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Abstract—This paper studies the problem of online user group-
ing, scheduling and power allocation in beyond 5G cellular-based
Internet of things networks. Due to the massive number of devices
trying to be granted to the network, non-orthogonal multiple
access method is adopted in order to accommodate multiple
devices in the same radio resource block. Different from most
previous works, the objective is to maximize the number of served
devices while allocating their transmission powers such that their
real-time requirements as well as their limited operating energy
are respected. First, we formulate the general problem as a mixed
integer non-linear program (MINLP) that can be transformed
easily to MILP for some special cases. Second, we study its
computational complexity by characterizing the NP-hardness
of different special cases. Then, by dividing the problem into
multiple NOMA grouping and scheduling subproblems, efficient
online competitive algorithms are proposed. Further, we show
how to use these online algorithms and combine their solutions
in a reinforcement learning setting to obtain the power allocation
and hence the global solution to the problem. Our analysis are
supplemented by simulation results to illustrate the performance
of the proposed algorithms with comparison to optimal and state-
of-the-art methods.

Index Terms—Internet of things, machine-to-machine, non-
orthogonal multiple access, scheduling, power allocation, NP-
hardness, online competitive algorithms, learning algorithms.

I. Introduction
Tens of billions of objects will be connected to the Internet

in the near future [1]. These objects form the well-known
Internet of things (IoT) [2], which is one of the promis-
ing applications in future wireless networks, including fifth
generation (5G) standard and beyond 5G (B5G). To realize
IoT, machine-to-machine (M2M) communication is proposed
where objects communicate with each others without (or with
little) human interactions [3]. The applications of M2M in IoT
include smart cities, smart grids, industrial automation, health-
care, intelligent transportation systems, to name only few. Due
to the maturity of cellular networks and their ability to provide
wide-area coverage, the integration of M2M communication
with cellular networks can be viewed as a viable solution to
the realization of such applications. For example, narrow-band
IoT (NB-IoT) [4] is proposed by the 3rd generation partnership
project as a cellular-based M2M communication network using
the long term evolution (LTE) standard.

The main requirement of cellular-based M2M communica-
tion is massive connectivity, i.e, a massive number of objects
(or interchangeably called devices) communicating with each
other through cellular networks needs to be supported in
the future [5, 6]. For example, in [7], it was expected that

more than two billions objects will be directly connected to
cellular networks. Besides massive connectivity, M2M traf-
fic is generally different from traditional cellular traffic. It
is sporadic and characterized by small-sized packets. Thus,
maximizing the sum-rate is not the first priority anymore
in cellular-based M2M networks. Further, the cellular-based
M2M networks have more stringent requirements including
stringent latency and energy-efficiency requirements. Conse-
quently, new resource allocation methods that take into account
these requirements are of great importance in such networks.
In this paper, we study an online resource allocation problem

in cellular-based M2M networks. We deviate from most pre-
vious works that (i) study the sum-rate-related objectives and
(ii) use stochastic Lyapunov framework to solve the problem.
Particularly, we consider a more important objective that is
well suited to the massive access problem in such networks.
In other words, we maximize the number of served devices
(NSD). To accommodate a large number of devices, non-
orthogonal multiple access (NOMA) technique is used. The
problem is therefore to maximize the NSD while (i) grouping
them into the available resource blocks, (ii) scheduling their
transmission to respect their real-time requirements, and (iii)
allocating their transmission powers to respect their limited
operating energy levels. This problem is solved in the online
computation [8] and the learning [9] frameworks in order to
provide competitive and learning algorithms. This problem is
called Grouping & Power Allocation (GPA).

Remark 1 (Maximizing the NSD is Better). The following
simple example shows that maximizing the sum-rate can be
achieved while serving only few devices. Assume that time
is divided into two slots and there are two devices. The
channel gain of the first device over the two slots is [6, 6]>
whereas the channel gain of the second device over the two
slots is [2, 1]>. The maximum transmission powers of the two
devices is [1, 1/2]>. Maximizing the sum-rate subject to power
constraints over the two slots would serve only the first device
on the two slots (with allocated transmission power of 1/2
on each slot)—achieving a sum-rate of 4 bps/Hz. However,
serving the second device in the first slot with allocated
transmission power of 1/2 and the first device in the second
slot with allocated transmission power of 1, would achieve a
sum-rate of 1 + lg 7 bps/Hz (< 4 bps/Hz). Therefore, a larger
sum-rate is achieved with fewer served devices.
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A. Related Work
Most previous works considered the problem of resource

allocation in M2M networks from the perspective of either
maximizing the sum-rate or minimizing the sum-power (or
the energy consumption) or other related objectives. Further,
few research papers focus on the online competitive analysis
and learning frameworks. A detailed survey on radio resource
management in M2M networks is given in [3].

In [10], the authors give a short survey for the problem
of uplink grant in M2M networks. Comparison between co-
ordinated and uncoordinated access are shown. The problem
is formulated as a prediction problem: in order to reduce
delay, devices do not have to send random access requests to
the BS, instead, the BS allocates its resources to the devices
by predicting which device has packets to send. Further, the
authors developed a two-stage solution based on machine
learning. In [11], a multi-armed bandit approach is proposed
to solve the problem of fast uplink grant access in M2M
networks. The objective is to maximize a utility function that
is a combination of data rate, access delay, and value of
data packets. Since the set of possible actions is not known
in advance, a sleeping multi-armed bandit technique is used.
In [12], the authors studied the resource management problem
in green IoT multihop networks. IoT devices obtain energy
through either grid power or harvesting. The problem is formu-
lated as a stochastic optimization problem where the objective
is to maximize a time-average network utility combined with
energy purchasing costs. Lyapunov optimization techniques are
used to obtain a stable solution in large- and small-time scales.
In [13], the authors formulate a dynamic scheduling and power
allocation problem in IoT networks using NOMA technique. A
stochastic optimization problem is formulated. The objective
is to minimize the long average power consumption over time
subject to maximum transmission powers, scheduling and long
average rate constraints. Well-known techniques are used to
derive the Lyapunov function and the upper bound on the
drift plus penalty. The problem is transformed into a set of
static optimization problems that are solved iteratively. Then,
branch and bound technique is used to solve the problem.
In [14], the authors study clustering and power allocation
in NOMA systems to answer the following question: how
to group the users into the resource blocks and how to
allocate transmission powers in order to maximize the system
throughput while guaranteeing minimum rate requirements
of the users and without exceeding maximum transmission
powers. The solutions is divided into (1) user clustering by
developing algorithm that satisfy the successive interference
cancellation (SIC) constraints and (2) power allocation using
Lagrangian methods. In [15], a dynamic power control and
user pairing problem is solved in delay-constrained multiple
access networks with hybrid OMA and NOMA techniques.
The objective is to minimize the long-term time-average trans-
mission power while guaranteeing stable queues and minimum
time-average rate. By fixing the user pairing, power allocation
is derived. Further, for given power allocation, the user pairing
problem is solved using matching techniques. [16] considers
hybrid OMA and NOMA techniques to solve the problem

of maximizing the energy-efficiency while guaranteeing min-
imum rate requirements and maximum transmission power.
Swap matching algorithm is proposed to solve the user pairing
problem under fixed power allocation. Once the user pairing
is found, the power allocation is solved while maximizing
the ratio of rate to total power consumption. The authors
of [17] study the problem of maximizing the NSD to solve
the uplink access problem in NOMA systems. Specifically,
the objective is to maximize the NSD while allocating the
channel to the devices and further guaranteeing the minimum
rate requirements and the maximum transmission power. The
authors first find the power allocation by solving the feasibility
problem of minimum rate requirements. The NOMA channel
assignment problem is solved by reducing it to a maximum
independent set problem. The analysis is only given for device
pairing (two devices per NOMA group) and there is no NP-
hard proof nor real-time requirements for the devices. In [18],
the authors study the problem of minimizing the maximum
access delay under minimum rate requirements and prove its
NP-hardness. They divide it into user scheduling and power
control subproblems. The user scheduling is solved using a
graph cutting method while the power control is solved using
an iterative algorithm. The authors of [19] study the problem
of maximizing the NSD in NOMA systems. They proposed a
mathematical programming formulation to solve the problem.
No NP-hardness is provided. Further, there are no real-time
requirements for the devices.
In the previously cited papers, there are some important

research gaps that we fill in this work. First, the majority
of the works focus on sum-rate related objectives. Second,
even when the objective is the NSD, the previously studied
problems and our problem are fundamentally different and
there are lacks of studies on (1) the computational complexity
of the problem, (2) competitive and learning algorithms, and
(3) stringent requirements including real-time, rate and power
requirements.

B. Contributions
The main contributions of this work are summarized in the

following list.
• We use mathematical programming techniques to model
GPA as a mixed integer non-linear program, which can
be easily transformed into an integer linear program for
some special cases of interest.

• We characterize the computational complexity of GPA
by studying its NP-hardness in different cases. We give
a complete analysis of each case by either presenting
a formal proof of NP-hardness or a polynomial-time
algorithm.

• We start by analyzing GPA in some important special
cases, where the problem involves NOMA grouping and
scheduling, and we derive online competitive algorithms
to solve it.

• We propose to combine our proposed online competitive
algorithms in a machine learning setting in order to solve
GPA in the general case. That is, we propose learning
algorithms that find the power allocation solution using
the NOMA grouping and scheduling solutions.
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BS

0.1 watt 0.05 watt

Slots

0.2 watt

A NOMA group of 
size 4

0.05 watt0.1 watt0.2 watt0.02 watt

Uplink transmission

An empty slot A NOMA group of 
size 3

Uplink transmission

Fig. 1: System Model with a single frame. Power allocation is
shown below each device. An empty slot represents the case
of constraints violation (e.g., real-time or power constraints).

C. Organization
The paper is organized as follows. Section II presents the

system model. Section III formulates GPA as a mathematical
program. Section IV studies its NP-hardness in different cases
and discusses its offline solutions. Section V presents the
proposed online competitive solutions whereas Section VI
presents the proposed learning algorithms. Section VII shows
some simulation results, and finally, section VIII draws some
conclusions.

D. Notations
Lowercase and boldface letters denote vectors whereas

uppercase and boldface letters denote matrices and three
dimensional arrays. A set of n elements is denoted by [n] B
{1, 2, . . . , n} and its cardinality is denoted by |[n]| B n. Interval
of integers is denoted by {a..b} including a and b. The interval
[0, x] is sampled using the power level τ > 1 to obtain the set
[x]τ B {0, x/τ, 2x/τ, . . . , x} with cardinality |[x]τ | = τ + 1.
The symbol O(·) denotes the big-O notation.

II. System Model
We consider a cellular-based M2M network composed of

one base station (BS) and m devices. Time is divided into k
frames where each frame is composed of n time-slots with unit
length each. In each frame, device i may have a packet to send.
The length (in bits) of device i’s packet in frame t is Lt

i > 0.
(In general, we may have Lt

i = 0 for some t; meaning that i
has no packet to send in frame t.) The arrival time and the
deadline of device i’s packet in frame t are denoted by at

i and
dt
i , respectively. The considered traffic pattern is similar to but

more general than the well-known frame-synchronized traffic
pattern [20, 21]. Device i has ēi units of energy stored in its
battery. For simplicity, a resource block (RB) is represented
simply by a time-slot (but time/frequency RBs can also be
used). Every frame has n RBs and we denote a RB by the
pair ( j, t) for time-slot j of frame t. A RB has a bandwidth of
W Hz. An example of the system model is given in Fig. 1.

The wireless channel between device i and the BS using RB
( j, t) is given by ht

i j , which may include fast and slow fading.
Let xti j be a binary variable that is 1 if and only if device i is
served using RB ( j, t). Also, let pti j denotes the transmission
power of device i using RB ( j, t). Finally, let zti be a binary
variable that is 1 if and only if device i is served in frame t.
We use X, P, and Z to denote the multidimensional variables
corresponding to xti j , pti j and zti , respectively.
The signal to interference-plus-noise ratio (SINR) achieved

by device i when served by the BS using RB ( j, t) is given
by:

SINRt
i j(X,P) =

xti jp
t
i jg

t
i j

1 + I ti j(X,P)
, (1)

where gti j = |ht
i j |2 is the channel power gain1 and I ti j(X,P)

is the power of the interference coming from other devices
transmitting using RB ( j, t).
To serve a large number of devices, power-domain NOMA

technique is used [14], where a group of devices are trans-
mitting to the BS using the same RB. Successive interference
cancellation (SIC) is used at the BS for the decoding. Let
At

j be the set of devices that are transmitting on RB ( j, t).
It is well-know to use the highest channel decoding order
in uplink NOMA [14, 16]. In other words, the interference
received by device i comes from all devices that have lower
channel gains. We order the devices in At

j with respect to gti j
to obtain a new set Bti j B {i′ ∈ At

j : gti′ j < gti j}. With that
said, the interference received by device i using RB ( j, t) can
be calculated as follows:

I ti j(X,P) =
∑
i′∈Bti j

xti′ jp
t
i′ jg

t
i′ j . (2)

The achievable rate between device i and the BS using RB
( j, t) is given by:

Rt
i j(X,P) = W lg(1 + SINRt

i j(X,P)). [in bits/s] (3)

The objective of GPA is to maximize the number of times
the devices are served during the time horizon of k frames.
This has to be done while grouping the devices in each RB and
allocating their transmission powers. GPA guarantee that the
served devices respect (i) their data requirements by sending
all of their bits in each frame when they are served, (ii) their
maximum transmission powers, and (iii) their arrival times and
deadlines.
GPA is studied in the online scenario under the full in-

formation assumption [22]. That is, each device knows only
the current and previous information of all other devices
(including itself), i.e., at time-slot j of frame t, the devices
get to know the channel gains gti j , the arrival times at

i and
deadlines dt

i and the data requirements Lt
i for all i. The local

information assumption [22], where each device knows only
its own information in an online manner, is left for our future
work.
To be able to solve GPA optimally (using off-the-shelf

solvers) in the offline scenario, we formulate it as a mathe-

1We normalize the channel power gain to get a noise power of 1.
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matical program in the next section.

III. Problem Formulation
GPA is formulated as follows:

maximize
X,P,Z

m∑
i=1

k∑
t=1

zti (P1a)

subject to xti j, z
t
i ∈ {0, 1}, pti j > 0, ∀i, j, t, (P1b)

n∑
j=1

Rt
i j(X,P) > Lt

i zti , ∀i, t, (P1c)

pti j 6 ēi xti j, ∀i, j, t, (P1d)
n∑
j=1

k∑
t=1

pti j 6 ēi, ∀i, (P1e)

xti j = 0, ∀i, j < {at
i ..d

t
i − 1}, t, (P1f)

xti j 6 zti , ∀i, j, t, (P1g)
m∑
i=1

xti j 6 M, ∀ j, t, (P1h)

zti 6 Lt
i , ∀i, t . (P1i)

The objective function in (P1a) maximizes the number of
times the m devices are served during the time horizon of
k frames. Constraints (P1b) list the optimization variables.
Constraints (P1c) guarantee a minimum of Lt

i bits for device i
when served in frame t. Constraints (P1d) relate the variables
xti j and pti j : if xti j = 0, then so is pti j and if xti j = 1, then device
i can use any pti j that is less than the maximum transmission
power ēi (if device i is not served in slot j of frame t, then it
is not using any power and it is using at most the maximum
otherwise). Constraints (P1e) restrict the limit of transmission
powers used by device i in all RBs ( j, t). Constraints (P1f)
force xti j = pti j = zti = 0 for all i, j, t, whenever device’s
i packet has not yet arrived or its deadline is already due.
Constraints (P1g) relate the variable xti j and zti : if zti = 0 then
so is xti j (if device i is served in frame t, then there must exists
a slot j when it is served). Constraints (P1h) limit the number
of devices served in RB ( j, t) to a positive number M 6 m.
Finally, constraints (P1i) mark device i as not-yet-served in
frame t if it has no packet to send.

We can see that (P1) is non-linear and non-convex due to
the multiplication of X and P in constraints (P1c). Note that
the variables X and P are equivalent and can be related, i.e.,
pti j > 0 if and only if xti j = 1. Thus, we can get rid of X from
constraints (P1c) by writing Rt

i j(X,P) = Rt
i j(1,P). Despite this

fact, (P1) is still mixed integer non-linear program, which is
very hard to solve in general.

In the sequel, transmission powers of each device is assumed
to belong to some discrete set. This is a realistic assump-
tion in many real systems [23–25]. Although the continuous
power assumption can ease mathematical derivations through
mathematical programming, GPA is still NP-hard even under
the discrete power assumption (as it will be shown shortly).
Under the discrete power assumption, every device i can
choose its transmission power pti j from the set [ēi]τi B
{0, ēi/τi, 2ēi/τi, . . . , ēi}, where τi > 1 is the power level of

device i. An important case, called the binary power (BP)
case, is when τi = 1 for all i, and thus [ēi]1 = {0, ēi}. We call
the general case of [ēi]τi the general power (GP) case. The
BP case is worth studying because it helps understand the
intrinsic difficulty of the problem and helps in characterizing
the structure of the solution in more general cases.

Remark 2 (Reduction from Multiple Frames to Single Frame).
Since the devices have to be served during k frames while
respecting their limited operating energy levels, we observe
that, in any optimal solution to GPA, every frame will be
associated an amount of allocated power for each device.
Thus, if we could find how much power to allocate to the
devices in each frame, we could reduce the problem to k
single frame problems and solve each one separately. We start
by analyzing the problem in the case of a single frame (the
superscript t is dropped from all the notations). Then, we solve
the problem in the more general case of multiple frames by
applying machine learning techniques.

In the next section, we study GPA in the offline scenario
with a single frame. We give some insights into the offline
solutions. Further, we study its computational complexity by
characterizing its NP-hardness in different cases.

IV. NP-hardness and the Offline Scenario
A. The Offline Problem in the BP Case
We consider the offline version of GPA for M = 1. In

this case, GPA is equivalent to the following: maximize the
NSD during n slots subject to the constraints of arrival times,
deadlines, data requirements, and matching capacity (i.e., no
more than one device in the same slot and no more than one
slot for each device). We can solve this problem by reducing
it to a maximum matching problem in a bipartite graph.
First, we create a bipartite graph where the slots represent
the left vertexes and the devices represent the right vertexes.
An edge exists between slot j and device i if and only if
ēigi j > (2Li/W − 1) and j ∈ {ai ..di − 1}. Every edge in
the graph has capacity 1. By introducing a source vertex
and sink vertex, we can find the optimal solution to this
maximum matching problem in polynomial-time by applying
some known maximum flow algorithm.
Solving GPA for general M > 1 seems to be a hard task.

Indeed, we show in the following that GPA is NP-hard for
any fixed M > 3. Nonetheless, it remains open whether or not
GPA in the BP case is NP-hard for M = 2.

Theorem 1. GPA is NP-hard in the BP case for M > 3.

Proof: We reduce 3-bounded 3-dimensional matching
(3DM3) [26] to GPA. In 3DM3, we are given a set T ⊆
W × X × Y, where W, X, and Y are disjoint sets having the
same number ` of elements and |T| = r . Also, in 3DM3, no
element of W∪X∪Y occurs in more than three triples of T.
We may assume without loss of generality that ` < r < 2`.
The goal is to find in T a matching of maximum size, i.e.,
a subset M ⊆ T where no two elements of M agree in any
coordinate.

Given an instance of 3DM3, an instance of GPA is obtained
as follows. Let M = 3. We create n = r slots; slot j
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corresponds to the 3-element set tj from T. We create also
m = 2` + r devices. Specifically, for each i ∈ W, we have a
device wi , for each i ∈ X, we have a device xi , and for each
i ∈ Y, we have a device yi . Also, there are r − ` additional
devices {z1, z2, . . . , zr−`}. Let ai = 1 and di = n, that is
device’s i packet arrived at the beginning of the frame and
is due at its end. For all devices i, set ēi = 1 and let ∆ be a
large number. For each device wi and slot j corresponding to
the 3-element set tj , let bwi = 1 and

gwi j B

{
3, if i ∈ tj,
2 + wi/∆, otherwise.

For each device xi and slot j corresponding to the 3-element
set tj , let bxi = 1/2 and

gxi j B

{
1, if i ∈ tj,
2 + xi/∆, otherwise.

For each device yi and slot j corresponding to the 3-element
set tj , let byi = 1/2 and

gyi j B

{
1/2, if i ∈ tj,
2 + yi/∆, otherwise.

And for each additional device zi , and slot j, let bzi = 1 and
gzi j = 2+ zi/∆. This instance is clearly created in polynomial-
time. We prove that 3DM3 is solved with a matching of size
` if and only if GPA is solved with 2` + r served devices and
each slot serves at most 3 devices.
On the one hand, if 3DM3 is solved, then for each 3-element

set mj of the matching M, we can serve three devices in slot
j—one for each element of mj . This is valid because each
element of mj comes, respectively, from W, X, and Y and
thus the corresponding three devices have channel gains equal,
respectively, to 3, 1, or 1/2. This means that, for the device
wi we have 3/(1 + 1 + 1/2) = 6/5 > 1, for the device xi
we have 1/(1 + 1/2) = 2/3 > 1/2 and for the device yi we
have 1/2 > 1/2. We conclude that the three devices meet their
data requirements. Since M is a matching in T of size `, the
slots corresponding to M serves a total of 3` devices—three
devices in each slot. The remaining slots can serve at most
(r − `)—at most one device per slot. To maximize the number
of devices served, each remaining slot can serve exactly one
device. Thus, there are a total of 3` + r − ` = 2` + r devices
served where each slot serves at most three devices.

On the other hand, assume that GPA is solved where each
slot serves at most three devices with a total of 2` + r served
devices. We argue that if a slot serves three devices, then these
devices correspond to some triple in T (they have channel gains
3, 1 or 1/2). Thus, all slots that serve exactly three devices
correspond to a matching in T. Note that, in the solution to
GPA, we cannot serve two devices in each slot (for a total
of 2r devices) because 2` + r > 2r . Thus, to maximize the
number of devices served, ` slots need to serve three devices
(and r − ` slots serves one device each), which corresponds to
a matching in T.
The reduction is clearly done in polynomial-time. Finally,

since 3DM3 is well-known NP-hard problem [26], the theorem

follows.

B. The Offline Problem in the GP Case
In the following, we consider the GP case and we prove that

GPA is NP-hard even when M = 1, i.e., only OMA technique
is used.

Theorem 2. GPA is NP-hard in the GP case even for M = 1.

Proof: The proof is to show that a special case of GPA
is NP-hard. Let M = 1. Also, let ai = 1 and di = n, that is
device’s i packet arrived at the beginning of the frame and
is due at its end. Let us assume that ēi is large enough so
that device i cannot deplete its energy. Device i is transmitting
with fixed power pi j such that

∑n
j=1 pi j 6 ēi . Denote by Gi j B

lg(1 + pi jgi j).
Under this restriction, we prove that GPA is NP-hard by

reduction from maximum independent set (MIS) problem in
graph theory. MIS is defined [26] as follows: given a graph and
a positive integer ζ . Is there an independent set in the graph of
size ζ or more? An independent set is a set of vertexes that do
not share any edge. On the other hand, the restricted version
of GPA can be recasted as: given the coefficients Gi j and the
size of the packets Li , is there a scheduling of more than σ
devices, denoted by the set O, such that a slot is used by at
most one device and

∑
j∈OGi j > Li?

Given an instance of MIS, we create an instance of GPA in
polynomial-time as follows: the vertexes are the devices and
the edges are the slots. The edges are numbered as 1, 2, . . . , n.
There is an edge between two devices if and only if one of
them can be served at that slot. Let Oi be the set of slots that
device i can be served at. Let Li B |Oi | for each device i and
set ζ = σ. The coefficients Gie for device i and slot e is given
by:

Gie B

{
0, if e < Oi,

1, if e ∈ Oi .
(4)

This reduction is clearly done in polynomial-time. Now it
remains to prove that: “there are more than ζ served devices,
denoted by the set O, such that a slot is used by at most one
device and

∑
j∈OGi j > Li” if and only if “there is independent

set in the graph of size ζ or more”.
On the one hand, assume that we have an independent set

in the graph of size ζ or more. By setting xie = 1 for all i in
the independent set and e ∈ Oi , we have more than ζ devices
served. Further, since we have an independent set, it is true
that the served devices are not overlapping with one another.
On the other hand, assume that we have a solution to the

restricted version of GPA, then we can see, by construction,
that for device i to be satisfied, it must be scheduled in all slots
in Oi (since Li = |Oi | and Gie are binary). Since we have more
than ζ non-overlapping served devices, these devices form, in
the corresponding graph, an independent set of size more than
ζ .
Summarizing, we have reduced MIS to the restricted version

of GPA in polynomial-time such that MIS is solved if and only
if GPA is solved. Since MIS is well-know NP-hard [26], so is
GPA. This proves the theorem.
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All of our NP-hardness results are presented in table I. We
use “Poly” to denote the polynomial-time complexity class
and “Open?” to denote that, to the best of our knowledge, the
problem is still open.

V. Competitive Algorithms
As previously discussed in remark 2, we start by solving

GPA in the single frame case. Then, we solve it in the more
general case of multiple frames. Before going into the details,
we give the following definition.

Definition 1 (c-competitive algorithm [8]).
An online algorithm alg is c-competitive if there is a constant
α such that for all finite input sequences,

O ≤ cA + α, (5)

where A (or O) is the value returned by alg (or an optimal
algorithm opt) for a given input. alg is strictly c-competitive
if it is c-competitive and α ≤ 0.

We assume that device i can choose its transmission power
from [ēi]1 = {0, ēi}. That is, device i can either transmit in
a slot or stay silent once and forever during the frame. This
assumption implies that a device can use at most one RB. This
is realistic in massive IoT networks where devices normally
have short data packets to send [6, 28].

Remark 3 (The Selfish Algorithm at Slot j). Assume that,
without loss of generality, g1j < g2j < · · · < gmj . According to
the decoding order of largest channel gains in uplink NOMA,
device 1 knows that if ē1g1j < 2L1/W −1, then p1j = 0. Now, if
ē1g1j > 2L1/W −1, then setting p1j = ē1 would satisfy device 1
but may interfere with other devices. The following is called the
selfish algorithm for device i: whenever ēigi j > 2Li/W − 1, set
pi j = ēi . We can prove that the selfish algorithm can perform
very badly. Say device 1 acts selfishly. Then, we can find an
instance in which only device 1 will be served in slot j (due to
the severe interference that it generates)—removing device 1
from slot j would satisfy all other devices in that slot. Assume
we have Li = lg(1 + i) for all i and g1j = 1 but for all i , 1,
gi j =

√
2(i−2)(i+1) (2i − 1

)
. In this case, if device 1 transmits in

slot j, then no other device can transmit in that slot. However,
if it does not, then all device i , 1 can transmit. This shows
that the selfish algorithm has a competitive ratio of at least
m − 1 which is very large.

The previous remark proves that acting selfishly is not very
good in terms of maximizing the NSD. To provide better
results, we first study the case of M = 1 and then generalize
the analysis to larger M .
For M = 1, we can reduce GPA to an online matching

problem in a bipartite graph as follows. The devices represent
the right vertexes of the bipartite graph. The slots represent
the left vertexes that appear online one-by-one. An edge exists
between slot j and device i if and only if ēigi j > (2Li/W − 1)
and j ∈ {ai ..di −1}. When slot j appears, the channel gain gi j
is revealed for all devices i and thus the edges incident to it are
also revealed. Once revealed, an online algorithm must make
an irrevocable decision of which device to serve at slot j (i.e.,

match the corresponding edge). This online matching problem
can be solved using the well-known ranking algorithm that has
a competitive ratio of e

e−1 ≈ 1.58 [27]. The ranking algorithm
chooses a random permutation ρ of the devices. For each slot
j, it finds the set of not-yet-served devices Yj that can transmit
in this slot, i.e., those devices i that have ēigi j > (2Li/W − 1)
and j ∈ {ai ..di − 1}. If Yj is not empty, then the ranking
algorithm chooses a device i from Yj that minimizes ρ(i).
The ranking algorithm is equivalent to assigning priorities to
the devices and choosing the not-yet-served device that has
the highest priority.
To solve the problem for general M > 1, we transform it

into a many-to-one matching problem and we adopt a greedy
approach to solve it. We create the previous same bipartite
graph. Now, contrary to the case of M = 1, each slot can be
matched to at most M devices from those connected to it by an
edge. For each slot j ∈ [n], let Nj denotes the set of neighbors
of j (i.e., Nj B {i ∈ [m] : {i, j} is an edge}). Once slot j is
revealed, the problem is reduced to finding a set of (at most
M) devices Dj ⊆ Nj of maximum cardinality such that:

ēigi j >
(
2Li/W − 1

) (
1 +

∑
i′∈D′j

ēi′gi′ j
)
, (6)

is valid for each i ∈ Dj , where D′j B {i′ ∈ Dj : gi j > gi′ j}.
It is known that the complexity of SIC decoding increases

as the number of users transmitting on the same RB in-
creases [29]. Thus, in general, M is chosen small in order
to keep the complexity of SIC decoding low. In fact, multi-
ple research papers consider the case of user pairing when
M = 2 [17, 30]. Hence, for small and fixed M , one could
generate, in slot j, all combinations of at most M devices
and matches the maximum-cardinality set Dj that respects (6).
This leads to a polynomial-time (only for fixed M) worst-case
complexity of O(mM ). However, by analyzing the problem
structure based on (6), we provide an optimal way of finding a
maximum cardinality set that satisfies (6) in O(m) worst-case
time complexity.

Lemma 1. Once slot j is revealed, finding a maximum
cardinality set Dj that satisfies (6) can be done in O(m) worst-
case time complexity.

Proof: We prove that the greedy algorithm, given in
Algorithm 1 below and called binary-matching-j (bmj), which
is applied at slot j, gives a maximum cardinality set that
satisfies (6) in O(m) time in the worst-case; assuming that
the channel gain gj is sorted, otherwise the complexity would
be O(m lg m).
The worst-case time complexity of bmj is clearly O(m). It

remains to show that the algorithm returns a feasible solution
of maximum cardinality that satisfies (6).
First, it is clear that |Dj | 6 M . Using mathematical

induction on each iteration of the algorithm, we prove that
the set Dj represents a feasible solution that satisfies (6). Let
D

p
j be the set of devices returned by bmj after iteration p.

For p = 1, device 1 is added to D1
j only if ē1g1j > b1

and thus, D1
j is feasible. Assume that Dp

j is feasible. Is Dp+1
j

feasible? At iteration p+ 1, the algorithm adds device p+ 1 to
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TABLE I: Complexity Classification

GPA with GP GPA with BP
Group Size M = 1 (no NOMA) M = 1 (no NOMA) M = 2 (NOMA) M > 3 (NOMA)
Complexity Class NP-hard Poly Open? NP-hard
Online Algorithm Open? 1.58-competitive [27] 2-competitive 2-competitive

Algorithm 1 The bmj algorithm
Input: M,m,Nj, gj,L, ē
Output: Dj

1: X← ∅
2: X ← 0
3: for i ← 1 to m do
4: if i in Nj then
5: if ēigi j > (2Li/W − 1)(1 + X) then
6: X← X ∪ {i}
7: X ← X + ēigi j
8: if |X| 6 M then
9: Dj ← X
10: else
11: Let Dj ⊂ X with |Dj | = M

12: return Dj

D
p+1
j only if ēp+1gp+1j > bp+1(1 + X) where X =

∑
i∈Dp

j
gi j .

If this condition is not met, then Dp+1
j = D

p
j and we are

done. Otherwise, Dp+1
j = D

p
j ∪ {p + 1}. Since the channel

gains are sorted in increasing order, thus gp+1j > gi j for all
i ∈ Dp

j . According to the largest channel gain decoding order
of SIC, the devices already in Dp

j will not be affected by the
transmission of device p+1. Because device p+1 is added to
D

p
j only if (6) are respected, we conclude that Dp+1

j is feasible.
Combining the base case and the inductive hypothesis, we
finally have that the returned set Dj = D

m
j is feasible.

To prove the optimality, let {i1, i2, . . . , i`1 } be the set of
served devices in the order they were added to Dj and let
{i∗1, i

∗
2, . . . , i

∗
`2
} be the set of devices in the order they were

added to Oj returned by some optimal algorithm. We assume
without loss of generality that gi1 j < gi2 j < · · · < gi`1 j

and
gi∗1 j < gi∗2 j < · · · < gi∗

`2
j . The optimality is to prove that

`2 = `1.
First, we prove by induction on ` 6 `1 that gi∗

`
j > gi` j . The

base case, for ` = 1, is clearly true: the first device served by
bmj has the smallest channel gain. Assume now that for ` > 1
the statement is true for 1, 2, . . . , ` − 1, i.e., gi∗

`−1 j
> gi`−1 j , is

it true for `? If gi∗
`
j < gi` j , then bmj would have chosen i∗`

instead of i` because, using the inductive hypothesis, gi` j >
gi∗

`
j > bi∗

`
(1+∑i∗

`−1
i=i∗1

gi j) > bi∗
`
(1+∑i`−1

i=i1
gi j). Thus, for all ` 6 `1,

it is true that gi∗
`
j > gi` j .

Now, we use the previous fact to prove, by contradiction,
that `1 = `2. Assume that `2 > `1. In other words, there exists
a device i∗

`1+1 ∈ Oj , or equivalently, the optimal algorithm
chooses i∗

`1+1 in iteration `1 + 1. Thus, gi∗
`1+1 j

> bi∗
`1+1
(1 +∑i∗`1

i=i∗1
gi j) > bi∗

`1+1
(1 + ∑i`1

i=i1
gi j), where the last inequality

follows form the previous fact. Since the optimal algorithm

chooses i∗
`1+1 in iteration `1+1, then gi∗

`1+1 j
> gi∗

`1
j > gi`1 j

. We
can see that, in iteration `1 +1, device i∗

`1+1 has larger channel
gain than device i`1 and can be added to Dj . Since bmj stopped
adding devices at iteration `1, we reach a contradiction and we
conclude that `1 = `2.

Finally, the set Dj returned by bmj is of maximum cardinal-
ity and is obtained in O(m) worst-case time complexity. This
proves the lemma.
The proposed algorithm to solve GPA is called the binary-

matching-slots (bms) algorithm and its pseudo-code is given in
Algorithm 2. For each arriving slot, bms calls mbj and serves
the maximum possible number of devices in that slot. Then,
it updates the set of not-yet-served devices and continues in
this way. We prove that this algorithm is 2-competitive.

Algorithm 2 The bms algorithm
Input: Bipartite graph, M,m, n, g,L, ē
Output: {D1,D2, . . . ,Dn}
1: X← [m]
2: for each slot j do
3: Dj ← bmj(M,m,Nj, gj,L, ē)
4: X← X\Dj

5: return {D1,D2, . . . ,Dn}

Theorem 3. bms is 2-competitive.

Proof: Let DM B {D1,D2, . . . ,Dn} be the set of devices
served by bms and let OM = {O1,O2, . . . ,On} be the set of
devices served by some optimal algorithm opt, where Dj (resp.
Oj) are the devices served by bms (resp. by opt) at slot j.

Based on lemma 1, it is clear that the number of devices in
Oj\DM is at most the number of devices in Dj ; since other-
wise bms would have chosen Oj\DM instead of Dj . Thus, by
summing over j, the number of devices in OM\DM is at most
the number of devices in DM . Since OM ⊆ (DM ∪OM\DM ),
thus we obtain:

|OM | 6 |DM | + |OM\DM |,
6 |DM | + |DM | 6 2|DM |.

Theorem 4. There is no deterministic online algorithm with
better competitive ratio than bms.

Proof: Assume m = n = 2. Let ē1 = ē2 = 1 and L1 = L2 =
1. The channel gains in slot 1 is g1 = [1, 1]. Now, if an online
algorithm decides to serve device 1 (resp. 2) in slot 1, then we
can choose the channel gains in the slot 2 as g2 = [1, 0] (resp.
g2 = [0, 1]). An optimal offline algorithm can serve device 2
in slot 1 and device 1 in slot 2 if g2 = [1, 0] or it can serve
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device 1 in slot 1 and device 2 in slot 2 if g2 = [0, 1]. In any
case, the offline-to-online ratio is 2.

A. Benchmarks Algorithms
For comparison purposes, in this section, we present an

adapted version of a clustering algorithm, called hereinafter
ath (by M. S. Ali, H. Tabassum, and E. Hossain), proposed
in [14]. The original algorithm is offline and works with
channel gains that are independent of the RBs. We transform
it to an online algorithm as follows. First, for simplicity, here,
we assume that m is a multiple of M and denote by κ B m/M .
For each new slot j, ath creates κ clusters where each cluster
contains exactly M devices by sorting the channel gains in
descending order. That is, if g1j > g2j > · · · > gmj , then
cluster l will contain the devices {l, κ+ l, 2κ+ l, . . . , M}. Now,
for each slot j, ath iterates the clusters and checks whether
the arrival times, deadlines and the data rate requirements of
the devices in cluster l are respected. If not, the devices are
removed iteratively from cluster l until the constraints are not
violated. Once all clusters are checked, ath picks the cluster
with the maximum NSD. For subsequent slots, ath proceeds
similarly with the exception that an already served device is
removed from the clusters.

We present another adapted version of a benchmark algo-
rithm, called zz (by D. Zhai and R. Zhang), proposed in [17].
The original algorithm is offline, based on solving independent
sets in graphs, and proposed only for M = 2 [17]. The modified
version, zz, works as follows. Since M = 2, it generates all
pairs of devices in each slot. By checking the constraints of
arrival time, deadlines, and data rate requirements, the pairs
are updated in each slot—meaning that a pair can be reduced
to a single element or to empty if necessary. zz constructs
an undirected graph G where the set of nodes is the possible
set of devices (paired or not) in each slot. So, a node v is
given by the tuple (c, j) where c is either a single device or a
pair of devices served in slot j. An edge between node (c, j)
and node (c′, j ′) exists if and only if j = j ′ or c ∩ c′ is not
empty. Once the graph is constructed, zz creates a new graph
H by splitting every node (c, j) in G with |c | = 2 into two
nodes that has the same neighbors as in G but are not linked
by an edge [17]. Device pairing is now obtained by solving
the problem of maximum independent set in the new graph
H using a greedy approach. zz is still offline since it must
construct the graph G by knowing all the upcoming slots.

B. Running Time Complexity
Here, we analyze the worst-case time complexities of the

different algorithms. We summarize the results in table II.
The complexity of bms is clearly O(n f (m)) where O( f (m))
is the complexity of bmj which is equal to O(m) for sorted
channel gains gj or O(m lg m) otherwise. Similar analysis can
be done to obtain O(n f (m)) complexity for ath. As for zz,
the generation of all pairs is done in O(m2). To construct the
graph, one has to iterate the slots and this gives a complexity
of O(nm2). Once the graph is constructed, finding a maximal
independent set using the classical greedy approach requires
O(m4) complexity since the constructed graph has O(m2)
nodes.

VI. Learning Algorithms
When there are multiple frames, the problem involves power

allocation as well as NOMA grouping and scheduling. Note
that without further assumption, one cannot hope to obtain
good performances in terms of competitiveness. Specifically,
say there are two frames and a single device. If an online
algorithm decided to allocate some transmission power p >
0 in frame one. Then, an adversary can always choose the
channel gains such that p maxj{gj} < 2L/W − 1 but p′gj >
2L/W − 1 for some slot j with p′ > p. Next, the adversary can
also choose the channel gains in the second frame such that
ē maxj{gj} < 2L/W−1. In this manner, the adversary can serve
the device once in frame one with p′ but an online algorithm
never served the device. For this reason, we are motivated to
consider a relative performance measure and thus we adopt
the learning framework.

In order to obtain a global solution (for multiple frames) to
GPA, we use machine learning techniques. More specifically,
we combine our proposed online competitive algorithms and
reinforcement learning techniques to obtain the power alloca-
tion solution to GPA.

We model GPA with multiple frames as an online de-
terministic Markov decision process (MDP). This modeling
is important to apply reinforcement learning technique and
helped us to transform the problem into an online (stochastic)
shortest path problem. The MDP is deterministic because
the transition probabilities are known. The corresponding
transition graph (TG) is constructed as follows. A state (or
a node) in the TG is a tuple (et, t), for t = 2, . . . , k + 1, where
et = [et1, e

t
2, . . . , e

t
m]> represents the remaining battery level of

the devices in frame t. When t = 1, the node s B (e1, 1) is
called the starting node, where e1

i = ēi for all i. There is a
terminal node denoted by t B (ek+2, k+2), where ek+2

i = 0 for
all i. For t = 1, 2, . . . , k+1, a transition from (et1, t) to (e

t+1
2 , t+1)

happens with probability one if and only if et1 − et+1
2 < 0. No

other transition is allowed. For t = 1, 2, . . . , k+2, the action set
corresponding to state (et, t) is given by the Cartesian product
[et1]τ1 × [et2]τ2 × · · · × [etm]τm , that is, an action taken in state
(et1, t) and transitions to state (et+1

2 , t + 1) is a transmission
power vector pt = [pt1, pt2, . . . , ptm]>. In other words, the
possible actions in state (et1, t) are given by the outgoing edges
of node (et1, t). Denote by mi B |[ēi]τi | = τi+1 the power level
of device i and by mx B Π

m
i=1mi . The TG contains 2 + kmx

states and mx(mx(k −1)+ k +3)/2 directed edges. An example
of this TG is given in Fig. 2. The reward of choosing action
pt = [pt1, pt2, . . . , ptm]> in state (et, t) is the NSD in frame t,
which can be obtained by applying the previously proposed
online competitive algorithm bms.
Under this modeling, GPA can be seen as an s-t shortest

path problem in the corresponding TG, or equivalently, as
finding the s-t path with the highest reward (by transforming
rewards to losses we can move from shortest path to longest
path). Nonetheless, finding such an s-t path is too complex
because the number of nodes and the number of edges in
the TG is exponentially large, e.g., for three frames, fifteen
devices and a power level of two (mi = 2 for all i), the
TG contains approximately one hundred thousand nodes and
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TABLE II: Worst-Case Time Complexities

Algorithms Complexity
bms O(nm lg m)
ath O(nm lg m)
zz O(nm2 + m4)

s

(2, 2)

(1, 2)

(0, 2)

(2, 3)

(1, 3)

(0, 3)

(2, 4)

(1, 4)

(0, 4)

t

0

1

2

0

1

2

0

1

0

0

1

2

0

1

0

0

0

0

Fig. 2: An instance of the TG of one device with [2]2 =
{0, 1, 2} and three frames. The rounded squares in the middle
of the edges represent the actions.

one billion edges. Due to the curse of dimensionality, we
follow a distributed approach to solve the power allocation
learning problem. The approach is distributed in the sense
that each device learns its own s-t shortest path by exchanging
information among other devices through the BS. (Of course,
there is a trade-off here between complexity and information
exchange that we left its analysis for future works.) We use
a modified version of exp3 [31]—a popular reinforcement
learning algorithm for the adversarial multi-armed bandit
problem. For comparison purposes, we also adopt the classical
tabular Q-learning algorithm [32].

A. EXP3-based Distributed Learning
exp3 is based on exponential-weighting for exploration

and exploitation and is proposed to solve the non-stochastic
(adversarial) multi-armed bandit problem [31]. Each device
learns its own s-t path by applying a modified version of exp3.
Each device has its own TG. As before, a state in each TG
i is given by (eti, t) where eti represents the remaining energy
level at frame t in device i’s battery with e1

i = ēi . For any state
(eti, t) of TG i, an action is given by the transmission power
pti ∈ [eti ]τi . See Fig. 2. Normally, when device i, in state (eti, t),
chooses action pti ∈ [eti ]τi , its reward is a binary number that
represents whether or not it is served. Designing the rewards
in this way teaches the devices to act selfishly and thus does
not necessarily give good outcome, i.e., the total NSD could
be very low because each one will learn to use its transmission
power to get served regardless of others (see remark 3). It is
thus necessary to redesign the rewards to improve the learning
outcome. Instead of the binary rewards, each device receives
its reward as the NSD in each frame. This can be acquired
by information feedback between the devices and the BS. The

main lines of the learning algorithm, called the path-learning
(pl) algorithm is given for each round as follows.
• Device i chooses an action pti for each frame t according
to some probability, i.e., it chooses an si-ti path in TG i.
We denote this path by the vector pi = [p1

i , p2
i , . . . , pki ]>.

• Device i sends its chosen si-ti path to the BS.
• The BS runs the online per-frame competitive algo-
rithm bms at frame t with power allocation pt =

[pt1, pt2, . . . , ptm]> and calculates the NSD.
• The BS broadcasts the rewards to each device (the reward
received by device i is the NSD in frame t). That is,
device i knows, not only the rewards of its chosen si-ti
path, but also the rewards in each edge of that path.

• Device i updates the probabilities.
pl operates in rounds, where in each round, it is applied

at device i that chooses an si-ti path according to some
probability (proportional to the path weight). This probability
is chosen to follow a distribution over the set of all si-ti paths
in order to get a mixture between exponential weighting of
biased estimates of the rewards and uniform distribution to
ensure sufficiently large exploration of each edge of any si-ti
path. After choosing an si-ti path, device i gets to know the
rewards on each edge of that path, i.e, it gets to know the NSD
in each frame. Then, pl updates the probability distribution (by
updating the paths weights) and continues similarly.
We notice that every TG i has 2+ kmi nodes and mi(mi(k −

1) + k + 3)/2 directed edges. Every path in TG i has length
k + 1. Let Pi be the set of all si-ti paths in TG i and let
σi B |Pi | denotes the number of such paths. We can prove
that σi =

(k+mi−1
k

)
, which is exponentially large and thus

choosing the paths in this way according to their weights is
not efficient. However, a simple modification can improve the
algorithm enormously [33]. First, instead of assigning weights
to paths, they are assigned to edges. Second, we construct
a set of edge-covering si-ti paths Ci , which is defined as
the set of paths in TG i such that for any edge e in TG i,
there is a path pi in Ci such that e ∈ pi . Such an edge-
covering paths Ci can be obtained in O(km2

i + kmi lg(kmi))
time using Dijkstra’s algorithm where |Ci | = O(km2

i ). Now,
instead of each path, each edge e of TG i is assigned a
weight w(e) (initialized to one for each edge at the beginning
of the rounds) and the weight of an si-ti path is given by
the product of the weights of its edges. For each round, pl,
applied at device i, chooses an si-ti path (1) uniformly from
Ci with probability γ or (2) according to the paths weights
with probability 1 − γ. If the latter is to be done, then the
si-ti path can be chosen by adding its vertexes one-by-one
according to edges’ weights (and not to paths’ weights) [33].
Next, pl finds the probability of choosing each edge in the
TG i, which can also be done using edges’ weights only. (It
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can be proven that choosing paths and updating the edges’
probabilities can be done efficiently based on paths kernels
and dynamic programming [34].) Then, for each frame (or
equivalently for each edge), the rewards are obtained using
bms, where the reward at any edge r is normalized by the
probability of that edge q(e), i.e., the normalized reward is
(β + r1{e∈pi })/q(e), with 1A denotes the indicator function
and β ∈ (0, 1]. Finally, the edges’ weights are updated as
w(e) ← w(e)eηr where η > 0.
The per-round complexity of pl is given by O(kmm2

i +

knm lg m), where O(knm lg m) is the complexity of applying
bms in all frames and O(kmm2

i ) is the complexity of choosing
the paths according to the edges’ weights and updating the
probability of each edge.

B. Tabular-based Distributed Learning
We use the tabular Q-learning algorithm [32]. The Q-

learning algorithm is called ql and it proceeds in episodes.
In each episode, each device i chooses an si-ti path, receives
a reward and updates its Q-table. Precisely, each device i has
a Q-table Qi(s, a) that measures the quality of a state-action
combination (s, a), where s represents a node in the TG i
and a represents a chosen transmission power in state s. For
each episode, each device i starts the learning in the initial
state si . For each step in that episode, that is for each frame t,
device i chooses a possible action (according to its state) using
the epsilon-greedy approach and moves to the next state s′.
Once all devices choose their actions, the BS runs the online
competitive algorithm bms in frame t and fed back the rewards
to each device (device i receives the NSD in frame t). Next,
each device move to the next state and updates its Q-table. As
soon as the last frame is reached and the Q-table is updated, the
devices move to the next episode and the Q-learning algorithm
continues. Updating the Q-table is done as follows:

Q(s, a) ← Q(s, a) + α(r +max
a

Q(s′, a) −Q(s, a)). (7)

The per-episode complexity of ql is given by O(knm lg m),
where O(nm lg m) is the complexity of applying bms in each
frame and updating the Q-table.

VII. Simulation Results
This section illustrates the performance of the proposed

algorithms through computer simulations. We consider a ge-
ographical zone modeled by a square of side 1000 meters.
The BS is located at the center of this zone whereas the
devices are randomly and uniformly distributed inside the
square. The simulations parameters are based on 3GPP spec-
ifications [35, p. 481] as in [6, 19]. The carrier frequency is
fc = 900 MHz and the path-loss (in dB) at fc is given by
120.9 + 37.6 log(distti ) + αG + αL [35, p. 481], where distti is
the distance (in km) between device i and the BS at frame t,
αG = −4 dB represents the antenna gain and αL = 10 dB is
the penetration loss. Flat Rayleigh fading is also considered
and thus gti j includes the previous path-loss model as well
as an exponential random variable with unit parameter. The
power spectral density of the noise is −174 dBm/Hz and the
noise figure is 5 dB. Unless specified otherwise, the next

parameters are fixed as follows. Each device i has a maximum
transmission power of ēi = 23 dBm [35, p. 481]. The group
size is M = 2. The bandwidth is 200 kHz and the bandwidth
of a single RB is 200/n kHz where n is the total number of
RBs. The data requirements of the devices follow an uniform
distribution as Lt

i ∼ unif{0, Lmax} with Lmax = 100 kbits. The
arrival times are given by at

i ∼ unif{1, n} and the deadlines are
given by dt

i ∼ unif{at
i+1, n+1}. The optimization problem (P1)

is modeled in AMPL [36] and solved using the CPLEX. All
simulations are performed for independent random realizations
and averaged out.
The next figures show the results for the case of a single

frame.
Fig. 3a shows the performance of the proposed online com-

petitive algorithm bms for different values of M and n against
two benchmark algorithms, ath and zz, proposed for NOMA
grouping, and also against the optimal offline algorithm opt
obtained by solving (P1) through AMPL modeling and using
the CPLEX solver. When the number of RBs n or the group
size M increases, the number of served devices increases faster
with m. When the number of devices is small and the number
of RBs is large, the offline algorithm zz achieves slightly better
performance compared to our proposed algorithm bms, despite
being online. This is might be due to the heuristic approach
used in zz to find a maximal independent set in the graph H
as discussed in V-A. Another point is that bms achieves much
better performance compared to ath, because (1) the latter
mainly optimizes the sum-rate objective and not the NSD and
further (2) the pairs of devices in the latter are fixed a priori
(thus, because the stringent constraints in GPA very few pairs
can satisfy these constraints according to NOMA). Lately, we
see that bms, despite being online and despite the proven 50%
theoretical gap in Theorem 3, its performance is not very far
from opt even for large values of n and M . The worst gap
between bms and opt is about 87% which is much better than
the proven 50% theoretical gap.
Fig. 3b presents the performance of bms for m = 60 against

ath, zz and opt. When the number of devices and the group
size are fixed, there is an optimal value of n at which the per-
formance is maximized. When n increases above this optimal
value, the NSD starts to decrease since the bandwidth of each
RB becomes small. In other words, when n continue to grow
which decreases the bandwith of each RB, the interference
inside each NOMA group become intolerable and the devices
cannot meet their requirements. Lately, the performance of
bms is still the best amongst the non-optimal algorithms except
for large n where the offline zz becomes better (due to its
offline nature and probably to exploring more nodes in the
graph H and thus selecting larger maximal independent sets)
at the expense of higher running time complexity. Finally, bms
achieves close-to-optimal performance for different n and the
worst gap is about 78% which is much better than the proven
50% theoretical gap.
Fig. 4 presents the performance of bms against ath, zz,

and opt when the battery capacity of the devices ē changes.
Increasing the battery capacity is able to increase the NSD
quickly (the increase rate is faster when the number of RBs is
larger). However, since the number of RBs and the group size
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are limited, the increase rate slows down as the battery capacity
increases, and thus the curves start to converges. Despite being
online and much simpler, bms is very close to opt and, as
discussed previously, zz, due to its offline nature, is better
than bms only for large n but at the expense of higher running
time complexity.

Fig. 5a shows the performance of bms for large m and M .
(Comparison with other algorithms is missing due to running
time issues and incompatibility with large M .) When the
minimum rate requirements Lmax is large, increasing M does
not help improve the performance even for different n because
the interference inside a NOMA group will become large and
thus no more devices can be admitted. However, when the Lmax
is not very large, then increasing n and M can help improve

the performance. When the network is really dense, it is not
beneficial to increase n or M very largely. Due to increased
SIC complexity and to the limited performance improvements,
it is better to keep the values of n and M not very large, e.g.,
when Lmax = 100 kbits, n = M = 20 serves about 13.95%
of the devices but n = M = 40 serves about 14.25% of the
devices. It is thus better to choose n = M = 20 rather than
n = M = 40 (the latter gives a gain of only 0.3%).
Fig. 5b illustrates the impact of the minimum rate re-

quirements Lmax on the performance of the algorithms for
m = 60. When the number of RBs n is small, the NSD slightly
decreases for large values of Lmax. However, when n is large,
the NSD decreases faster with Lmax. This is because when n
is large and Lmax is small, an important number of devices
can be grouped using NOMA (almost 80% of the devices are
served). As soon as Lmax increases, some important number
of devices will be unsatisfied and thus the performance drops.
Nonetheless, the rate of dropping is much better when n is
small since a very few number of devices are grouped using
NOMA (almost 30% of the devices are served) for small Lmax.
Thus, unless Lmax is not large, NOMA can help serve the same
few number of devices with different rate requirements. On
the other hand, NOMA can serve a larger number of devices
but is more influenced by their stringent rate requirements.
This remark was derived in [19] when comparing NOMA and
OMA.

In the next simulations (Fig. 6), we show the performance of
the proposed learning algorithms which learn the power allo-
cation across the frames. The number of rounds (or episodes)
is denoted by T . Unless stated otherwise, k = 20, n = 10,
m = 100, and T = 100. The learning rate of ql is α = 0.5, the
pl’s parameters are γ = 0.5, β = 0.01, and η = γ/(2(k+1)σi).

In Fig. 6a, we compare pl against ql and a very sim-
ple algorithm, called random learning (rl), which assigns a
random amount of power in each frame (from the amount
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of power left). Learning the transmission powers using pl
achieves the best performance whereas the worst performance
is achieved, as expected, by rl that makes the energy deplete
quickly as the number of frames increases due to its random
choices. Comparing pl and ql, the performance of the latter
degrades as the number of devices increases. The performance
gap between pl and ql is about 1.13 for m = 50 whereas it
becomes about 1.26 for m = 300. This is due to the design
principle of pl which exploits the problem structure through
exploring the TG edges and exploiting the best edges. It is
also proven in [33] that pl achieves a regret proportional to
1/
√

T even for adversarial inputs.
In Fig. 6b, we plot the average power consumption (PC)

of all devices across the frames. The PC is averaged over

all devices and over all random realizations and it measures
the average power allocation of all devices in each frame.
We see that rl depletes its transmission powers in the first
few frames to end up without energy at later times and thus
serves few devices. This is because as the number of frames
increases, the random choices available to rl decreases since
the sampled power set [ēi]τi shrinks. The average PC of ql
is much better than rl but still the former allocates more
transmission powers to the first frames. However, pl allocates
the transmission powers good enough which gives a good
learning outcome. Indeed, pl almost have uniform average PC
across the frames and thus it saves more energy for future
frames. Consequently, the power allocation obtained by pl
helps improving the performance by serving the largest number
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of devices compared to ql and rl.

VIII. Conclusion
In this paper we studied the online grouping and power

allocation problem in beyond 5G cellular-based IoT NOMA
networks where we introduced stringent requirements includ-
ing real-time, rate, and energy constraints. First, we for-
mulated the problem as a mathematical optimization model
using integer programming techniques. Then, we studied the
complexity of the problem by characterizing its NP-hardness
in different and important cases. To solve the problem in
a practical way, we divided it into subproblems of NOMA
grouping and scheduling. Then, we proposed online competi-
tive algorithms to group the devices using NOMA. To obtain
the transmission power allocation solution, we proposed to
use machine learning techniques and combined the NOMA
grouping and scheduling solutions to obtain a global solution.
Specifically, by modeling the power allocation problem as an
online (stochastic) shortest path problem in directed graphs,
we proposed two reinforcement learning algorithms: (1) based
on exponential-weighting for exploration and exploitation and
(2) Q-learning. We showed that our proposed solutions can
help solving, in an online fashion, the massive access problem
efficiently in future networks.
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