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ABSTRACT
The ability to leverage large-scale hardware parallelism has been

one of the key enablers of the accelerated recent progress in ma-

chine learning. Consequently, there has been considerable effort in-

vested into developing efficient parallel variants of classic machine

learning algorithms. However, despite the wealth of knowledge

on parallelization, some classic machine learning algorithms often

prove hard to parallelize efficiently while maintaining convergence.

In this paper, we focus on efficient parallel algorithms for the

key machine learning task of inference on graphical models, in

particular on the fundamental belief propagation algorithm. We ad-

dress the challenge of efficiently parallelizing this classic paradigm

by showing how to leverage scalable relaxed schedulers in this

context. We present an extensive empirical study, showing that our

approach outperforms previous parallel belief propagation imple-

mentations both in terms of scalability and in terms of wall-clock

convergence time, on a range of practical applications.

1 INTRODUCTION
Hardware parallelism has been the key computational enabler of

the recent advances in machine learning, as it provides a way to

reduce the processing time for the ever-increasing quantities of data

required for training accurate models. Therefore, naturally, there

has been a considerable amount of effort invested into developing

efficient parallel variants of classic machine learning algorithms,

e.g. [17, 25–27, 31].

In this paper, we will focus on efficient parallel algorithms for a

fundamental machine learning task of inference on graphical mod-
els. Specifically, graphical models [23] are a general framework for

describing the statistical relationships between large collections of

random variables. The inference task in graphical models takes the

form of marginalisation: we are given observations for a subset of

the random variables, and the task is to compute the conditional

distribution of one or a few variables of interest. The marginaliza-

tion problem is known to be computationally intractable in general;

it is NP-hard and difficult to even approximate [10, 11, 36], which

has lead to use of inexact heuristics in practical inference tasks.

One popular heuristic for inference on graphical models is belief
propagation [30], inspired by the exact dynamic programming al-

gorithm for marginalization on trees. While belief propagation has

no general approximation or even convergence guarantees, it has

proven empirically successful in inference tasks, in particular in the

context of decoding low-density parity check codes [9]. However,

it remains poorly understood how to properly parallelize belief

propagation.

Parallelizing Belief Propagation. To illustrate the challenges of par-

allelizing belief propagation, we will next give a simplified overview

of the belief propagation algorithm, and refer the reader to Section 2

for full details. Belief propagation can be seen as a message passing
or a weight update algorithm. In brief, belief propagation operates

over the underlying graphG = (V ,E) of the graphical model, main-

taining a vector of real numbers called a message µi→j for each

ordered pair (i, j) corresponding to an edge {i, j} ∈ E (Fig. 1). The

core of the algorithm is the message update rule which specifies

how to update an outgoing message µi→j at node i based on the

other incoming messages at node i; for the purposes of the present
discussion, it is sufficient to view this as black box function f over

these other messages, leading to the update rule

µi→j ← f
({µk→i : k ∈ N (i) \ {j}}

)
. (1)

This update rule is applied to messages until the values of messages

have converged to a stable solution, at which point the algorithm

is said to have terminated.

Importantly, the message update rule does not specify in which
order messages should be updated. The standard solution, called

synchronous belief propagation, is to update all the message simulta-

neously. That is, in each global round t = 1, 2, 3, . . . , given message

values µti→j for all pairs (i, j), the new values µt+1i→j are computed

as

µt+1i→j ← f
({µtk→i : k ∈ N (i) \ {j}}

)
However, there is strong evidence suggesting that updating mes-

sages one at a time leads to faster andmore reliable convergence [15];

in particular, various proposed priority-based schedules—schedules
that try to prioritize message updates that would make ‘more

progress’—have proven to converge with much fewer message up-

dates than the synchronous schedule in empirical trials [15, 22, 41].

Having to execute updates in a strict priority order poses a chal-

lenge for efficient parallel implementations of belief propagation:

while the synchronous schedule is naturally parallelizable, as all

message updates can be done independently, the more efficient

priority-based schedules are inherently sequential and thus seem

difficult to parallelize. Accordingly, existing work on efficient par-

allel belief propagation has focused on designing custom schedules

that try to import some features from the priority-based schedules

while maintaining a degree of parallelism [12, 17].
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Figure 1: State of the belief propagation algorithm consist of
two directed messages for each edge.
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1.1 Our contributions
In this work, we address the challenges of parallel belief propaga-

tion by showing how to efficiently parallelize any priority-based

schedule for belief propagation. The key idea is that we can relax
the priority-based schedules by allowing limited out-of-order ex-

ecution, concretely implemented using a relaxed scheduler, as we
will explain next.

More precisely, consider a belief propagation algorithm that

schedules the message updates according to a priority function r by
always updating themessage µi→j with the highest priority r (µi→j )
next; this framework captures existing priority-based schedules

such as residual belief propagation [15] and its variants [22, 41].

Concretely, a iterative centralized version of this algorithm can be

implemented by storing the messages in a priority queue Q , and
iterating the following procedure:

(1) Pop the top element for Q to obtain the message µi→j with

highest priority r (µi→j ).
(2) Update message µi→j following (1).

(3) Update the priorities in Q for messages affected by the up-

date.

As one can readily see, this template does not directly lend itself to

efficient parallel implementation. Previous work, e.g. [12, 17] inves-

tigated various heuristics for the parallel scheduling of updates in

belief propagation, trading off increased parallelism with additional

work in processing messages or even potential loss of convergence.

In this paper, we investigate an alternative approach, replacing

the priority queue Q with a relaxed scheduler to obtain a efficient

parallel version of the above template. Specifically, the relaxed

scheduler is a data structure with similar semantics to those of a

priority queue, but instead of guaranteeing that the top element

is always returned first in the linearized order, it only guarantees

to return one of the top k elements of the priority queue, where k
is a variable parameter. Relaxed schedulers have recently become

popular in the context of parallel graph processing frameworks,

e.g. [18, 29], where it has been shown that they can induce non-

trivial trade-offs between the degree of relaxation and the scalability

of the underlying implementation, e.g. [1, 5]. In the context of

belief propagation, this method induces a relaxed priority-based
scheduling of the messages, roughly following the original schedule

but allowing for message updates to be performed out of order.

In this paper, we investigate the convergence-scalability trade-off

when applying relaxed scheduling to residual belief propagation,

from both theoretical and practical standpoints.

Experimental evaluation. We implement our relaxed priority-based

scheduling framework with a Multiqueue data structure [34] and
instantiate it with several proposed priority-based schedules, in-

cluding residual belief propagation [15], the priority-based schedule

of [41], the weight decay algorithm of [22] and the residual splash

algorithm [17]; the latter requires a slight extension of our frame-

work, as we discuss below.

In the benchmarks, we show that this framework gives state-of-

the-art parallel scalability on a wide variety of Markov random field

models. As can be expected, the relaxed priority-based schedules

require slightly more message updates than their exact counter-

parts, but this is offset by the better scalability of relaxed schedulers.

Indeed, we highlight the fact that the relaxed version of the popu-

lar residual belief propagation algorithm performs extremely well

in both single-thread and highly parallel regimes, making it an

attractive practical solution for belief propagation.

2 PRELIMINARIES AND RELATEDWORK
2.1 Inference on graphical models
We consider marginalization in pairwise Markov random fields;
note that one can equivalently consider factor graphs or Bayesian

networks [43]. A pairwise Markov random field is defined by a

set of random variables X1,X2, . . . ,Xn , a graph G = (V ,E) with
V = {1, 2, . . . ,n}, and a set of factors

ψi : Di → R+ for i ∈ V ,

ψi j : Di × D j → R+ for {i, j} ∈ E,
where Di denotes the domain of random variable Xi . The edge fac-
torsψi j represent the dependencies between the random variables,

and the node factors ψi represent a priori information about the

individual random variables; the Markov random field defines a

joint probability distribution on X = (X1,X2, . . . ,Xn ) as

Pr

[
X = x

] ∝∏
i
ψi (xi )

∏
i j
ψi j (xi ,x j ) ,

where the ‘proportional to’ notation ∝ hides the normalization

constant applied to the right-hand side to obtain a probability dis-

tribution. Formally, the marginalization problem is to compute the

probabilities Pr[Xi = x] for a specified subset of variables; for no-

tational convenience, we assume that any possible observations

regarding the values of other random variables are encoded in the

node factor functionsψi . The marginalization problem is known to

be computationally intractable; it is NP-hard and difficult to even

approximate [10, 11, 36], which has lead to use of inexact heuristics,

such as belief propagation, in practical inference tasks.

2.2 Belief propagation
Belief propagation is a message-passing algorithm; for each ordered

pair (i, j) such that {i, j} ∈ E, wemaintain amessage µi→j : D j → R,
and the algorithm iteratively updates these messages until the val-

ues (approximately) converge to a fixed point. On Markov random

fields, the message update rule gives the new value of message

µi→j as a function of the old messages directed to node i by

µi→j (x j ) ∝
∑

xi ∈Di

ψi (xi )ψi j (xi ,x j )
∏

k ∈N (i)\{j }
µk→i (xi ) , (2)

where N (j) denotes the neighbors of node j in the graph G. Once
the algorithm has converged, the marginals are estimated as

Pr[Xi = xi ] ∝ ψi (xi )
∏

j ∈N (i)
µ j→i (xi ) .

Again, we note that belief propagation can be equivalently formu-

lated on factor graphs or Bayesian networks [43].

As already discussed in the introduction, the update rule (2)

can be applied in arbitrary order. The standard synchronous belief
propagation updates all the message simultaneously; in each global

round t = 1, 2, 3, . . . , given message values µti→j for all pairs (i, j),
2



the new values µt+1i→j are computed as

µt+1i→j (x j ) ∝
∑

xi ∈Di

ψi (xi )ψi j (xi ,x j )
∏

k ∈N (i)\{j }
µtk→i (xi ) .

2.3 Asynchronous belief propagation
Starting with Elidan et al. [15], there has been a line of research

arguing that asynchronous or iterative schedules for belief propaga-
tion tend to converge more reliably and with fewer message updates

that the synchronous schedule. In particular, the practical work

has focused on developing schedules that attempt to iteratively

perform ‘the most useful’ update at each step; the most prominent

of these algorithms is the residual belief propagation of Elidan et

al. [15], with other proposals aiming to address the shortcomings

of residual belief propagation in various cases.

Residual belief propagation. Given a current state of messages, let

µ ′i→j denote the message we would obtain by applying the message

update rule (2) to message µi→j . In residual belief propagation, the

priority of a message is given by the residual res(µi→j ) of a message

µi→j , defined as

res(µi→j ) = ∥µ ′i→j − µi→j ∥ , (3)

where ∥·∥ is an arbitrary norm; in this work, we assume L2 norm is

used unless otherwise specified. That is, the residual of a message

corresponds to amount of change that would happen if message

µi→j would be updated. Note that this means that residual belief

propagation performs lookahead, that is, the algorithm precom-

putes the future updates before applying them to the state of the

algorithm.

Weight decay belief propagation. Weight decay belief propagation
of [22] is a variant of residual belief propagation that penalizes

message priorities for repeated updates. That is, letm(µi→j ) denote
how many times message µi→j has been updated by the algorithm,

and let res(µi→j ) denote the residual of a message as above. The

priority function of weight decay belief propagation is

r (µi→j ) =
res(µi→j )
m(µi→j )

.

The motivation behind this weight decay scheme is that empirical

observations suggest that one possible failure mode of residual

belief propagation is getting stuck in cycles with large residuals; the

weight decay prioritizes other edges in cases where this happens.

Residual without lookahead. Another variant of residual belief prop-
agation is the lookahead-avoiding belief propagation of [41]. As the

name implies, this algorithm does not perform the exact residual

computation using (3), but instead approximates the residuals indi-

rectly, with the aim of reducing the computational cost of priority

updates.

Informally, the basic idea is that for each message µi→j , we

track the amount other incoming messages at node i have changed
since the last update of µi→j , and use this to define the priority of

updating µi→j . The actual approximation in the algorithm uses a

slightly different notion of residual from (3), so we refer to [41] for

full details.

2.4 Parallel belief propagation
As discussed above, the question of parallelizing belief propagation

is fairly poorly understood. The synchronous schedule is trivially

parallelizable by performing updates within each round in parallel,

but the improved converge properties of the iterative schedules

cannot easily be translated to parallel setting. There have been

recent proposals that aim to bridge this gap in an ad-hoc manner

by designing custom algorithms for specific parallel computation

settings.

Residual splash. The residual splash belief propagation [17] is a

vertex-based algorithm inspired by residual belief propagation. The

residual splash algorithm was initially designed for MapReduce

computation, and it aims to have larger individual tasks while

retaining a similar structure to residual belief propagation.

Specifically, the residual splash algorithm works by defining

a priority function over nodes of the Markov random field, and

selecting the next node to process in a strict priority order. For

the selected node, the algorithm performs a splash operation that

propagates information within distance H in the graph; in practice,

this results in threads performing larger individual tasks at once,

offsetting the cost of accessing the strict scheduler.

In detail, the priority of for nodes is given by the node residual,
defined as

res(i) = max

j ∈N (i)
res(µ j→i ) .

Given a depth parameter H , the splash operation at node i is defined
by following sequence of message updates:

(1) Construct a BFS tree T of depth H rooted at node i .
(2) In the reverse BFS order on T—starting from leaves—process

all nodes inT , updating all outgoing messages for each node

processed.

(3) Repeat the previous step in BFS order, i.e., starting from the

root.

In other words, this process gather all available information at

radius H from the selected node, and propagates it to all nodes

within the radius.

Randomized synchronous belief propagation. Van derMerve et al. [12]

proposed a parallelization scheme for belief propagation on GPUs,

mixing the structure of synchronous and residual belief propagation.

Their algorithm considers all messages at once in global rounds,

and performs the following filter-and-select steps before computing

the message updates:

(1) Filter out all messages whose residuals are below the conver-

gence threshold.

(2) Out of the remainingmessages, select ap fraction ofmessages

uniformly at random to update.

Alternatively, the process can perform the algorithm on per-node

basis, using node residuals as in the residual splash algorithm.

The fraction p is adjusted on the fly based on the convergence of

the algorithm, preferring a low value if the algorithm is converging

slowly, and a high value if it is converging fast. Concretely, the

selection scheme for p used by [12] is to set p = 1 if the number of

messages above the convergence threshold decreased by at least

10% in the last round, and set it to a smaller fixed value otherwise.
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We note that the randomized synchronous algorithm is partic-

ularly well suited for GPU use, as the filter-and select steps can

be efficiently implemented on GPUs. However, as shown by our

experimental study, this strategy is not efficient on a subset of real-

world models, when ported to CPU. Conversely, as discussed by the

authors of [12], the dynamic priority-based strategy we propose

would be hard to implement efficiently on GPUs, due to its irregular

structure.

2.5 Relaxed schedulers
Recently, significant amount of attention has been given to paral-

lelizing iterative algorithms, especially in the context of large-scale

graph processing, e.g. [8, 13, 14, 18, 29]. One way to exploit the

fine-grained parallelism present in these applications has been to

analyze and leverage their shallow dependency structure, e.g. [7, 40].

While this approach can provide theoretical guarantees and may

yield extremely strong practical results, it does require a good un-

derstanding of the problem at hand, as well as potential tuning of

parameters in practice.

An alternative approach has been to employ scalable data struc-

tures which only ensure relaxed priority order to schedule the it-

erations. To our knowledge, this idea was first proposed by Karp

and Zhang [21] in the context of parallel backtracking in the PRAM

model, who noticed that the scheduler may relax the strict order

induced by the sequential algorithm, allowing tasks to be processed

speculatively ahead of their dependencies, without loss of correct-

ness. A simple instance of this phenomenon is in the context of

single-source shortest-paths (SSSP), where the scheduler may re-

trieve vertices in arbitrary order without breaking correctness, as

the distance at each vertex is guaranteed to eventually converge to

the minimum, although executing items too far from the sequen-

tial order may be wasteful in terms of tasks processed, and thus

negate the benefits of parallelism. See e.g. [28] for a more in-depth

treatment in the case of SSSP.

More generally, this relaxed approach has been quite popular

in practice, as several efficient relaxed schedulers as well as ap-

plications have been proposed [3, 4, 6, 19, 29, 35, 38, 39, 42]. Such

frameworks can attain state-of-the-art results in the graph process-

ing domain [18, 20, 29]. A parallel line of work has attempted to

provide guarantees on the amount of relaxation in individual sched-

ulers [2, 3, 37], as well as the impact of using relaxed scheduling on

existing iterative algorithms [1, 5]. In this paper, we are employing

the modeling of relaxed schedulers used in e.g. [2, 5] for graph

algorithms, but applying it to a new domain, inference on graphical

models. We will see in Section 4 that obtaining general bounds on

the impact of relaxation on the work performed by the algorithm,

along the lines of those obtained by [5] for graph algorithms, is

infeasible for belief propagation.

3 RELAXED PRIORITY-BASED BELIEF
PROPAGATION

In this section, we describe our framework for parallelizing belief

propagation schedules via relaxed schedulers. The main idea of the

framework follows the description given in Section 1.1; however,

we generalize it slightly to capture schedules that do not use indi-

vidual messages as elementary tasks, such as the residual splash

algorithm [17].

3.1 Priority-based belief propagation
Given a Markov random field, a priority-based schedule for belief

propagation is defined by a set of task T1,T2, . . . ,TK , each corre-

sponding to a sequence of edge updates, and a priority function r
that assigns a priority r (Ti ) to a task based on the current state of

the messages as well as possible auxiliary information maintained

separately. A priority-based schedule is executed sequentially by re-

peating the following steps until a convergence criterion is reached:

(1) Select the task Ti with highest priority r (Ti )
(2) Perform all message updates specified by the task Ti .
(3) Update the priorities for all tasks.

Note that tasks can be executed multiple times in this framework.

In particular, we assume that the priority r (Ti ) of a taskTi can only

remain the same or increase when other tasks are executed, and the

only point where the priority decreases is when the task is actually

executed.

3.2 Implementation
Concretely, a sequential version of a priority-based schedule for

belief propagation can be implemented using a priority queue Q .
The queue Q stores entries for all individual tasks, and the top

priority task is obtained by popping the top element of the queue.

The changes to other task priorities are updated using the increase

key operation of the queue.

One could map this sequential pattern directly to a parallel set-

ting by replacing the sequential priority queue with a linearizable

concurrent one. However, this may not be the best option, for two

reasons. First, in general it is challenging to build scalable lineariz-
able exact priority queues, see e.g. [24]—the data structure is inher-

ently contended, which leads to poor cache behavior. Second, in

this context, linearizability only gives the illusion of atomicity with

respect to task message updates: the data structure only ensures

that the task removal is atomic, whereas the actual message updates

which are part of the task are not usually performed atomically

together with the removal.

For these reasons, in our framework, we opt for using a variant

of the Multiqueue relaxed priority scheduler [3, 34]. More precisely,

we assume that each thread i has one or a few local concurrent

priority queues, used to store pointers to tasks, prioritized by an

algorithm-specific function. (In our experiments, we use binary

heaps, protected by coarse-grained locks, for these priority queues.)

Additionally, we store additional metadata as required by the algo-

rithm and the graphical model. To process a new task, the thread

selects two among all the priority queues uniformly at random,

and withdraws the task from the queue whose top element has

higher priority. (The task is marked as in-process so it cannot be

processed concurrently by some other thread.) The thread then pro-

ceeds to perform the metadata updates required by the underlying

variant of belief propagation. The termination condition is checked

periodically once the number of iterations reaches a predefined

threshold.
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Concretely, for relaxed residual belief propagation, which is or

main algorithmic proposal, the tasks are messages, prioritized by

their residual values. Initially, we insert one task per message, as-

signing them into the priority queues via a fixed hash function,

so that messages are easily addressable. We maintain a lock for

each node as metadata, and a task for each message. Tasks never

get removed from their priority queues, although they can be de-

prioritized. Whenever processing a task corresponding to message

µi→j , we first lock nodes i and j (in a fixed order, to avoid dead-

locks), update the message, and then update all the priorities of

messages from node j accordingly. Finally, we reset the priority of

message µi→j to zero, and unlock themessage endpoints. The termi-

nation condition in this case is if the residual of the highest-priority

message is below a fixed tolerance level, e.g. 10
−5
.

4 DYNAMICS OF RELAXED BELIEF
PROPAGATION

As we see in Section 5, the relaxed versions of priority-based belief

propagation schedules yield fast converge times on a wide variety

of Markov random fields; specifically, the number of message up-

dates is roughly the same as for the non-relaxed version, while the

running times are lower. The complementary theoretical question

is whether we can give analytical bounds how much extra work—in

terms of additional message updates—the relaxation incurs.

Unfortunately, the dynamics of even synchronous belief prop-

agation are poorly understood on general graphs, and none of

the priority-based algorithms provide general guarantees on the

convergence time. As such, we can only hope to gain some lim-

ited understanding on why relaxation retains the fast convergence

properties of the exact priority-based schedules. Here, we present

a limited theoretical evidence suggesting that as long as a sched-

ule does not impose long dependency chains in the sequence of

updates, then relaxation incurs relatively little overhead.

4.1 Sequential model for relaxed schedules
For analysis of the relaxed priority-based belief propagation, we

consider the formal sequential model introduced by [2, 5] to ana-

lyze performance of iterative algorithms under relaxed schedulers.

Specifically, we model a relaxed scheduler Qk as a data structure

which stores pairs corresponding to tasks and their priorities, and

supports the following operations:

– Pop returns one of the k highest priority elements inQk and

removes it from Qk .

– Insert inserts an task with a specified priority into Qk .

– IncreaseKey increases the priority of a specified task in Qk .

Given a sequence of operations for Qk , we assume that resulting

execution satisfies the following axioms [2, 5]:

– Each Pop operation returns one of the k highest priority

elements in Qk .

– Assume that a task T becomes the highest priority task in

Qk at some point during the execution. Unless there is an

Insert or IncreaseKey operation that replaces T as the high-

est priority element, then one of the next k Pop operations

returns T .

Other than satisfying these axioms, we assume that the behavior

of Qk can be adversarial, or randomized. In particular, it is known

that executions of the Multiqueue data structure [34] satisfy these

axioms with high probability [1, 3].

We model the behavior of relaxed priority-based belief propaga-

tion by investigating the number of message updates needed for

convergence when the algorithm is executed sequentially using a

relaxed scheduler Qk satisfying the above constraints. We empha-

size that this analysis reduces to a sequential game between the

algorithm, which queries Qk for tasks/messages, and the scheduler,

which returns messages in possibly arbitrary fashion. One may

think of the relaxed sequential execution as a form of lineariza-

tion for the actual parallel execution—reference [1] formalizes this

intuition.

4.2 Relaxed schedules on trees
We now consider the behavior of relaxed residual belief propagation

schedules on trees with a single source, similarly to the analysis of

residual splash given by Gonzalez et al. [17]. Specifically, assume

that the Markov random field and the initialization of the algorithm

satisfies the following conditions:

– The graph G = (V ,E) is a tree with a specified root r .
– The factors of the Markov random field and the initial mes-

sages are such that the residuals are zero for all messages

other than the outgoingmessages from the root, i.e., res(µi→j ) =
0 if i , r .

These conditions mean that residual belief propagation will start

from the root, and propagate the messages down the trees until

propagation reaches all leaves. In particular, residual belief propaga-

tion without relaxation will perform n − 1 message updates before

convergence, updating each message away from root once. While

this is a restrictive setting, we note that there are practical infer-

ence instances where the Markov random field has locally tree-like

structure, e.g. LDPC codes (see Section 5).

To characterize the dynamics on relaxed residual belief propaga-

tion on trees with a single source, we observe that the algorithm

can make two types of message updates:

– Updating amessagewith zero residual, in which case nothing

happens (a wasted update). This happens if the scheduler
relaxes past the range of messages with non-zero residual.

– Updating a message µi→j with non-zero residual, in which

case the residual of µi→j goes down to zero, and themessages

µ j→k for the children k of j may change their residuals to

non-zero values (a useful update).

It follows that each edge will get updated only once with non-zero

residual. At any point of time during the execution of the algorithm,

we say that the frontier is the set of messages with non-zero residual,

and use F (t) to denote the size of the frontier at time step t .
To see how the size of the frontier relates to the number message

updates in relaxed residual belief propagation, observe that after a

useful update, we have one of the following cases:

– If F (t) ≥ k , then the next Pop operation to Qk will give an

edge with non-zero residual, resulting in a useful update.

– If F (t) < k , then in the worst case we need k Pop operations

until we perform a useful update.
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We next discuss how to use this to analyse the extra work incurred

by relaxation in two concrete cases.

Good case: uniform expansion. As the first case, we consider the
tree model in the case where the edge factorsψi j are identical for
all edges and not deterministic, i.e.ψi j (xi ,x j ) , 0 for all {i, j}. Let
us say that the level of a message µi→j is ℓ if the distance from i
to the root r is ℓ. The conditions we imposed our Markov random

field, together with the update rule (2), imply that the residuals of

the messages are decreasing in the level ℓ of the message, and all

messages on level ℓ will have the same residual when they are in

the frontier. This means that residual schedule will prefer updating

messages on lower levels first.

Now consider the progress of the relaxed residual belief propa-

gation on this tree; let H denote the height of the tree. Now assume

that all messages on levels 0, 1, . . . , ℓ − 1 have had a useful update,

and consider how many wasted updates we can make in the worst

case before all messages on level ℓ have been processed. Let f
denote the number of message on level ℓ still in the frontier:

– While f ≥ k , there are at least k messages of level ℓ on

the frontier. Since they have the highest residual out of the

messages in the frontier, each update is a useful update of a

message on level ℓ.

– When f < k , there can be updates that do not hit messages

on level ℓ, which can possibly be wasted updates. However,

the highest-priority messages are still from level ℓ, so every

kth update will hit a message on level ℓ by the guarantees

of the scheduler. Thus, in (k − 1)f = O(k2) updates, all
remaining messages on level ℓ have been processed.

Since there can be at most n − 1 useful updates, and the number of

levels is H − 1, the total number of updates performed by relaxed

residual belief propagation is n +O(Hk2).

Bad case: long paths. A simple example where relaxed residual belief

propagation performs poorly is a path. That is, if our underlying

tree is a path of lengthnwith a root at one end, then relaxed residual
belief propagation can perform Ω(kn)message updates in the worst

case. However, the path has height H = n, so one might ask if there

is a general upper bound of form n + O(Hk2) on trees without

restricting the edge factors as in our previous example.

Unfortunately, turns out that without the restrictions above, we

can construct examples of trees with heightH = o(n)where relaxed
residual belief propagation still performs Ω(kn) message updates

(see Figure 2 for an illustration):

(1) Start with a path of length

√
n, with a root at one end.

(2) Attach a new path of length

√
n to each vertex.

(3) For each remaining degree-2 node in the graph, attach a

single new node to it.

This construction results in a 3-regular rooted tree with Θ(n) nodes
and depth H = O(√n). Finally, we choose the edge factors so that

residuals on the side paths are larger than the residuals on the main

path, so residual belief propagation will prefer following the side

paths first.

One can now observe that under the adversarial model for the

relaxed scheduler, the adversary can select the execution of the

relaxed scheduler so that the frontier size never exceeds 4. That is,

Figure 2: Example of the tree construction where relaxed
residual belief propagation performs poorly.

adversary forces the algorithm to process the graph one side path

at time, wasting k − 1 steps between each useful update.

Finally, we note that the same construction can be generalized

to obtain instances with similar relaxation overhead and diameter

O(n1/c ) for larger constants c < k , by simply working with paths

of length n1/c and repeating the path attachment step c times.

Remark 1. As suggested by the above examples, one might consider

changing the priority function to preferentially select messages

closer to the source. This can lead to improved work guarantees for

the relaxed schedule. Indeed, we discuss one concrete example in

Appendix A, where we show how to relax the optimal schedule on

trees. However, it is not straightforward to construct such priority

functions so that they also make sense on general graphs, which

can have non-monotonic potentials and cycles.

5 EVALUATION
5.1 Algorithms
For the experiments, we have implemented multiple priority-based

algorithms and instantiated them with both exact and relaxed pri-

ority schedulers.

Priority-based algorithms. We implemented the residual belief prop-

agation, weight decay belief propagation and residual without

lookahead as described in Section 2. For the residual splash, we im-

plemented two variants. The first is the standard splash algorithm,

and the second is an optimized version we refer to as smart splash,
which only updates messages along the BFS edges during a splash

operation; the latter variant has similar convergence times as the

baseline residual splash algorithm, but performs fewer message

updates.

We include the following instantiations of the algorithms in the

benchmarks:

– Exact scheduling: We include the exact versions of resid-

ual belief propagation (Coarse-Grained Residual) and both

residual splash (Splash) and smart splash (Smart Splash)
with H ∈ {2, 5, 10}. For these algorithms, the scheduler is a

standard concurrent priority queue. The other exact priority-

based algorithms are not included, as they generally perform

worse on our test instances.

– Relaxed scheduling: We include the relaxed versions of resid-

ual belief propagation (Relaxed Residual), weight decay be-

lief propagation (Weight-decay), residual without lookahead
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(Relaxed Priority) and smart splash (Relaxed Smart Splash)
with H ∈ {2, 5, 10}. For these algorithms, the scheduler is a

Multiqueue with 4 priority queues per thread, as discussed

in Section 3.

Baselines. As a baseline, we implemented a parallel version of the

standard synchronous belief propagation (Synchronous) and the

randomized synchronous belief propagation of Van der Merve et

al. [12]. The latter is omitted from the benchmarks, as our CPU-

based implementation of this GPU-based algorithm did not perform

well, even after significant tuning. (See Appendix B for detailed

discussion.)

5.2 Models
We run our experiments on four Markov random fields models.

Trees. As a simple base case, we consider a simple tree model similar

to the analytical setting in Section 4. The underlying graph is a full

binary tree on 1 million vertices, and the other parameters are set

up as follows:

– All variables are binary, i.e. the domain is {0, 1} for each
variable.

– Vertex factors are (0.1, 0.9) for the root and (0.5, 0.5) for all
other vertices.

– Edge factors areψi j (x ,y) =
{
1, x = y

0, x , y
for all edges.

As discussed in Section 4, these choices create a setup where the

belief propagation has to propagate information from the root to

all other nodes. Thus, under an optimal schedule, the total number

of performed updates is be equal to 10
6 − 1. Since we know that

all algorithms will converge on this model, we run the algorithms

until exact convergence.

Ising and Potts models. Ising and Potts models are Markov random

fields defined over an n × n grid graph, arising from applications

in statistical physics. Both of Ising [15, 22] and Potts [41] models

were used in prior work as test case, and in general they offer a

class of good test instances, as they both exhibit complex cyclic

propagations and are easy to generate.

For the parameters of the models, we mostly follow prior work in

the setup. As the underlying graph, we use a 300×300 grid graph to

get instances where the effects of parallelization are clearly visible.

For the Ising model, we select the factors similarly to [15, 22]:

– The variable domain is {−1, 1} for all variables.
– Vertex factors areψi (x) = eβix .
– Edge factors areψi j (x ,y) = eαi jxy .
– The parameters αi j and βi are chosen uniformly at random

from [−1, 1].
For the Potts model, we select the factors following [41]:

– The variable domain is {0, 1} for all variables.

– Vertex factors areψi (x) =
{
eβi , x = 1

1, x = 0

.

– Edge factors areψi j (x ,y) =
{
eαi j , x = y

1, x , y
.

– The parameters αi j and βi are chosen uniformly at random

from [−2.5, 2.5].

For both Ising and Potts models, we set the convergence threshold

to 10
−5
. That is, we terminate algorithm once all task have priority

below this threshold.

LDPC codes. Finally, we generateMarkov randomfields correspond-

ing to the (3, 6)-LDPC (low density parity check code [16]) decoding.
LDPC decoding is one of the more successful application of belief

propagation. We consider a simple version of LDPC decoding task

where convergence guarantees exist [32]. However, we stress that

coding theory is its own extensive research area, and far more opti-

mized codes and decoding algorithms exist in practice—we simply

use LDPC decoding to observe the comparative scaling behavior of

our implementations on instances where synchronous belief prop-

agation is guaranteed to converge. For a more detailed background

on LDPC decoding and other aspects of coding theory, refer e.g. to

the book [33].

More precisely, we consider (3, 6)-LDPC decoding over a bi-

nary symmetric channels. Informally, a (3, 6)-LDPC code is a (3, 6)-
regular bipartite graph, where each degree 3 node corresponds to a

binary variable and each degree 6 node corresponds to a constraint
of form xi1 + xi2 + . . . + xi6 = 0 over the neighboring variables

xi1 ,xi2 , . . . ,xi6 . Each sequence of variables that satisfies the all the

constraints is codeword of the code. The basic setup is then that we

send a codeword over a channel that flips each bit with probability

ε , and the receiver will run belief propagation and use results of

marginalization to infer the original codeword.

For our experiments, we build a (3, 6)-LDPC instance with 30 000

variable nodes and 15 000 constraint nodes by selecting a random

(3, 6)-regular bipartite graph, and initialize the node factors cor-

responding to the all-zero codeword sent over binary symmetric

channel with error probability ε = 0.07. Under these conditions,

belief propagation is guaranteed to correctly decode the instance

with high probability [32]; indeed, all the algorithms that converged

decoded the codeword correctly in our experiments. The codeword

length was again selected to get roughly comparable baseline run-

ning times as for the other instances.

Concretely, we get Markov random field where the underlying

graph is a random bipartite graph with 45 000 nodes. For each vari-

able node i , let xi ∈ {0, 1} be the ‘transmitted’ value of the variable,

randomly generated to be 1 with probability ε and 0 otherwise. The
factors have the following structure:

– The domains of variable nodes are binary domains {0, 1}.
For the constraint nodes, the domain is {0, 1}6—different bit
masks of length 6.

– The node factors for variable nodes are

ψi (y) =
{
1 − ϵ, y = xi

ϵ, y , xi .

For the constraint nodes, the node factor ψc (y) is equal to
the number of ones in y ∈ {0, 1}6 modulo 2; this effectively

penalizes any value that does not satisfy the constraint.

– Edge factorsψic (x ,y) is one if the corresponding bit in the

y ∈ {0, 1}6 equals x ∈ {0, 1}, and is zero otherwise.

For the LDPC instances, we set the convergence threshold to 10
−2

to ensure fast convergence; this approximates the behavior of actual

LDPC decoders.
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Synchronous
Weight-decay
Splash H=5
Smart Splash H=10

Coarse-Grained Residual
Splash H=2
Smart Splash H=5
Relaxed Smart Splash H=10

Relaxed Residual
Smart Splash H=2
Relaxed Smart Splash H=5

Relaxed Priority
Relaxed Smart Splash H=2
Splash H=10

(a) Execution time (b) Number of updates

Figure 3: The results of the evaluation of the algorithms on the Tree model

(a) Execution time (b) Number of updates

Figure 4: The results of the evaluation of the algorithms on Ising model

5.3 Implementation
For each pair of algorithm and model, we run the experiment five

times, and average the execution time and the number of performed

updates on the messages. We execute on a 4-socket Intel Xeon Gold

6150 2.7 GHz server with 18 threads per socket and 512GB of RAM.

The code is written in Java; we use Java 11.0.5 and OpenJDK VM

11.0.5. Our code is available at https://cutt.ly/spaa202058.

5.4 Results: scaling
How to read the plots. There are two types of plots per each model:

the first shows the execution time of the algorithms, while the other

one shows the number of updates performed. On the x axis we have

the number of threads the algorithms were run on, while on the y

axis we have: the time in seconds (for time plots) and the number of

updates (for update plots). The dashed lines on the plots correspond

to the algorithms that use a relaxed scheduler, while the others use

either no concurrent scheduler, or an exact priority queue.

Whenever we have omitted algorithms from the plots or display

incomplete data, this indicates poor performance for that algorithm

on the metric displayed on the graph: either the algorithm did not

converge or the values exceed the limit of the plot.

Tree model. As one can observe on the time plot (Figure 3a), the

three algorithms with the best scaling on the tree instance are the

synchronous belief propagation, relaxed residual and the weight

decay algorithm. For the relaxed algorithms, this mirrors our theo-

retical analysis from Section 4: as can be seen from Figure 3b, the
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Synchronous
Weight-decay
Splash H=5
Smart Splash H=10

Coarse-Grained Residual
Splash H=2
Smart Splash H=5
Relaxed Smart Splash H=10

Relaxed Residual
Smart Splash H=2
Relaxed Smart Splash H=5

Relaxed Priority
Relaxed Smart Splash H=2
Splash H=10

(a) Execution time (b) Number of updates

Figure 5: The results of the evaluation of the algorithms on Potts model

(a) Execution time (b) Number of updates

Figure 6: The results of the evaluation of the algorithms on decoding LDPC code

relaxation incurs very low overhead in terms of additional updates,

while the overhead from parallelization is also low. By contrast,

the exact residual belief propagation performs exactly the mini-

mum number of updates needed, but scales very badly due to the

contention on the priority queue.

We note that on the tree instance, the synchronous belief prop-

agation also scales very well when parallelized. The amount of

work can be split evenly between the threads, and only O(logn)
synchronous rounds are required for convergence.

Ising and Potts model. Ising and Potts models represent more chal-

lenging instances with lots of cycles, and are generally thought to

be more representative of hard general graph instances for belief

propagation. As can be seen in Figures 4a and 5a, relaxed algorithms

perform consistently well on these instances, with relaxed resid-

ual belief propagation giving consistently the fastest convergence.

These are followed by the exact splash algorithms, which generally

perform slightly worse; however, the scaling seems to be somewhat

sensitive to the choice of the parameter H . Both the synchronous

and exact residual belief propagation are omitted, as the former did

not consistently converge, and the latter was very slow.

An interesting insight is that the exact variants of splash and

smart splash do not converge at all in single-threaded executions

for some values of the parameter H , but always converge on two

and more threads. Similarly, synchronous belief propagation, which

has a fixed schedule, does not converge. By contrast, relaxed smart

splash converged under all parameter values. We conjecture that

9



this is due to the phenomenon observed by [22]: exact priority-

based algorithms may get stuck in non-convergent cyclic schedules,

and injecting randomness into the schedule may help the algorithm

to ‘escape’ these situations. In particular, relaxation to the priority

queue, i.e., sometimes executing low-priority items, can provide a

such source of randomness. Similarly, an increase in the number

of threads leads to the relaxation of the algorithm even for exact

schedulers, as several messages are processed in parallel, not only

the best one. Thus, we empirically observe that the randomness

in the relaxation might help belief propagation to avoid bad cyclic

schedules and, therefore, converge.

LDPC model. There are five algorithms that perform similarly (Fig-

ure 6a): synchronous belief propagation, relaxed residual belief

propagation, the weight decay algorithm, relaxed smart splash with

H = 2 and, finally, smart splash with H = 2. The other algorithms

did not converge within our five minutes time limit per experiment.

We note that synchronous belief propagation performs very

well on this instance. This is not surprising, as standard belief

propagation is known to perform well in LDPC decoding. Generally

speaking, the necessary propagation chains seem to be very short

on LDPC instances, and the synchronous algorithm parallelizes

well in such cases.

5.5 Results: the effects of relaxation
In Table 1 we measure how many more updates the relaxed residual

algorithm needs to perform in comparison to the number of updates

performed by the standard sequential residual algorithm, denoted

as “baseline”. We count the total number of updates only approxi-

mately: we check the convergence condition only after every 1000

iterations.

The left column indicates whether it is a baseline algorithm or

the number of threads for relaxed residual belief propagation. The

other columns present the numbers for each model we consider.

Each cell contains the corresponding number of updates and how

many more updates the relaxed version of the algorithm executed

(percentage).

On one process, relaxed residual performs more updates than the

baseline does, except in the case of the Potts model. It is expected

since our algorithm uses relaxed Multiqueue instead of the strict

priority queue. Moreover, as expected the overhead on the number

of updates in comparison to the baseline increases with the number

of threads. This is again due to the relaxation of the priority queue–

recall that we allocate 4× more queues than threads. Interestingly,

this overhead is limited even on 70 threads—its maximum value is

9% maximum. This explains the good performance of our algorithm:

we reduce the contention by relaxing accesses to the priority queue,

while at the same time the total number of updates does not increase

significantly.

5.6 Relaxed versus Non-Relaxed Algorithms
In Table 2, we analyze the speedups obtained by the relaxed residual

algorithm relative to the best-performing non-relaxed alternative

across models and thread counts. We notice that our algorithm

outperforms the alternatives in most of the cases, often by a large

margin—the highest speedup is of 2.85×, whereas the highest slow-
down is of 0.47x . Both occur on the Potts model, which is generally

Table 1: Number of additional message updates performed
by relaxed residual belief propagation compared to exact
residual belief propagation.

Message updates

Threads Tree Ising Potts LDPC

Exact 1 1000000 2279000 2700000 1464000

Relaxed 1 +0.14% +0.11% -0.01% +0.55%

2 +0.26% +0.24% +0.37% +0.57%

6 +0.56% +2.50% +2.70% +0.64%

10 +0.92% +3.71% +4.45% +1.05%

20 +2.08% +5.27% +5.87% +1.41%

30 +2.90% +6.10% +6.56% +1.87%

40 +3.48% +6.52% +7.39% +2.35%

50 +5.04% +6.83% +7.92% +2.83%

60 +4.96% +7.39% +8.28% +3.20%

70 +5.74% +7.71% +8.53% +3.70%

Table 2: Speedup of relaxed residual belief propagation ver-
sus the best non-relaxed alternative on different thread
counts. We note that overhead of parallelization can over-
come the benefits on small thread counts, as seen in the scal-
ing experiments.

Speedup

Threads Tree Ising Potts LDPC

1 0.89x 1.08x 1.04x 1.14x
2 0.75x 0.51x 0.47x 1.13x
6 1.20x 0.77x 0.73x 1.17x
10 1.16x 1.01x 0.94x 1.20x
20 1.36x 1.66x 1.89x 1.49x
30 1.38x 1.88x 1.82x 1.65x
40 1.61x 2.21x 1.90x 1.62x
50 1.91x 2.67x 2.36x 1.48x
60 1.89x 2.66x 2.85x 1.55x
70 1.61x 2.71x 2.44x 1.52x

the most difficult instance in our tests. Overall, the combination

of our relaxed scheduling framework combined with the standard

residual belief propagation is clearly the algorithm of choice at high

thread counts, where it consistently outperforms the alternatives;

on the other hand, relaxed residual also performs reasonably well

on a single thread, making it a consistently good choice all across

the board.

6 DISCUSSION
We have investigated the use of relaxed schedulers in the context of

the classic belief propagation algorithm for inference on graphical

model, and have shown that this approach leads to an efficient

family of algorithms, which significantly improve upon the previous

state-of-the-art parallelization approaches, by up to 2.8x in our

experiments. Overall, our relaxed residual belief propagation has

10



state-of-the-art performance in both single- and multithreaded

regimes, while also being relatively simple to implement, making it

a good generic choice for any belief propagation task.

We have also attempted to bound the additional work gener-

ated by these schedules in the context of BP. We found that, for

well-behaved instances, this can be provably small, although it can

also become quite significant in adversarial instances. The experi-

mental results showed surprisingly good performance for relaxed

algorithms in practice, and highlighted the intriguing property that

they appear to help the algorithm escape cyclic update schedules.

One direction for future work would be to better understand this

phenomenon, and to attempt to provide stronger bounds for the con-

vergence and work of parallel BP under relaxed schedulers. Another

direction is to extend our empirical study to the massively-parallel,

multi-machine setting.
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A OPTIMAL SCHEDULE ON TREES
On trees, the belief propagation gives exact marginals under any

schedule that updates each edge infinitely often. However, there

is an optimal schedule that updates each message exactly once,

requiring O(n) message updates [30]. Assume the tree has a fixed

root v :

(1) In the first phase, all messages towards the root are updated

starting from the leaves; each message is updated only after

all its predecessors have been updated.

(2) In the second phase, all messages away from the root are

update starting from the root.

This schedule can be modeled in the priority-based scheduling

framework as follows:

(1) Initially, the outgoing messages at leaf nodes have priority n,
and all other messages have priority 0.

(2) When message is updated with non-zero priority, its priority

is changed to 0.

(3) Once all messages µk→i for k ∈ N (i)\ {j} have been updated

once with non-zero priority, the message µi→j changes to

priority to minimum of update priorities of the incoming

edges minus one.

This priority function can clearly be implemented by keeping a

constant amount of extra information per message. When the above

schedule is executed with an exact scheduler, the algorithm will

update each message once with non-zero priority before consider-

ing any messages with zero priority, and by following the analysis

of [30], one can see that the algorithm has converged at that point.

Similarly, in the relaxed version of the schedule, the algorithm

has converged once all messages have been updated once with non-

zero priority. In addition, some messages may be updated multiple

times with priority 0; we call these wasted updates, and the updates

done while the message has non-zero priority useful updates.

Claim 2. The relaxed version of the optimal schedule on trees
performs O(n + k2H ) message updates, where H is the height of the
tree.

Proof. For the purposes of analysis, assign messages into buck-

ets B1,B2 . . . ,Bn so that bucket Bℓ contains the messages that will

have their useful update done with priority ℓ. One can observe that

the update priority of message µi→j is the n − d , where d is the

maximum distance from node i to a leaf using a path that does not

cross edge {i, j}. Since this is bounded by the diameter of the tree,

there are at most 2H non-empty buckets.

Assume that all messages in buckets Bn ,Bn−1, . . . ,Bℓ+1 have

been already had a useful update. We now show that in there can

be at most k2 wasted updates before all messages in Bℓ have had
a useful update. Since all earlier buckets have been processed, all

messages in Bℓ have either already had a useful update, or have

priority ℓ. Let b be the number of messages remaining in bucket

Bℓ :

– While b ≥ k , there are at least k messages with priority ℓ, so

each update is a useful update of a message in Bℓ
– When b < k , there can be wasted updates. However, since

buckets Bn ,Bn−1, . . . ,Bℓ+1 have had all useful updates, the

top elements in the schedule will be from bucket Bℓ , and
thus by the guarantees of the scheduler, there can be at most

k − 1 wasted updates before the top element is processed.

Thus, in b(k − 1) = O(k2) updates, all remaining messages

of Bℓ will have their useful update.

By an inductive argument, all non-empty buckets have been pro-

cessed afterO(k2H )wasted updates, so the total number of updates

is O(n + k2H ). □

B EXECUTION TIME OF RANDOM
SYNCHRONOUS ALGORITHM

In Table 3 we present the execution time of random synchronous

algorithm on 70 threads (RS 70) with different values of lowP =
0.1, 0.4 and 0.7, where the parameter lowP controls the random

selection fraction p in steps where the algorithm is converging

slowly (see Section 2.4). We compare it with the execution time

of two baselines: Synchronous algorithm on 70 threads (S 70) and

Relaxed Residual on one process (RR 1). Cells with ‘—’ indicate

executions that either take more than five minutes to run or simply

do not converge.

To summarize, we did not include the execution time of random

synchronous algorithm in the scaling plots since it exceeds the

execution time of one of the baselines in all cases.

Table 3: Randomized synchronous algorithm versus base-
lines.

Running time (s)

Algorithm Tree Ising Potts LDPC

S 70 4.088 — — 3.504

RR 1 5.579 9.012 10.583 25.663

RS 70 lowP = 0.1 37.052 62.629 — 28.543

lowP = 0.4 8.420 20.396 — 7.269

lowP = 0.7 6.306 12.581 — 4.791
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