
On Initializing Airline Crew Pairing Optimization for Large-scale
Complex Flight Networks
Divyam Aggarwala, Dhish Kumar Saxenaa,∗, Thomas Bäckb and Michael Emmerichb
aDepartment of Mechanical & Industrial Engineering (MIED), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand-247667, India
bLeiden Institute of Advanced Computer Science (LIACS), Leiden University, Niels Bohrweg 1, 2333 CA Leiden, the Netherlands

ART ICLE INFO
Keywords:
Airline Crew Scheduling
Crew Pairing Optimization
Combinatorial Optimization
Initialization
Heuristic
Integer Programming

ABSTRACT
Crew pairing optimization (CPO) is critically important for any airline, since its crew operating costs are second-
largest, next to the fuel-cost. CPO aims at generating a set of flight sequences (crew pairings) covering a
flight-schedule, at minimum-cost, while satisfying several legality constraints. For large-scale complex flight
networks, billion-plus legal pairings (variables) are possible, rendering their offline enumeration intractable and
an exhaustive search for their minimum-cost full flight-coverage subset impractical. Even generating an initial
feasible solution (IFS: a manageable set of legal pairings covering all flights), which could be subsequently
optimized is a difficult (NP-complete) problem. Though, as part of a larger project the authors have developed a
crew pairing optimizer (AirCROP), this paper dedicatedly focuses on IFS-generation through a novel heuristic
based on divide-and-cover strategy and Integer Programming. For real-world large and complex flight network
datasets (including over 3200 flights and 15 crew bases) provided by GEAviation, the proposed heuristic shows
upto a ten-fold speed improvement over another state-of-the-art approach. Unprecedentedly, this paper presents
an empirical investigation of the impact of IFS-cost on the final (optimized) solution-cost, revealing that too low
an IFS-cost does not necessarily imply faster convergence for AirCROP or even lower cost for the optimized
solution.

1. Introduction
For an airline, crew operating cost is the second largest component of the total operating cost (the first being the fuel
cost). As a result, even marginal percentage reductions may correspond to millions of dollars annually, for a large-
scale airline. With this huge potential of cost-savings, Airline Crew Scheduling (ACS) is considered as one of the most
critical components of the airline scheduling process. ACS is aimed at (1) generating a low-cost set of legal/valid flight
sequences covering a given flight schedule, and (2) assigning crew members on these flight sequences while fulfilling
the crew requirements of these flight sequences. Some examples of key performance indicators (KPIs) used by airlines
to analyze the performance of their crew scheduling processes are total deadhead1-ing time, total number of aircraft
changes performed by the crew, total overnight-rests & sit-times, total hotel nights, etc. Airlines desire to minimize
these KPIs to optimize their crew utilization. This is achieved by increasing the flying time of a crew and/or reducing
their non-productive hours by reducing the time spent in sit-times, overnights, aircraft changes, etc.

ACS is a computationally intensive optimization problem. To maintain tractability, it is solved sequentially in
two steps, namely crew pairing optimization (CPO) and crew rostering (also called crew assignment). The former
problem aims at generating a set of flight sequences (each called a crew pairing) to cover a finite set of an airlines’
flight schedule at minimum operating cost, while satisfying multiple legality constraints linked to the airline-specific
regulations, federations’ rules, labor laws, etc. The latter problem focuses on assigning crew members to the optimal
crew pairings (obtained as solution of the former problem) while satisfying underlying crew requirements. Zeghal and
Minoux (2006) attempted to solve these two problems (crew pairing and crew rostering problems) in a single model but
for small-scale flight networks. However, the demand based expansion of the airline operations has lead to huge-scale
problems (with enormous search space and high computational requirements), rendering the single model approach

∗Corresponding author; Email Address: dhish.saxena@me.iitr.ac.in; Postal Address: RoomNo.-231, East Block, MIED, IIT Roorkee, Roorkee,
Uttarakhand-247667, India; Phone: +91-8218612326

daggarwal@me.iitr.ac.in (D. Aggarwal); dhish.saxena@me.iitr.ac.in (D.K. Saxena);
t.h.w.baeck@liacs.leidenuniv.nl (T. Bäck); m.t.m.emmerich@liacs.leidenuniv.nl (M. Emmerich)

ORCID(s): 0000-0003-0740-780X (D. Aggarwal); 0000-0001-7809-7744 (D.K. Saxena); 0000-0001-6768-1478 (T. Bäck);
0000-0002-7342-2090 (M. Emmerich)

1A deadhead flight is a flight in which one crew member is actually operating the flight whereas another crew member (the deadhead crew) is
travelling as a passenger.

D. Aggarwal et al.: Preprint submitted to Elsevier Page 1 of 17

ar
X

iv
:2

00
3.

06
42

3v
1

 [
cs

.A
I]

 1
5

M
ar

 2
02

0

Initialization for large-scale airline crew pairing optimization

intractable. This builds the rationale for solving these two problems sequentially, rather than in a single model. CPO,
being the foremost problem, is the focus of this research paper and all interested readers are referred to Barnhart et al.
(2003) for an extensive review of the ACS.

CPO is a highly constrained NP-hard2 optimization problem (Garey and Johnson, 1979). A crew pairing is a
sequence of flights that begins and ends at the same crew base. To be operational or classified as legal, these crew
pairings have to satisfy multiple legality constraints linked to federations’ safety rules, airline-specific regulations,
labor laws, etc., which are discussed in the following section. For large-scale airlines (huge search space and large
number of complex legality constraints), it is advisable to address CPO using two subproblems, namely crew pairing
generation problem (CPGP) and crew pairing optimization problem (CPOP). The solution to the former subproblem
(CPGP) facilitates a set of legal crew pairings required for a finite set of flights at the different stages of the airline
CPO. The latter subproblem (CPOP) is solved to find aminimal-cost set of legal crew pairings, covering the given flight
schedule by using advanced optimization techniques. Multiple solutions for CPGP have been proposed in literature
and readers are referred to Aggarwal et al. (2018) for their extensive review. In literature, CPOP is modeled as either
a set covering problem or a set partitioning problem. In the former problem, each flight is allowed to be covered in
multiple pairings whereas in the latter problem, it is allowed to be covered only once. The adopted approaches in this
research are discussed in detail in Section 2.4. Legal crew pairings could be facilitated to the optimization phase in
two ways: one way is to enumerate them offline, i.e., enumerating all possible legal pairings before the optimization
phase, while the other way is the online enumeration, i.e. during the optimization phase on the requirement-basis. The
former approach is advantageous for solving small-scale CPOPs (≤1000 flights approximately) where enumeration and
storage of all legal pairings is not computationally expensive. However, millions/billions of legal pairings are possible
in large-scale CPOPs (>1000 flights along with multiple crew bases), rendering their offline enumeration and storage
impractical. Hence, the latter approach is adopted to solve large-scale CPOPs.
1.1. Related Work
Depending on the problem size, mainly two types of solution approaches have been proposed in the literature: heuristic-
based and mathematical programming-based solution approaches. In heuristic-based solution approaches, the most
widely adapted optimization class of techniques are Genetic Algorithms (GA)which are population-based randomized-
search heuristics, inspired by the theory of genetics and natural selection. Customized GAs have been widely adopted
for solving combinatorial optimization problems from other domains, such as railway crew scheduling (Park and Ryu,
2006), resource-allocation problems (Deb and Myburgh, 2017), etc. In the literature, the GA-based CPOP solution
approaches have been proposed only for the problems for which enumeration of all legal pairings before the optimiza-
tion phase is computationally tractable (Beasley and Chu, 1996; Levine, 1996; Ozdemir and Mohan, 2001; Kornilakis
and Stamatopoulos, 2002; Zeren and Özkol, 2012; Deveci and Demirel, 2018; Aggarwal et al., 2020b). Zeren and
Özkol (2012) demonstrated the efficacy of GA in solving small-scale CPOPs (leading to a solution within 0.04% gap
of the global optima for a 710-flight dataset). However, Zeren and Özkol (2016) demonstrated that their previous
GA-based approach (Zeren and Özkol, 2012) fails to deliver high quality solutions (around 7% far from global optima)
for large-scale CPOPs. Aggarwal et al. (2020b) also provides a similar empirical evidence and shows that GA-based
approaches (with higher-level customizations) are inefficient for solving even a small-scale yet complex flight network
(839 flights). Complex flight networks are characterized by the presence ofmultiple hub-and-spoke subnetworks and/or
multiple crew bases, leading to an explosion of possible legal pairings (millions/billions). For optimizing large-scale
and complex flight networks, mathematical programming-based solution approaches have been proposed in literature.
The most widely adopted strategy in these approaches is called column generation (CG) technique. CG is an efficient
search space exploration technique which generates only the variables promising the associated cost improvements
to the objective function. CG technique and the resulting optimization framework are not the focus of this paper.
Interested readers are referred to:

• Du Merle et al. (1999); Lübbecke and Desrosiers (2005); Lübbecke (2010) for an extensive review of CG tech-
nique,

• Barnhart et al. (1998) for the review of a branch-and-price algorithm, which is developed by integrating CG
with a branch-and-bound algorithm (Land and Doig, 1960), and

2For NP-hard (NP-complete) problems, no polynomial time algorithms on sequential computers are known up to now. However, verification
of a solution might be (can be) accomplished efficiently, i.e., in polynomial time.

D. Aggarwal et al.: Preprint submitted to Elsevier Page 2 of 17

Initialization for large-scale airline crew pairing optimization

• Anbil et al. (1991, 1992); Vance et al. (1997); Anbil et al. (1998); Lavoie et al. (1988); Gustafsson (1999);
Desaulniers and Soumis (2010); Zeren and Özkol (2016); Aggarwal et al. (2020a) for the implementation of
CG-based CPOP solution approaches.

To initialize these CPOP solution approaches, it is desired to generate a feasible solution which is a manageable
set of legal pairings covering all given flights. This solution is, hereby, termed as initial feasible solution (IFS). Given
the NP-hard computational complexity of CPOP, generation of an IFS standalone is computationally challenging as
it constitutes an NP-complete problem. Conventionally, graph traversal algorithms, such as depth-first search (DFS)
(Tarjan, 1972), are employed for traversing a connected flight graph to generate legal pairings until a feasible solution
is obtained (Zeren and Özkol, 2012). Vance et al. (1997) used artificial pairings with very high cost (one pairing
to cover one flight each) for IFS generation. Yan and Chang (2002) developed a special IFS generation heuristic
which involves legal pairing generation from only one-flight duties. Such IFS generation practices lead to IFSs with
extremely poor cost, initializing the subsequent optimization phase from a poor initial point. This ultimately results
in larger runtime of the subsequent optimization search which could be saved by generating an IFS with good cost
quality. Klabjan et al. (2001) proposed a randomized approach for IFS generation, termed as greedy randomized
adaptive search procedure (GRASP), which exploits the prior knowledge of good flight connections. AhmadBeygi
et al. (2009) proposed an IFS generation heuristic in which DFS algorithm is used for generation of legal pairings while
allowing each flight to be covered in at most z pairings (using z = 6). Aydemir-Karadag et al. (2013) developed a
knowledge based random algorithm (KBRA) for IFS generation which exploits the knowledge of candidate flights for
a preceding flight during legal pairing generation while simultaneously removing unique flights from the network as
soon as they get covered. Deveci and Demirel (2018) generated an IFS using a knowledge-based random legal pairing
generation heuristic. In that, random flight sequences are generated which are repaired using a repair-heuristic and
from these repaired sequences, a high-quality IFS is searched using a GA-based optimization procedure. The majority
of the above-mentioned IFS generation approaches has been validated using small-scale flight data sets (up to 800
flights) in which the size of search space does not directly affect the search-efficiency of these heuristics. Moreover,
the runtime values of these IFS generation heuristics are insignificant as the search space dealt with is small in size.
However, in case of large-scale CPOPs such as the ones used in this research (up to 3228 flights with 15 crew bases),
the number of possible flight connections are so huge that generation of an IFS using the above-cited methods is
computationally impractical, let alone their runtime values. These runtime values, if saved, could be invested in the
subsequent optimization phase. In literature, two IFS generation approaches have been proposed for large-scale CPOPs,
one in Zeren and Özkol (2016) and the other in Aggarwal et al. (2018). In the former approach, a large-scale CPOP for
a monthly flight schedule of Turkish Airlines (flying ∼570 flights per day) is solved. However, a detailed procedure
of its IFS-generation is not provided as a result of which it cannot be replicated for other large-scale problems. In the
latter approach, the utility of the developed IFS generation heuristic is shown on a weekly flight schedule taken from
a complex flight network (up to 4228 flights with 15 crew bases). It has been replicated in this research and compared
with the proposed methodology. From the computational experiments, it is concluded that IFS generation approach of
Aggarwal et al. (2018) is highly dependent on the characteristics of the flight datasets. This builds the rationale for the
development of an IFS generation heuristic that could initialize large-scale CPOPs with complex flight networks in a
computationally- and time-efficient manner.
1.2. Contributions
The main contributions of this paper are two fold, as follows:

• An iterative Integer Programming-based Divide-and-cover Heuristic (IPDCH) is proposed, whose scalability
and time-efficiency for large-scale CPOPs with complex flight networks has been demonstrated. As the name
suggests, IPDCH relies on randomly decomposing the given flight data set into smaller flight subsets of pre-
defined size. For each such subset, all possible legal pairings are generated and aminimum-cost subset is selected
from it using the Integer Programming (IP) technique. These minimal-cost pairing subsets are combined to
generate the desired IFS.

• An analysis of the impact of an IFS cost-quality on the runtime and final crew pairing solution quality is pre-
sented. Surprisingly, the CPP literature is quite silent on such empirical analysis which is otherwise critically
important for the success of an initialization heuristic to result in a good-cost final crew pairing solution in less
runtime. For this, the proposed IPDCH is run for longer times (beyond the logical termination point) to gener-
ate multiple IFSs with varying characteristics. Subsequently, AirCROP is used to generate final crew pairing

D. Aggarwal et al.: Preprint submitted to Elsevier Page 3 of 17

Initialization for large-scale airline crew pairing optimization

solutions using these IFSs individually, which are then analyzed and compared. This analysis provides an em-
pirical evidence on how much time should be invested in the initialization phase in order to reach a near-optimal
solution in a fast-manner for large and complex CPPs.

The utility of the above contributions is demonstrated on real-world, large-scale (over 3228 flights), complex flight
networks (15 crew bases and multiple hub-and-spoke subnetworks), provided by GEAviation. From the computational
experiments, it is established that too low an IFS cost (using longer IPDCH-runs) does not necessarily imply lower cost
of the final crew pairing solution or even its faster convergence. It is to be noted that the rationale behind this empirical
study comes from unprecedented-scales and complexity of the current flight networks for which enumeration of all
legal pairings is computationally impractical.
1.3. Outline
The outline of this paper is as follows: Section 2 contains an overview of airline CPO including a brief discussion on the
associated terminology, pairing legality constraints, legal pairing generation approach, and CPOP modeling practices;
Section 3.1 includes the proposed IFS generation heuristic; Section 4 contains the computational experiments; and
lastly, Section 5 concludes this research.

2. Airline Crew Pairing Problem
2.1. Terminology
An overview of airline CPO is presented in this section. The associated terminology is as follows:

• The input includes a flight schedule along with the information of associated fleet and aircraft schedules (from
previous scheduling steps of the airline scheduling process).

• The sequence of flights flown by a crew in its working day is called a crew duty or a duty period.
• Any two flights in a crew duty are separated by a short time-interval, called sit-time or connection-time. The

sit-time is required to facilitate aircraft changes for crewmembers between two flights, if required, or a short-rest.
• A rest-period, longer than sit-time, is provided in between two crew duties, called as overnight-rest, indicating

the end of current duty.
• Two short time-intervals, called as briefing-time and debriefing-time, are provided in starting and ending of a

crew duty, respectively.
• Total time of a crew duty, including total flying time, total sit-time, briefing and debriefing times, is called

elapsed time of the crew duty.
• Depending on an airline’s operations, some airports are selected as base of crew-operations, serving as home

airports for crew members. These airports are called crew bases or crew domiciles.
• A legal sequence of flights to be flown by a crew member, starting and ending at its crew base, is called a crew

pairing. An example of a crew pairing and its associated terminologies are presented in Fig. 1.
• The total time elapsed in a crew pairing is called time away from base (TAFB). It is the time-duration for which

a crew is not present at its crew-base.
• Sometimes, flight delays and cancellations occur as an effect of unaccountable or uncertain events in real-time

operations, which might result in missed flight connections for some crew members. This could also lead to a
situation where crewmembers end up at an airport different from their crew base, and have to be transported back
to their crew base in order to complete their pairing. In such cases, these crew members are transported back to
their scheduled airports either using road transportation (in case of same city airports) or traveling as passengers
in some other flights (in case of distant airports). The flights in which crew members travel as passengers are
known as deadhead flights or deadheads for the traveling crew. A deadhead flight affects an airline’s profits in
two-folds, one by wasting the passenger seats which could have generated profits otherwise, and the other is by
paying wages to the deadhead crew for a non-flying or a non-working time. Hence, airlines desire to minimize
deadheads in their crew operations (ideally zero) in order to maximize their profits.

D. Aggarwal et al.: Preprint submitted to Elsevier Page 4 of 17

Initialization for large-scale airline crew pairing optimization

Figure 1: A legal crew pairing starting from Dallas, DAL, crew base

2.2. Crew Pairing: Legality Constraints
A crew pairing is required to satisfy several legality constraints linked to federations’ (such as FAA3, EASA4, and other
authorities) safety rules, airline-specific regulations, labor laws, etc., in order to to be classified as legal or to become
operational. The generic form of these legality constraints is as follows:

• Connection-city Constraint: In a pairing, two flights should be connected if and only if their connecting airports
are same i.e. the arrival airport of the incoming flight is same as the departure airport of the outgoing flight.

• Start-city and End-city Constraints: A crew can start its pairing from a crew base only. Hence, the first flight of
a legal pairing should start from a crew base and its last flight should end at the same crew base.

• Sit-time & Rest-time Constraints: These constraints restrict the sit-time between two consecutive flights in a
crew duty and the rest-time between two consecutive crew duties in a pairing. According to this constraint,
only those connections are legal whose sit-time or rest-time are in between their minimum and maximum limits,
respectively.

• Duty Constraints: These constraints restrict multiple parameters related to a crew duty. Some of the examples
of these constraints are as follows:

– Number of duties allowed in a pairing cannot go beyond a maximum limit.
– In a crew duty, the total number of flights, total elapsed-time and total flying-time are restricted by their
maximum limits which changes according to the duty’s start time.

• Special Constraints: Airlines formulate special constraints to further optimize their crew utilization. For exam-
ple, a legal pairing is not allowed to overnight at an airport which is in the same city as that of the crew base
from which it started, etc.

2.3. Legal Crew Pairing Generation Approach
The number of legality constraints may vary from airline to airline as per their requirements. Hence, it is impera-
tive to develop an efficient solution to legal crew pairing generation that could facilitate legal crew pairings to the
IFS generation and optimization phases on requirement basis. In Chu et al. (1997), it is recorded that generation of
legal pairings throughout the airline CPO consumes 25-50% of its total runtime, making it imperative to develop a
computationally- and time-efficient solution to CPGP. A plausible approach could be to exploit the priority order of
legality constraints while generating the legal pairings. This might eliminate the need for checking lesser priority
constraints if higher ones are already illegal, hence, saving the runtime to an extent. Moreover, decomposition of
CPGP into smaller subproblems and adoption of parallel processing techniques to solve them will speed-up the overall
process. Some of the existing parallel architectures have been discussed in Aggarwal et al. (2018). However, such

3FAA: Federal Aviation Administration.
4EASA: European Aviation Safety Agency.

D. Aggarwal et al.: Preprint submitted to Elsevier Page 5 of 17

Initialization for large-scale airline crew pairing optimization

parallel architectures require expensive computational resources. Furthermore, the efforts required in implementa-
tion of such complex concepts of parallelization may hamper the development and testing of new ideas, becoming a
barrier-to-entry for new researchers. Towards this, Aggarwal et al. (2018) proposed a simpler yet parallel legal crew
pairing generation approach, enabling new researchers for developing and testing new ideas in a simpler and faster
pairing generation environment. In large-scale CPOPs, multiple crew bases are present along with complex pairing
legality constraints which may vary with-respect-to the crew bases from which a pairing starts. Exploiting this, authors
decomposed the legal pairing generation process into independent subprocesses with-respect-to each crew base. These
subprocesses are executed, in parallel, on idle cores of a single processing unit. The above legal pairing generation
approach has been adopted in this research for facilitating legal crew pairings to the proposed IFS generation heuristic
in a computationally- and time-efficient manner.
2.4. Crew Pairing Optimization Problem Formulation
In literature, the crew pairing optimization problem has been modeled as either a set partitioning problem or a set
covering problem. These problem formulations fulfill the basic modeling requirements of CPOP. As mentioned in
the introduction, in a set partitioning model, each flight is allowed to be covered only once (no deadhead flights are
allowed), whereas, in a set covering model, flights are allowed to be covered in more than one pairing (over-coverage
represents deadhead flights). Although a set partitioning problem formulation might result in an improved solution, it
might also lead to an infeasible solution in problems where an ideally-partitioned solution, i.e., a set of legal pairings
covering all flights only once (without deadheads), does not exist. Moreover, the set covering model might result in
faster convergence in case of large-scale CPOPs (Gustafsson, 1999), making it a more appropriate modeling choice. In
the context of CPOP, each row of the constraint matrix represents a flight and each column represents a legal pairing.
In this research, a set covering problem formulation is used to model crew pairing optimization subproblems in the
proposed IFS generation heuristic (IPDCH) as presented in the next section. For a given set of legal pairings, ,
covering a set of flights, , the set covering problem formulation (labeled CPOP) is as follows.

(CPOP) minimize
x

f(x) =
(P
∑

j=1
cjxj +

(F
∑

i=1

(P
∑

j=1
aijxj − 1

))

× PDℎd

)

, (1)

subject to
P
∑

j=1
aijxj ≥ 1, ∀i ∈ {1, 2, ..., F } (2)

xj ∈ {0, 1}, ∀j ∈ {1, 2, ..., P } (3)

where P ∶ size of , i.e., ||,
F ∶ size of , i.e., | |,
cj ∶ cost of a pairing pj ,

PDℎd ∶ airline-defined parameter which penalizes the number of deadheads in the solution,

aij ∶

{

1, if flight fi is covered in pairing pj
0, otherwise ,

xj ∶

{

1, if pairing pj is selected in the corresponding solution
0, otherwise ,

x ∶
[

x1 x2 x3 ... xP
]T

Eq. (1) represents the objective function which is to minimize the total cost of the selected pairings. Eq. (2)
represents a set of F flight-coverage constraints which ensures that all F flights are covered by at least one legal
pairing. Eq. (3) represents a set of P side-constraints which ensures the binary nature of all P decision variables.

D. Aggarwal et al.: Preprint submitted to Elsevier Page 6 of 17

Initialization for large-scale airline crew pairing optimization

3. Proposed Methodology
3.1. Initial Feasible Solution and Its Associated Characteristics
A feasible crew pairing solution is a set of legal pairings covering all given flights, satisfying the set of F flight-
coverage constraints (Eq. (2)). As discussed in Section 1, for large-scale CPOPs, the optimization phase is required to be
initialized using a feasible, yet manageable, set of legal pairings. This pairing set is termed as an initial feasible solution
(IFS). For an IFS, two important characteristics are identified whose interplay is critical in driving the subsequent
optimization search towards a global optimum. These are as follows:

• Cost: It is measured as the cost of a linear programming (LP)-solution obtained from the generated IFS. This
LP-solution is obtained by solving CPOP with a continuously-relaxed form of the decision variables, i.e., xj ∈
[0, 1] ∀j ∈ [1, 2, ..., P], instead of Eq. (3). The LP-cost of the generated IFS could be regulated by timing
the termination of the proposed IFS generation heuristic. In that, as IPDCH is kept running, more pairings are
generated and added to the desired IFS which might either lower its LP-cost or it remains constant.

• Degrees of search-freedom: In large-scale optimization problems, the interplay between exploration and ex-
ploitation by an optimization algorithm determines its search-efficiency, as presented in fig. 2. In order to prevent

Figure 2: Exploratory versus exploitative optimization search (Traynor, 2019).

local optimality, exploration is desired upfront during the initial search, and exploitation is desired subsequently
as the search narrows down towards the global optimum. Since an IFS is used to initialize the optimization phase,
it is desirable to generate an IFS which has flexibility for an exploratory-search rather than an exploitative-search.
This flexibility of an IFS, which determines the search-direction of the subsequent optimization phase, is hereby
termed as degrees of search-freedom (DOSF). This characteristic is also regulated by timing the termination
of the proposed heuristic but in a complimentary manner as that of its LP-cost. In longer IPDCH-runs, more
number of pairings are added which increases the rigidity of the resulting IFS towards an exploratory-search,
contrary to its LP-cost. Hence, IFSs resulting from shorter IPDCH-runs will have higher DOSF values than
those from the longer IPDCH-runs.

The above-mentioned IFS characteristics are conflicting in nature as evident from their relationship with the ter-
mination choices of an IPDCH-run. The majority of IFS generation methods, proposed in literature, have been used
for initializing small-scale CPOPs in which the interplay of these IFS characteristics remains insignificant in finding
the final crew pairing solution. However, it is shown in this research that the success of subsequent optimization phase
for a large-scale CPOP is highly dependent on the interplay of these IFS characteristics. As mentioned in Section 1.1,
there are two instances in the literature which have addressed the initialization of large-scale CPOPs, one is Zeren and
Özkol (2016) and the other is Aggarwal et al. (2018). In the former instance, a special initialization heuristic is used
in which a DFS algorithm is used to traverse the duty-based network for generating legal pairings and a flight is not
covered again if it has been covered once. A detailed procedure or a pseudo-code of this initialization heuristic is not
provided, leaving its adaptability for other large-scale problems questionable. In the latter approach, an Enhanced-DFS
heuristic is proposed which is a modification of the DFS algorithm and attempts to cover unique flights by varying its
backtracking step-length from the child flight nodes to the parent flight nodes. The above Enhanced-DFS is replicated

D. Aggarwal et al.: Preprint submitted to Elsevier Page 7 of 17

Initialization for large-scale airline crew pairing optimization

in this research and compared with the proposed IPDCH. Moreover, both of the above-cited approaches did not discuss
about the sensitivity of an IFS characteristics on the CPO which has been found critically important for an efficient
subsequent optimization-search.
3.2. Integer Programming based Divide-and-cover Heuristic (IPDCH)
The motivation behind the development of this heuristic is to generate an IFS in not only a time-efficient manner but
also in a cost-effective manner for all types of CPOPs. Towards this, a divide-and-cover strategy is adopted to develop
an efficient heuristic, termed as Integer Programming-based Divide-and-cover Heuristic (IPDCH). The pseudo code
of IPDCH is given in Algorihm 1 and its working is explained as follows.

Algorithm 1: Pseudo-code of the proposed IPDCH
Input: ; K; and Pairing_Gen()

1 Output:
2 Procedure:
3 ← �, ̃ ← , flag ← False
4 while termination criterion is not met do
5 K , ̀K′ ,K′ , x∗,∗K′ ← �
6 if | | > K then
7 K ← Select K random flights from
8 ← ⧵ K
9 else
10 K ←
11 flag ← T rue
12 end
13 K′ ← Pairing_Gen(K)
14 ̀K′ ← Flights covered in K′ ⊳ K ′ ≤ K
15 Formulate CPOP using ̀K′ and K′
16 x∗ ← argmin

x
f(x) ⊳ Solved using an IP-solver

17 ∗K′ ← {pj | (pj ∈ K′) ∧ (x∗j′ = 1) ∧ (j = j
′)}

18 ← ∪ ∗K′
19 if flag = False then
20 ← ∪ {K ⧵ ̀K′}
21 else
22 ← ̃
23 flag ← False
24 end
25 end
26 return

As shown in Algorihm 1, the input to the IPDCH includes a flight schedule, ; a pre-defined decomposition
parameter,K; and an efficient legal crew pairing generation sub-routine, Pairing_Gen(). This sub-routine receives a
finite set of flights as input and returns an enumerated set of all possible legal pairings for the input flight set. It has been
adopted from Aggarwal et al. (2018), as discussed in Section 2.3. The output of the IPDCH is the desired IFS, denoted
by . IPDCH is an iterative heuristic and the working of each of its iterations is explained in lines 4 to 24. In the
first IPDCH-iteration, the input flight schedule is randomly decomposed into a smaller flight subset, denoted by K ,without replacement (lines 6 to 12). The size of K is controlled using the decomposition parameterK . Subsequently,
in line 13, the flights in K are fed as input to Pairing_Gen() sub-routine to generate the set of all possible legal
pairings, denoted by K′ . It is to be noted the set of flights covered in K′ , denoted by ̀K′ , might be a ⊆ K ,containing onlyK ′ flights withK ′ ≤ K (line 14). The rationale behind this is the fact that there might be missed flight
connections for some of the flights in K due to the random selection. In line 19, the remaining (uncovered) flights in
the set K ⧵ ̀K′ are added back to to ensure fair-chance of their selection in subsequent IPDCH-iterations. In line
15, a CPOP is formulated using the generated legal pairing set K′ and its flight set ̀K′ as search space (CPOP model
is discussed in Section 2.4). The resulting model is optimized using an Integer Programming (IP) technique, such as
the branch-and-bound algorithm, and an optimal solution vector, denoted by x∗, is obtained (line 16). Subsequently,
in line 17, the optimal solution x∗ is used to create the IP-optimal pairing set, denoted by ∗K′ , by selecting only thosepairings (pj) from K′ for which the corresponding x∗j is 1. The optimal pairing set ∗K′ is then added to (line
D. Aggarwal et al.: Preprint submitted to Elsevier Page 8 of 17

Initialization for large-scale airline crew pairing optimization

17). The subset K for the subsequent IPDCH-iteration is formed from the remaining flights, given in the set ⧵ ̀K′ .It is to be noted that for flight selection without replacement, a global copy of , denoted by ̃ , is maintained to replace
flights in whenever its size becomes ≤ K (lines 3, 9-12 & 20-23). This process is repeated until the termination
criterion is met, and the obtained after the termination of IPDCH becomes the desired IFS. An IPDCH-run could
be terminated as soon as all flights in are covered in at least one pairing of the , and this point is termed as
the feasibility point. Moreover, an IPDCH-run could be allowed to keep running beyond the feasibility point. More
pairings would be added with each extra IPDCH-iteration which, in turn, will improve the LP-cost and decrease the
DOSF of the . However, it is imperative to find the perfect balance between the characteristics of an IFS and the
time spent in its generation. For this, an empirical study is presented in Section 4.4.

The proposed IPDCH is advantageous over existing methods in two ways. First, it is utilizes a divide-and-cover
strategy which drastically improves its search-efficiency. As a result, it drastically decreases the IFS generation runtime
for not only large-scale CPOPs but for complex flight networks too which was the major limitation of the traditional IFS
generation methods. Second, beyond covering the given flight schedule in a decomposed manner, IPDCH optimizes
the decomposed flight subsets using IP in each of its iteration. As a result, only optimal pairings out of all possible
legal pairings are added to the desired IFS in each iteration, bringing in the associated cost benefits.

4. Computational Experiments
4.1. Experimental Settings

In this section, computational experiments are presented in order to demonstrate the utility of the proposed IPDCH
and to discuss the impact of IFS-characteristics on the final crew pairing solution. In this research, the proposed/
replicated algorithms are implemented using Python 3.6 scripting language. All computations are performed on a
HP Z640 workstation powered by 2 × (IntelⓇ XeonⓇ E5-2630v3 Processors having 16 cores at 2.40GHz), and with
64GB RAM. For solving the optimization subproblems in each IPDCH-iteration, an IP-solver from Gurobi Optimizer
Suit v8.1 (LLC, 2019) is used which is available for research purposes via academic license. The real-world airline
test-cases, used in this study, are introduced in the following. Afterwards, the experimental results of IFS generation
using the proposed IPDCH and the Enhanced-DFS heuristic are presented and compared. Lastly, the sensitivity of
IFS-characteristics on the final crew pairing solution is analyzed. For this sensitivity analysis, a Column Generation
based Airline Crew Pairing Optimizer (AirCROP) is used which has been developed by the authors and has been
validated by GE Aviation (Aggarwal et al., 2020a). This optimization framework is used as a black-box to which the
generated IFSs (using different settings of the proposed IPDCH) are fed as input and the corresponding final crew
pairing solutions are received as output.
4.2. Airline Test Cases

In this work, large-scale airline test cases are used which have been provided by GE Aviation. Details of these test
cases are given in Table 1. It is to be noted that TC2 & TC3 have approximately the same number of flights. However,

Test # of # of Crew Total Legal Average # of Duties
Cases Flights Base Duties Per Crew Base

TC1 2,453 06 110,348 18,392
TC2 3,202 15 454,205 30,281
TC3 3,228 15 464,092 30,940

Table 1
Real-world airline test cases

TC2 contains some flight legs with rare legal flight connections, making it difficult for the search algorithm to find
an IFS and/or near-optimal final crew pairing solutions. These test cases have been used in this research to estab-
lish/validate the generality of the proposed IPDCH. The majority of large-scale flight data sets used in Parmentier and
Meunier (2019) consist of flights between 600-1000, excluding two flight data sets which contain 1766 & 3398 flights
respectively. Hence, the test cases used in this research could also be classified as large-scale problems as they not only
contain a larger number of flights, but they are also derived from complex flight networks (multiple hub-and-spoke
subnetworks and multiple crew bases). In each of these test cases, a set of pairing legality constraints and costing rules
are provided along with an input flight schedule. These input flight schedules contain flight information/attributes such
D. Aggarwal et al.: Preprint submitted to Elsevier Page 9 of 17

Initialization for large-scale airline crew pairing optimization

as its departure/arrival airports, departure/arrival time-stamps5, aircraft’s fleet, and block-time6. The pairing legality
constraints have been discussed in Section 2. However, the exact parameters and some airline-specific constraints
cannot be revealed due to confidentiality agreements with the industrial sponsor. A non-linear set of costing rules is
provided for computation of the cost of a legal pairing. According to that, the pairing cost is made up of two com-
ponents namely, a flying cost component and a variable cost (or non-flying cost). The flying cost is the total cost of
flying all given flights (excluding deadhead flights). The variable cost is the total cost incurred by an airline during
non-flying hours of a crew in a pairing, which is further divided into following components:

• Hard cost: It is made up of excess pay (or credit pay), and the hotel &meal cost. Excess pay is the cost associated
with non-productive hours of a crew in a pairing, and is calculated as the cost of all minimum guaranteed hours
that are notmet by the actual flying hours. Theseminimum crew guaranteed hours depend upon various attributes
of a pairing such as its duty elapsed-time, TAFB, deadhead flights, etc. Airlines desire to minimize this cost
(ideally to zero) in order to maximize their crew utilization. Hotel & meal cost is the cost of accommodation
during overnight-rest periods and meal expenses for the entire pairing.

• Soft cost: It is the penalty cost added for every aircraft change while making a flight connection in a pairing, and
for every deadhead flight used in a pairing.

During discussions with domain experts from GE Aviation, it is learnt that airlines primarily use hard cost as the sole
KPI for evaluating the performance of their CPO process.
4.3. Results of IFS Generation
4.3.1. IFS generation using the proposed IPDCH

It is imperative to discuss the experimental settings of the proposed IPDCH first. The proposed IPDCH involves a
decomposition parameter, K , whose function is to decompose the large-scale input flight schedule into smaller flight
subsets. The primary objective of the proposed IPDCH is to generate an IFS for large-scale and complex CPOPs in a
time-efficient manner. Hence, the best-setting of K should be selected in a way to balance the trade-off between:

• the size of the decomposed flight subset which, in turn, affects the presence of legal flight connections for the
selected flights, and

• the runtime required in pairing generation as well as in solving the resulting IP for the decomposed flight subset,
i.e., the runtime of an IPDCH-iteration.

Higher values of K would promote legal flight connections for a larger number of flights in the selected flight subset
(larger ̀K′). This, in turn, will lead to generation of more legal pairings (larger K′) . However, this will also lead tohigher runtime values required for generation of K′ and the subsequent optimization using IP, increasing the overall
runtime of the IPDCH-iterations. On the contrary, lower values of K would promote smaller K′ , smaller runtime
for its generation, and optimization using IP. However, it may drastically reduce the probability of finding legal flight
connections while generation of legal pairings, i.e., smaller ̀K′ . Hence, it is imperative to tune the setting of K for
the given computational resources (Section 4.1) in order to leverage-in the maximum gain in the search-efficiency of
the proposed IPDCH. For this, multiple IPDCH-runs withK varying from 400 to 1200 flights and a ΔK = 100 flights
are performed. The rationale behind selection of such settings of K is as follows:

• The lower setting (K = 400 flights) is chosen to ensure the presence of legal flight connections in the decom-
posed flight subsets, while preventing the number of IPDCH iterations from increasing drastically. This helps
in controlling the runtime of the process from increasing drastically.

• The higher setting (K = 1200 flights) is chosen such that the number of pairings being generated in each IPDCH-
iteration does not increase drastically, keeping control over the IPDCH-iteration’s runtime.

Moreover, IPDCH involves random selection of flights in each iteration, making it imperative to study the impact
of pseudo-random number seed on IFS generation while finding the best-setting of K . For this, 10 random seeds

5A time-stamp gives information about the time and day of an event.
6Block-time is the total flying-time of a flight and is measured as the time taken by the flight’s aircraft from departure gate of its departure

airport to the arrival gate of its arrival airport.

D. Aggarwal et al.: Preprint submitted to Elsevier Page 10 of 17

Initialization for large-scale airline crew pairing optimization

Test
K Measures

Pseudo-random number seeds (including mean ± standard deviation values)

Case x ± �x ± �x ± � S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

TC1

400 Uncov. Flts. 0.0 ± 0.0 0 0 0 0 0 0 0 0 0 0
Runtime (s) 312.64 ± 165.55 334.0 217.19 706.56 316.36 188.42 508.64 295.34 123.95 246.33 189.61

500 Uncov. Flts. 0.0 ± 0.0 0 0 0 0 0 0 0 0 0 0
Runtime (s) 122.13 ± 54.99 152.06 102.75 257.25 173.58 90.81 79.81 91.82 85.74 120.53 66.98

600 Uncov. Flts. 0.0 ± 0.0 0 0 0 0 0 0 0 0 0 0
Runtime (s) 99.38 ± 55.75 63.82 51.42 62.85 57.65 76.6 160.93 123.44 110.12 231.63 55.32

700 Uncov. Flts. 0.0 ± 0.0 0 0 0 0 0 0 0 0 0 0
Runtime (s) 119.83 ± 71.62 99.72 87.28 52.98 85.83 69.79 307.71 78.03 143.97 94.57 178.4

800 Uncov. Flts. 0.0 ± 0.0 0 0 0 0 0 0 0 0 0 0
Runtime (s) 221.57 ± 112.79 168.82 73.41 235.75 388.11 75.44 132.03 340.85 293.37 145.13 362.76

900 Uncov. Flts. 0.0 ± 0.0 0 0 0 0 0 0 0 0 0 0
Runtime (s) 166.6 ± 56.10 168.26 127.43 114.38 155.65 208.82 316.78 162.6 136.77 128.7 146.63

1000 Uncov. Flts. 0.0 ± 0.0 0 0 0 0 0 0 0 0 0 0
Runtime (s) 707.15 ± 500.84 363.59 309.88 934.55 227.23 400.08 1218.4 312.92 1626.62 310.4 1367.84

1100 Uncov. Flts. 0.0 ± 0.0 0 0 0 0 0 0 0 0 0 0
Runtime (s) 1607.93 ± 994.59 850.7 536.09 531.43 1753.08 1947.7 2350.13 3656.11 2657.52 997.42 799.16

1200 Uncov. Flts. 0.0 ± 0.0 0 0 0 0 0 0 0 0 0 0
Runtime (s) 3560.13 ± 1124.55 3584.73 3486.83 1977.61 4424.67 3668.92 3665.82 1785.83 2673.65 5533.75 4799.51

TC2

400 Uncov. Flts. 241.10 ± 168.56 407 402 58 408 415 122 11 402 126 60
Runtime (s) 7200.37 ± 0.22 7200.38 7200.17 7200.31 7200.55 7200.01 7200.72 7200.34 7200.66 7200.38 7200.15

500 Uncov. Flts. 0.0 ± 0.0 0 0 0 0 0 0 0 0 0 0
Runtime (s) 790.06 ± 613.49 239.39 359.88 1245.15 2397.71 344.49 376.76 791.92 461.25 861.62 822.47

600 Uncov. Flts. 0.0 ± 0.0 0 0 0 0 0 0 0 0 0 0
Runtime (s) 500.14 ± 286.00 120.8 705.14 263.47 483.1 926.95 131.55 690.34 185.25 750.57 744.28

700 Uncov. Flts. 0.0 ± 0.0 0 0 0 0 0 0 0 0 0 0
Runtime (s) 636.74 ± 750.15 132.92 2530.57 282.58 1467.64 128.38 212.54 109.6 698.65 667.63 136.89

800 Uncov. Flts. 0.0 ± 0.0 0 0 0 0 0 0 0 0 0 0
Runtime (s) 684.60 ± 812.28 254.0 183.39 726.99 567.8 474.87 106.75 294.26 789.58 412.15 3036.25

900 Uncov. Flts. 0.0 ± 0.0 0 0 0 0 0 0 0 0 0 0
Runtime (s) 985.23 ± 785.11 814.26 492.78 2667.15 359.92 920.17 295.23 599.08 2131.75 216.4 1355.59

1000 Uncov. Flts. 0.2 ± 0.6 2 0 0 0 0 0 0 0 0 0
Runtime (s) 2611.39 ± 1837.04 7219.48 4187.71 2756.86 419.3 2113.89 842.02 2405.43 2564.58 1317.88 2286.76

1100 Uncov. Flts. 0.6 ± 0.92 0 0 0 2 0 2 0 2 0 0
Runtime (s) 5453.02 ± 1879.96 5466.36 3064.13 7166.73 7217.62 4517.77 7245.06 2097.01 7219.2 3679.45 6856.88

1200 Uncov. Flts. 2.8 ± 1.6 0 5 3 3 2 2 3 2 6 2
Runtime (s) 8179.58 ± 1036.51 6862.2 10503.73 8095.02 8197.77 7490.89 7711.8 7854.07 8320.46 9541.72 7218.14

TC3

400 Uncov. Flts. 115.50 ± 151.69 0 116 132 14 410 403 24 6 30 20
Runtime (s) 6509.77 ± 2072.22 293.14 7200.28 7200.04 7200.61 7200.71 7200.53 7200.65 7200.4 7200.68 7200.67

500 Uncov. Flts. 0.0 ± 0.0 0 0 0 0 0 0 0 0 0 0
Runtime (s) 333.93 ± 193.82 319.97 808.27 180.79 543.33 314.8 167.76 192.65 172.13 254.12 385.44

600 Uncov. Flts. 0.0 ± 0.0 0 0 0 0 0 0 0 0 0 0
Runtime (s) 181.18 ± 60.07 133.42 169.46 155.78 122.96 233.31 139.05 122.13 306.18 258.16 171.34

700 Uncov. Flts. 0.0 ± 0.0 0 0 0 0 0 0 0 0 0 0
Runtime (s) 136.98 ± 57.98 235.08 102.95 122.92 111.77 264.42 119.76 94.14 110.94 123.44 84.42

800 Uncov. Flts. 0.0 ± 0.0 0 0 0 0 0 0 0 0 0 0
Runtime (s) 149.84 ± 44.29 175.09 160.34 111.93 145.21 147.59 92.34 107.01 260.2 155.67 142.98

900 Uncov. Flts. 0.0 ± 0.0 0 0 0 0 0 0 0 0 0 0
Runtime (s) 293.21 ± 69.55 256.09 221.22 255.35 334.23 234.84 393.11 237.46 240.12 426.57 333.08

1000 Uncov. Flts. 0.0 ± 0.0 0 0 0 0 0 0 0 0 0 0
Runtime (s) 656.37 ± 179.66 944.62 579.12 492.01 543.48 783.31 587.66 381.04 621.88 966.31 664.3

1100 Uncov. Flts. 0.0 ± 0.0 0 0 0 0 0 0 0 0 0 0
Runtime (s) 2701.44 ± 849.14 1816.02 1219.25 3449.42 3930.72 3188.87 3401.02 2471.46 3432.76 2081.01 2023.83

1200 Uncov. Flts. 2.10 ± 1.76 1 3 3 6 4 1 1 1 0 1
Runtime (s) 7733.26 ± 1848.75 7225.41 8212.13 9354.2 7438.45 8050.76 7559.46 7841.17 10370.6 2890.92 8389.52

For each setting of K in which all random seeds lead to a feasible solution, the best and worst runtime values are highlighted in green and red
colors respectively. Moreover, the best runtime values (approximately equal) for individual test cases are highlighted in bold.

Table 2
Results of IFS generation for all test cases using the proposed IPDCH

D. Aggarwal et al.: Preprint submitted to Elsevier Page 11 of 17

Initialization for large-scale airline crew pairing optimization

(varying uniformly) are used for each IPDCH-run corresponding to each setting of K . In this analysis, each IPDCH-
run is terminated as soon as all given flights are covered, or its runtime exceeds 7200 seconds (two hours) in case a
feasible solution is not found.

The IFS generation results (uncovered flights and runtime values) for all test cases using the proposed IPDCH with
the above mentioned experimental settings are presented in Table ??. In the table, for each setting of K , the results
corresponding to each random seed are presented in each column along with a column with (x ± �) values. Some of
the observations drawn from this table are now discussed. For TC1, it is noted that IPDCH-runs with all values of K
lead to a feasible solution for all random seeds. However, for TC2, IPDCH-runs with K = 400, 1000, 1100 & 1200
flights are not able to generate a feasible solution for some of their random seeds in the given runtime. Similarly, for
TC3, IPDCH-runs with K = 400 & 1200 flights are not able to generate a feasible solution for some of their random
seeds in the given runtime. Hence, the best setting ofK lies in the range of 500−900 flights. For further visualization,
a comparative plot is drawn in between mean, median, best, and worst runtime values for each feasible setting ofK for
each test case, as shown in figure ??. From these plots and the results table, it is clear that the best IPDCH-run for TC1

Mean Median Best WorstSolutions

102

103

Run
tim

e (
loga

rith
mic

 sc
ale,

 se
c.)

400
500
600

700
800

900
1000

1100
1200

(a) TC1

Mean Median Best WorstSolutions
102

103

Run
tim

e (
loga

rith
mic

 sc
ale,

 se
c.)

500
600

700
800

900
1000

(b) TC2

Mean Median Best WorstSolutions
102

103

Run
tim

e (
loga

rith
mic

 sc
ale,

 se
c.)

500
600

700
800

900
1000

1100

(c) TC3
Figure 3: Plots between mean, median, best, and worst runtime values for each setting of K for each test case

is for K = 600 & 700 flights. Similarly, for TC2 & TC3, the same is observed for K = 700 & 800 flights. For each
test case, two best settings of K are mentioned as the difference between their best-runtime values is marginal. It is to
be noted that all these results are dependent on the computational resources used in this work (Section 4.1). Hence,
for the given configuration of computational resources and the characteristics of the flight data sets used, it could be
concluded that K = 700 flights is the best-setting of the proposed IPDCH for initializing large-scale and complex
CPOPs in a cost-effective and time-efficient manner. In the following subsection, the performance of the proposed
IPDCH is compared with an existing IFS generation method from the literature.
4.3.2. Comparison between IPDCH & Enhanced-DFS Heuristic

To demonstrate the utility of the proposed IPDCH, its performance is compared with the Enhanced-DFS heuristic
(authors’ previous IFS-generation heuristic) and the results are presented. For this comparison, the setting of K for
IPDCH-runs is kept at 700 flights as concluded in the previous subsection. The IFS generation results for both of these
heuristics are summarized in Table ??. It is observed that the propsoed IPDCH took only up to 110 seconds to generate
an IFS for the most complex and/or largest test cases used in this work. On the contrary, the respective runtime values
for Enhanced-DFS heuristic are up to∼6625 seconds (=1.85 hours). The difference between their runtime performance
is marginal for TC3 but is significantly huge for TC1 & TC2. These observations validate that the proposed IPDCH
(with K = 700 flights) is a fast initialization heuristic in comparison to the Enhanced-DFS. TC1 & TC2 are not only
derived from complex flight networks but also contain some flights with rare legal flight connections and are extremely
difficult to be identified by an initialization-search. This is the reason behind the huge runtime values of the Enhanced-
DFS heuristic. However, the performance of the proposed IPDCH remains unaffected even for such flight networks,
D. Aggarwal et al.: Preprint submitted to Elsevier Page 12 of 17

Initialization for large-scale airline crew pairing optimization

Test IFS Generation # Pairings Runtime LP-cost
Case Method (sec.) (USD)

TC1
IPDCH with K =

700 4,410 53 3,743,402

Enhanced-DFS 285,057 1771 2,824,341

TC2
IPDCH with K =

700 7,991 110 4,696,619

Enhanced-DFS 477,617 6625 3,646,715

TC3
IPDCH with K =

700 6,056 85 5,002,751

Enhanced-DFS 26,678 108 4,971,053

Table 3
Comparison of IFSs generated using the proposed IPDCH and the Enhanced-DFS heuristic

making it one of the most time-efficient IFS generation heuristic present for large-scale CPOPs. In addition to this, the
cost-quality of an IFS generated using IPDCH could be improved by running the IPDCH for a longer time. Hence, for
an IPDCH-run, it is imperative to analyze the trade-off between the cost improvement it brings in each iteration and
its overall runtime which is presented in the following subsection. Given this trade-off, it becomes critically important
to time the termination of an IPDCH-run as the IFS characteristics (cost and DOSF) are directly dependent on these
termination choices. Furthermore, it is anticipated that the success of the subsequent optimization phase is linked with
the interplay of these two characteristics. For this, the impact of IFS characteristics on final crew pairing solution is
discussed in the following subsection.
4.4. Sensitivity of IFS charanteristics on the performance of AirCROP

In Section 3.1, two important characteristics of an IFS (cost and DOSF) are discussed. It is anticipated that the suc-
cess of subsequent crew pairing optimization phase is linked to the interplay between these characteristics. To establish
this empirically, a sensitivity analysis of IFS characteristics on final crew pairing solutions, obtained usingAirCROP ,
is presented in this subsection. For this, multiple IFSs (with varying characteristics) are generated using the proposed
IPDCH. Subsequently these IFSs are individually fed as input to the developed optimizer, and the characteristics of
the final crew pairing solutions (their cost and runtime values) are analyzed.

In Section 3.1, it is also discussed that cost and DOSF have complimentary relationships with the runtime of an
IPDCH-run, and could be regulated by varying its termination point. To study the trade-off between cost-improvement
with each IPDCH-iteration and its total runtime, a long IPDCH-run is performed for TC3 with K = 700 flights and
runtime = 1000 seconds as the termination criterion. Using data of this run, the LP-cost of the IFS after each IPDCH-
iteration is plotted against the respective runtime values (measured from the beginning of the run) which is shown
in fig. ??. It is to be noted that in this figure, the first data point belongs to an IPDCH-iteration immediately after

200 400 600 800 1000Runtime (sec)
3800000
4000000
4200000
4400000
4600000
4800000
5000000

LP-
Cos

t (U
SD

)

A

B
C

D

IFS1

IFS2
IFS3

IFS4

75 100

250 260

500 510
990 1000

Figure 4: Plot of variation in LP-cost of the IFS with runtime of an IPDCH-run for TC3

feasibility point is achieved, i.e., after 85 seconds for TC3. From this graph, it is evident that the cost of an IFS is
D. Aggarwal et al.: Preprint submitted to Elsevier Page 13 of 17

Initialization for large-scale airline crew pairing optimization

inversely proportional to the IPDCH-runtime, i.e., the higher the runtime of an IPDCH-run, the lower would be the
LP-cost of the resulting IFS and vice versa. As shown in the figure, an IFS with best cost-quality is selected from
region D, i.e., after the iteration with runtime = 1000 seconds. And, an IFS with worst cost-quality is selected from
the region A, i.e., after an iteration with runtime = 85 seconds. The DOSF of an IFS also varies inversely with the
IPDCH-runtime. The IFS from region A will have highest DOSF whereas the IFS from region D will have the lowest
DOSF. As mentioned above, multiple IFSs with varying characteristics are required to carry out the sensitivity analysis
of an IFS characteristics on the final crew pairing solution. For this, two more IFSs (after the ones selected from the
regions A & D) are selected from two other complimentary regions of this figure, i.e., regions B & D. The rationale
behind selecting these other two regions is as follows. The trade-off in this figure reveals that the cost improvement
per iteration is huge in initial iterations of the IPDCH-run (from regions A to C) and it decreases with further iterations
(from regions C &D). In addition to these three regions, the fourth region (B) is selected as the mid-iterations between
regions A & C. In a similar manner, multiple IFSs are generated for TC1 & TC2 which are summarized in Table ??.

Test

IFS(s) # Pairings
Runtime LP-cost

DOSF

Final Crew Pairing Solution

Case
(sec.) (USD)

I Run II Run

(TC) Total Cost Runtime Total Cost Runtime
(USD) (hours) (USD) (hours)

TC1

1 4,410 53 3,743,402 High 2678720 2.8425 2684207 3.2453
2 18,272 250 3,064,397 Moderately High 2696991 3.3542 2684624 3.7778
3 36,965 500 2,915,924 Moderately Low 2693286 3.4487 2683362 3.8042
4 79,397 1000 2,819,007 Low 2698492 3.4362 2694067 3.9000

TC2

1 7,991 110 4,696,619 High 3511944 6.0362 3502514 6.5278
2 18,686 250 4,158,096 Moderately High 3497212 5.9598 3487858 6.3473
3 36,458 500 3,932,366 Moderately Low 3494837 6.2848 3492258 6.6153
4 70,285 1000 3,775,848 Low 3489654 6.2848 3481849 6.6042

TC3

1 6,056 85 5,002,751 High 3513784 5.5500 3513437 5.8167
2 17,747 250 4,238,840 Moderately High 3534496 6.3028 3514034 6.7278
3 36,306 500 3,979,340 Moderately Low 3517987 5.7625 3512787 6.2625
4 73,827 1000 3,803,569 Low 3534042 6.3848 3538691 6.7459

Table 4
Results of sensitivity analysis of an IFS characteristics on the final crew pairing solution

Now, these IFSs are fed as input to the developed optimizer for finding the respective final crew pairing solutions.
In optimization systems, trade-off between solution-quality (here, cost) and runtime plays a critical role in timing its
termination. Generally, in small-scale optimization systems, solution quality is preferred over runtime as their search-
efficiency largely remains unaffected by the problem scale. This is opposite for large-scale optimization systems as
their search efficiency is marred by the curse of dimensionality (vast search space). The AirCROP belongs to the
category of large-scale optimization systems, hence, its choice of termination lies with airline users. However, to
accommodate the varying operational-scales of the airline users, the developed optimizer is designed with multiple
termination points. For this research, two different termination points of the developed optimizer are used: Setting-1
(to find an approximately good-cost final crew pairing solution in less runtime) & Setting-2 (to find better-cost final
crew pairing solution by spending more runtime). For simplicity, the optimizer run with Setting-1 is referred to as I
Run, and the optimizer run with Setting-2 is referred to as II Run.

For all test cases, results of optimizer runs with each of the above-generated IFSs as input are summarized in
Table ??. The quality of a final crew pairing solution is measured in terms of its final cost and the runtime spent in
finding that solution (including IPDCH-runtime). These results are visualized by plotting cost against runtime values
for each test case, as shown in figures 5a, 5b & 5c. Before summarizing the observations from these results, it
is imperative to introduce non-dominated solutions. Deb (2001) defined a domination criterion which states that a
solution x1 dominates another solution x2 only if fi(x1) ≤ fi(x2) for all functions fi, and fi(x1) < fi(x2) for atleast one fi. And, the non-dominated solutions are those solutions which are not dominated by another solution. The
observations drawn from the results of this sensitivity analysis are as follows:

• As mentioned-above, I Run is linked to the generation of an approximately good-cost solution in less runtime
whereas, the II Run is linked to the generation of a better-cost solution by spending more runtime. The ranking

D. Aggarwal et al.: Preprint submitted to Elsevier Page 14 of 17

Initialization for large-scale airline crew pairing optimization

2.8 3.0 3.2 3.4 3.6 3.8Runtime (hours)

2680000
2682500
2685000
2687500
2690000
2692500
2695000
2697500

Tot
al

Cos
t (U

SD
)

IFS1
IFS2
IFS3
IFS4
I Run
II Run

(a) TC1

6.0 6.2 6.4 6.6Runtime (hours)
3480000
3485000
3490000
3495000
3500000
3505000
3510000

Tot
al

Cos
t (U

SD
)

IFS1
IFS2

IFS3
IFS4

I Run
II Run

(b) TC2

5.6 5.8 6.0 6.2 6.4 6.6 6.8Runtime (hours)

3515000

3520000

3525000

3530000

3535000

3540000

Tot
al

Cos
t (U

SD
)

IFS1
IFS2
IFS3
IFS4
I Run
II Run

(c) TC3
Figure 5: Plots between cost and runtime values of final crew pairing solutions generated from IFSs with varying charac-
teristics

of final crew pairing solutions for I Run (i.e. w.r.t. the runtime) is as follows:
For TC1 ∶ R1 > R2 > R3 > R4
For TC2 ∶ R2 > R1 > R4 > R3
For TC3 ∶ R1 > R3 > R2 > R4

(4)

and the same for II Run (i.e. w.r.t. the cost) is:
For TC1 ∶ R3 > R1 > R2 > R4
For TC2 ∶ R4 > R2 > R3 > R1
For TC3 ∶ R3 > R1 > R2 > R4

(5)

• For TC1 & TC3, the best solution of I Run is obtained using 1 as input. This solution is not only best in
terms of overall runtime but is also best in terms of cost. However, for their respective II-Runs, non-dominated
solutions are obtained using 1 & 3 as input. Among these non-dominated solutions, it is found that
the cost of 1’s final solution is marginally poorer than that of the 3 (0.032% for TC1 and 0.019% for
TC3). However, the difference between runtime values of the former and latter solutions is huge (17.22% for
TC1 and 7.67% for TC3). Similarly, for TC2, two non-dominated solutions are obtained in both optimizer runs
using 2 & 4 as input. The cost of 2’s final solution is marginally lower than that of the 4
(0.22% in I Run and 0.18% in II Run) whereas, the difference between their respective runtime values is huge
(5.5% in I Run and 4.1% in II Run). From these observations, it is clear that for initializing comparable large-
scale CPOPs, 1/2 is a better choice. These IFSs are generated using IPDCH with K = 700 flights
& up to 250 seconds of runtime, and in turn have high/moderately high DOSF. Hence, it would be appropriate
to conclude that an IFS with high/moderately high DOSF drives the optimization search towards near-optimal
solutions for large-scale CPOPs in a time-efficient manner.

• In the majority of these results, it is also observed that if I Run did not lead to a good-cost solution, then the II
Run results in huge cost reductions. However, this cost reduction becomes marginal if a good-cost solution is
already obtained in the I Run. Keeping in mind the user preferences for large-scale optimization systems, it is
desirable to select an IFS which drives the optimization search to a good-cost solution in less runtime, i.e., the
result of I Run. These IFSs are either 1 (in case of TC2 & TC3) or 2 (in case of TC2). Hence, this
provides further evidence in support of the conclusion drawn in the previous point.

• For TC1 with 1 as input, the cost-reduction in the final solution of II Run w.r.t. the I Run becomes negative.
A similar pattern was observed with 4 as input for TC3. This reveals the complicated nature of the problem
at hand. In these kind of problems, where an integer solution is obtained by first optimizing the problem in
continuous domain followed by optimization in integer domain, it is not guaranteed that the integer solution will
always improve with the runtime, making it imperative to time the termination decisions.

D. Aggarwal et al.: Preprint submitted to Elsevier Page 15 of 17

Initialization for large-scale airline crew pairing optimization

5. Conclusion and Future Research
For large-scale and complex airline CPOPs, IFS generation standalone is computationally challenging as it con-

stitutes an NP-complete problem. In this research, a cost-effective and time-efficient initialization heuristic, IPDCH,
is proposed. Its utility is demonstrated on real-world, large-scale (over 3228 flights), complex airline test cases (with
15 crew bases), provided by GE Aviation. The proposed IPDCH not only utilizes a divide-and-cover strategy (the
input flight schedule is divided into smaller flight subsets) to achieve feasibility in a time-efficient manner, but also
attempts to cover these flight subsets in a cost-effective manner by optimization using IP. For this, the IPDCH employs
the decomposition parameter K which controls the size of the flight subsets. To leverage-in the maximum gain in
search-efficiency of the IPDCH, it is imperative to tune the setting of K for the given computational resources and
airline flight networks. As a conclusion of this research, it is advisable for airline users to keep K = 700 flights in
IPDCH for initializing their comparable flight networks using similar computational resources.

In this paper, the proposed IPDCH is compared with an existing IFS generation heuristic from the literature
(Enhanced-DFS heuristic). It was observed that the IPDCH took up to only 110 seconds for generating an IFS for
the most complex and/or largest test case used whereas, the Enhanced-DFS heuristic took up to 6625 seconds (1.85
hours) for the same test cases respectively. This shows that for the most complex test cases involved, the Enhanced-DFS
heuristic becomes an exhaustive search, revealing its dependency on the characteristics of the flight data set. However,
even for such test cases, the proposed IPDCH generates an IFS in few seconds. This establishes the superiority of
the proposed IPDCH over the best IFS generation heuristic available in the literature for initializing large-scale and
complex CPOPs.

An IFS is used to initialize the crew pairing optimization phase, and intuitively, it is desirable to have an IFS which
is flexible enough to promote an exploratory initial optimization search instead of the exploitative. To establish this
empirically, the sensitivity of the IFS characteristics (identified as cost and DOSF) on the final crew pairing solution
is analyzed in this paper. Surprisingly, the literature is silent on such empirical evidence which is otherwise critically
important for the success of an initialization heuristic to result in a good-cost final crew pairing solution in less runtime.
From this sensitivity analysis, it is concluded that an IFS with high/moderately high DOSF drives the optimization
towards the near-optimal final crew pairing solution in less runtime. For similar computational resources as used
in this research, these IFSs could be obtained using IPDCH with K = 700 flights and runtime up to 250 seconds.
However, the best choice for an airline user is to terminate the IPDCH at the feasibility point in order to avoid the
empirical study with their own computational resources and data sets.

As future work, a plausible research direction for the proposed IPDCH could be to establish the relationship of
K with the configuration of computational resources being used and with the characteristics of flight data sets being
solved. Another research direction would be to replace the random decomposition strategy with a knowledge heuristic
that could use the information of legal flight connections while decomposing the input flight schedule. This may
increase the probability of covering more unique flights in lesser IPDCH-iterations. Furthermore, for a given airline,
the final crew pairing solutions from hundreds of previous optimizer runs could be utilize to learn flight-connection
structures/patterns which could be used to warm-start the IFS generation. This will not only help in speeding up the
IFS generation process but could also help in initializing the subsequent optimization phase from a critically important
point in the search space.

Acknowledgment
This work is a research outcome of an Indo-Dutch joint research project. It is supported by theMinistry of Electron-

ics and Information Technology (MEITY), India [grant 13(4)/2015-CC&BT]; Netherlands Organization for Scientific
Research (NWO), the Netherlands; and General Electric (GE) Aviation, India. The authors would like to acknowledge
the invaluable support of GE Aviation team members: Saaju Paulose (Senior Manager), Arioli Arumugam (Senior
Director- Data & Analytics), and Alla Rajesh (Senior Staff Data & Analytics Scientist) for providing problem defini-
tion, real-world test cases, and for sharing domain-knowledge during numerous stimulating discussions which helped
the authors in successfully completing this work.

References
D. Aggarwal, D. K. Saxena, T. Bäck, M. Emmerich, AirCROP: Airline Crew Pairing Optimizer for Complex Flight Networks Involving Multiple

Crew Bases & Billion-Plus Variables, arXiv:2003.03994 [cs.MS] (Unpublished).

D. Aggarwal et al.: Preprint submitted to Elsevier Page 16 of 17

Initialization for large-scale airline crew pairing optimization

D. Aggarwal, D. K. Saxena, T. Bäck, M. Emmerich, Real-World Airline Crew Pairing Optimization: Customized Genetic Algorithm versus Column
Generation Method, arXiv:2003.03792 [cs.NE] (Unpublished).

D. Aggarwal, D. K. Saxena, M. Emmerich, S. Paulose, On large-scale airline crew pairing generation, in: 2018 IEEE Symposium Series on Com-
putational Intelligence (SSCI), IEEE, 593–600, 2018.

S. AhmadBeygi, A. Cohn, M.Weir, An integer programming approach to generating airline crew pairings, Computers & Operations Research 36 (4)
(2009) 1284–1298.

R. Anbil, J. J. Forrest, W. R. Pulleyblank, Column generation and the airline crew pairing problem, Documenta Mathematica 3 (1) (1998) 677.
R. Anbil, E. Gelman, B. Patty, R. Tanga, Recent advances in crew-pairing optimization at American Airlines, Interfaces 21 (1) (1991) 62–74.
R. Anbil, R. Tanga, E. L. Johnson, A global approach to crew-pairing optimization, IBM Systems Journal 31 (1) (1992) 71–78.
A. Aydemir-Karadag, B. Dengiz, A. Bolat, Crew pairing optimization based on hybrid approaches, Computers & Industrial Engineering 65 (1)

(2013) 87–96.
C. Barnhart, A. M. Cohn, E. L. Johnson, D. Klabjan, G. L. Nemhauser, P. H. Vance, Airline crew scheduling, in: Handbook of transportation

science, Springer, 517–560, 2003.
C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. Savelsbergh, P. H. Vance, Branch-and-price: Column generation for solving huge integer

programs, Operations research 46 (3) (1998) 316–329.
J. E. Beasley, P. C. Chu, A genetic algorithm for the set covering problem, European journal of operational research 94 (2) (1996) 392–404.
H. D. Chu, E. Gelman, E. L. Johnson, Solving large scale crew scheduling problems, in: Interfaces in Computer Science and Operations Research,

Springer, 183–194, 1997.
K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, vol. 16, John Wiley & Sons, 2001.
K. Deb, C. Myburgh, A population-based fast algorithm for a billion-dimensional resource allocation problem with integer variables, European

Journal of Operational Research 261 (2) (2017) 460–474.
G. Desaulniers, F. Soumis, Airline Crew Scheduling by Column Generation, CIRRELT Spring School, Montréal Canada .
M. Deveci, N. Ç. Demirel, Evolutionary algorithms for solving the airline crew pairing problem, Computers & Industrial Engineering 115 (2018)

389–406.
O. Du Merle, D. Villeneuve, J. Desrosiers, P. Hansen, Stabilized column generation, Discrete Mathematics 194 (1-3) (1999) 229–237.
M. R. Garey, D. S. Johnson, Computers and Intractibility: A Guide to the Theory of NP-Completeness, vol. 44, New York: W. H. Freeman &

Company, 1979.
T. Gustafsson, A heuristic approach to column generation for airline crew scheduling, Department of Mathematics, Chalmers University of Tech-

nology, 1999.
D. Klabjan, E. L. Johnson, G. L. Nemhauser, E. Gelman, S. Ramaswamy, Solving large airline crew scheduling problems: Random pairing generation

and strong branching, Computational Optimization and Applications 20 (1) (2001) 73–91.
H. Kornilakis, P. Stamatopoulos, Crew pairing optimization with genetic algorithms, in: Hellenic Conference on Artificial Intelligence, Springer,

109–120, 2002.
A. H. Land, A. G. Doig, An Automatic Method of Solving Discrete Programming Problems, Econometrica 28 (3) (1960) 497–520.
S. Lavoie, M.Minoux, E. Odier, A new approach for crew pairing problems by column generation with an application to air transportation, European

Journal of Operational Research 35 (1) (1988) 45–58.
D. Levine, Application of a hybrid genetic algorithm to airline crew scheduling, Computers & Operations Research 23 (6) (1996) 547–558.
G. O. LLC, Gurobi Optimizer Reference Manual, version 8.1, URL http://www.gurobi.com, 2019.
M. E. Lübbecke, Column generation, Wiley Encyclopedia of Operations Research and Management Science, John Wiley and Sons, Chichester, UK

.
M. E. Lübbecke, J. Desrosiers, Selected topics in column generation, Operations research 53 (6) (2005) 1007–1023.
H. T. Ozdemir, C. K. Mohan, Flight graph based genetic algorithm for crew scheduling in airlines, Information Sciences 133 (3-4) (2001) 165–173.
T. Park, K. R. Ryu, Crew pairing optimization by a genetic algorithm with unexpressed genes, Journal of Intelligent Manufacturing 17 (4) (2006)

375–383.
A. Parmentier, F. Meunier, Aircraft routing and crew pairing: updated algorithms at air France, Omega .
R. Tarjan, Depth-first search and linear graph algorithms, SIAM journal on computing 1 (2) (1972) 146–160.
D. Traynor, [Blog] Two product principles often forgotten, URL https://www.intercom.com/blog/

two-product-principles-often-forgotten, [Online; accessed 20tℎ Oct. 2019], 2019.
P. H. Vance, C. Barnhart, E. Gelman, E. L. Johnson, A. Krishna, D. Mahidhara, G. L. Nemhauser, R. Rebello, A heuristic branch-and-price approach

for the airline crew pairing problem, Technical Report LEC-97-06, Georgia Institute of Technology, Atlanta, 1997.
S. Yan, J. C. Chang, Discrete Optimization: Airline cockpit crew scheduling, European Journal of Operational Research 136 (3) (2002) 501–511.
F. Zeghal, M. Minoux, Modeling and solving a crew assignment problem in air transportation, European Journal of Operational Research 175 (1)

(2006) 187–209.
B. Zeren, İ. Özkol, An improved genetic algorithm for crew pairing optimization, Journal of Intelligent Learning Systems and Applications 4 (01)

(2012) 70.
B. Zeren, I. Özkol, A novel column generation strategy for large scale airline crew pairing problems, Expert Systems with Applications 55 (2016)

133–144.

D. Aggarwal et al.: Preprint submitted to Elsevier Page 17 of 17

http://www.gurobi.com
https://www.intercom.com/blog/two-product-principles-often-forgotten
https://www.intercom.com/blog/two-product-principles-often-forgotten

