
Assignment#3 Sample Key

1. Show prfs are closed under Fibonacci
induction
Fibonacci induction means that each induction step after calculating the base is computed using
the previous two values. Here,
f(0,x) = some base value;
f(1,x) is based on f(0,x) and 0 (an invented value for two steps back);
and for y>1, f(y,x) is based on f(y-1,x) and f(y-2,x).

The formal hypothesis is:
Assume g and h are already known to be prf, then so is f, where
f(0,x) = g(x);
f(1,x) = h(f(0,x), 0); and
f(y+2,x) = h(f(y+1,x), f(y,x))

Proof is by construction

2/11/20 © UCF CS 2

Fibonacci Recursion

Let K be the following primitive recursive function, defined by induction on the primitive recursive
functions, g, h, and the pairing function.
K(0,x) = B(x)
B(x) = < g(x), C0(x) > // this is just <g(x), 0>
K(y+1, x) = J(y, x, K(y,x))
J(y,x,z) = < h(<z>1, <z>2), <z>1 >
// this is < f(y+1,x), f(y,x)>, even though f is not yet shown to be prf!!
This shows K is prf.

f is then defined from K as follows:
f(y,x) = <K(y,x)>1 // extract first value from pair encoded in K(y,x)
This shows it is also a prf, as was desired.

2/11/20 © UCF CS 3

Fibonacci Recursion (simpler form)

Let K be the following primitive recursive function, defined by induction on the primitive recursive
functions, g, h, and the pairing function.

K(0,x) = <g(x), 0> // this is pair <f(0,x), 0>
K(y+1, x) = <h(<K(y,x)>1, <K(y,x)>2), <K(y,x)>1)> // this is pair < f(y+1,x), f(y,x)>,

This shows K is prf.

f is then defined from K as follows:

f(y,x) = <K(y,x)>1 // extract first value from pair encoded in K(y,x)
This shows it is also a prf, as was desired.

2/11/20 © UCF CS 4

2. Show S inf. rec. iff S is the range of a
monotonically increasing function
• Let fS(x+1) > fS(x), and Range(fS(x)) = S. S is decided by the

characteristic function
𝛘S(x) = ∃ y ≤ x [fS(y) == x]
The above works as x must show up within the first x+1 numbers
listed since fS is monotonically increasing.
• Let S be infinite recursive. As S is recursive, it has a characteristic

function where 𝛘S(x) is true iff x is in S.
Define the monotonically increasing enumerating function fS(x)
where
fS(0) = μ x [𝛘S(x)]
fS(y+1) = μ x>fS(y) [𝛘S(x)]
As required, this enumerates the elements of S in order, low to high.

3. If S is infinite re, then S has an infinite
recursive subset R
• Let fS be an algorithm where S = range(fS) is an infinite set
• Define the monotonically increasing function fR(x) by

fR(0) = fS(0)
fR(y+1) = fS(μ x [fS(x) > fR(y)])
• The above is monotonically increasing because each iteration seeks a larger

number and it will always succeed since S is itself infinite and so has no
largest value. Also, R is clearly a subset of S since each element is in the
range of fS.
• From #2, R is infinite recursive as it is the range of a monotonically

increasing algorithm fR.
• Combining, R is an infinite recursive subset of S, as was desired.

