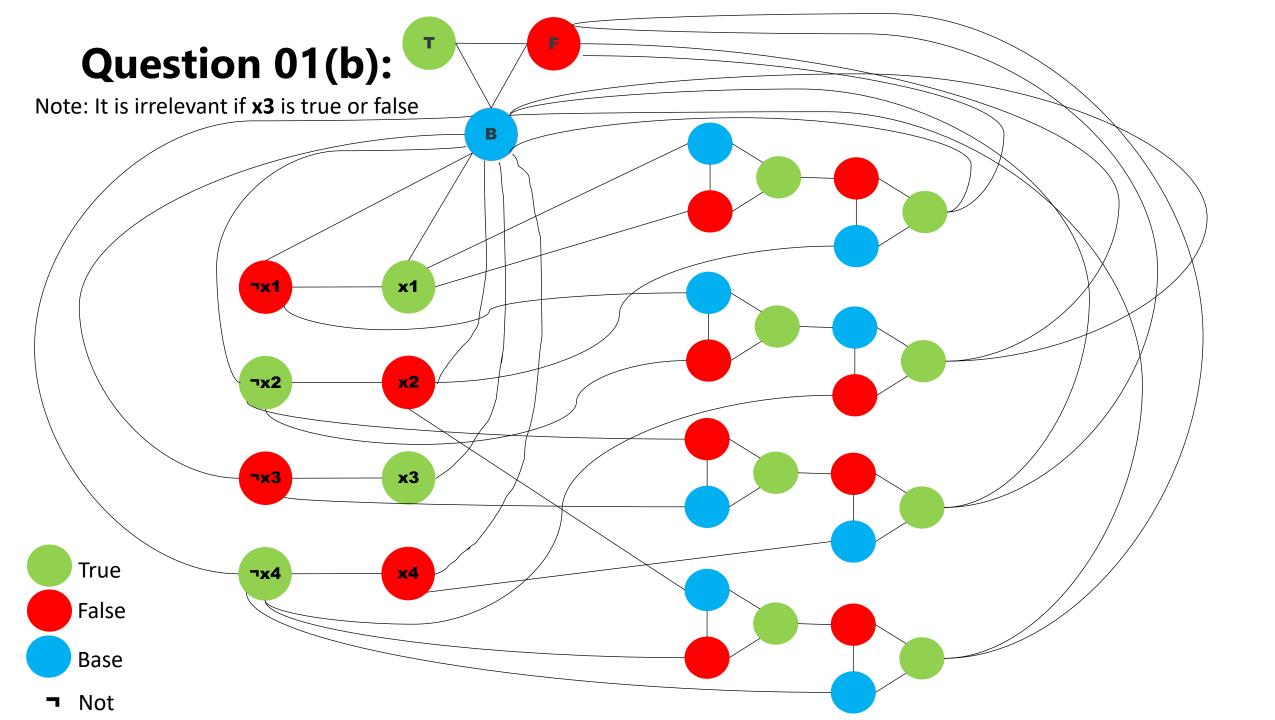
a. Recast E as an instance of k-Vertex Covering and present a solution to the latter
b. Recast E as an instance of 3-Coloring and present a solution to the latter

Question 01(a):


 $E = (x1 \lor x1 \lor x2) \& (\neg x1 \lor \neg x2 \lor \neg x4) \& (\neg x2 \lor \neg x3 \lor x4) \& (x2 \lor \neg x4 \lor \neg x4)$

Variable Gadgets:


 $E = (x1 \lor x1 \lor x2) \& (\neg x1 \lor \neg x2 \lor \neg x4) \& (\neg x2 \lor \neg x3 \lor x4) \& (x2 \lor \neg x4 \lor \neg x4)$


Combined Gadgets:

 $E = (x1 \lor x1 \lor x2) \& (\neg x1 \lor \neg x2 \lor \neg x4) \& (\neg x2 \lor \neg x3 \lor x4) \& (x2 \lor \neg x4 \lor \neg x4)$

Selecting Vertex Cover:

Question 02:

Consider the task list:

(T1,3), (T2,8), (T3,1), (T4,6), (T5,3), (T6,2), (T7,7)

a. Fill in the schedules for these tasks under the associated strategies below.

b. Greedy using a reordering of the list so that longest-running tasks appear earliest in the list (I did the sorting for you):

```
(T2,8), (T7,7), (T4,6), (T1,3), (T5,3), (T6,2), (T3,1)
```

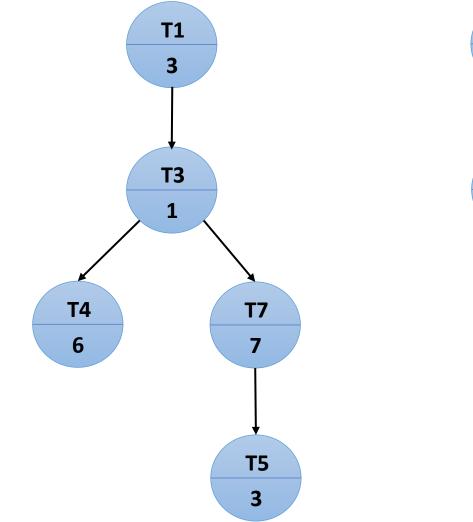
Question 02(a):

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
T1	T1	T1	Т3	Т4	Т4	T 4	T 4	T 4	T 4	Т6	Т6						
T2	T2	T5	T5	T5	T7	T7	T7	T7	T7	T7	T7						

Question 02(b):

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T2	T2	T2	T2	T2	T2	T2	T2	T1	T1	T1	T5	T5	T5	Т3
T7	T4	T4	T4	Τ4	Т4	Т4	Т6	Т6						

Question 03:


What if in the above case **(T1,3)**, **(T2,8)**, **(T3,1)**, **(T4,6)**, **(T5,3)**, **(T6,2)**, **(T7,7)**, we had that there is a partial order

T1<T3; T3<T4; T3<T7; T7<T5; T6<T2?

- **a.** Draw the graph that depicts these relationships.
- **b.** Show the 2-processor schedule that results when the task number is the priority; a smaller task number means higher priority.

Question 03(a):

(T1,3), (T2,8), (T3,1), (T4,6), (T5,3), (T6,2), (T7,7) T1<T3; T3<T4; T3<T7; T7<T5; T6<T2?

T6

2

T2

8

Question 03(b):

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
T1	T1	T1	Т3	T4	T 4	T4	T 4	T 4	T 4	T7	T5	T5	T5						
Т6	Т6	T2	T2	T2	T2	T2	T2	T2	T2										