
Intractable Problems in Malware Analysis and Practical Solutions 

 

Ali Aydın Selçuk 

Dept. of Computer Engineering 

TOBB University of Economics and 

Technology 

Ankara, Turkey 

 

Fatih Orhan, Berker Batur 

Comodo Security Solutions, Inc. 

Clifton, NJ, USA 

 

 

 

 

 

Abstract 
 

Malware analysis is a challenging task in the 

theory as well as the practice of computer science. 

Many important problems in malware analysis have 

been shown to be undecidable. These problems 

include virus detection, detecting unpacking 

execution, matching malware samples against a set 

of given templates, and detecting trigger-based 

behavior. In this paper, we give a review of the 

undecidability results in malware analysis and 

discuss what can be done in practice.  

 

 

1. Introduction 
 

The number of malware programs encountered by 

security companies multiplies every year. Each of 

these programs needs to be analyzed by static and 

dynamic analysis tools. The task of running each 

program in a controlled environment and analyzing 

its behavior manually is a tedious and labor-intensive 

task. Therefore, there is a great need for automation 

of this process and for tools that will help with the 

analysis. 

One of the most significant theoretical results in 

malware analysis is from the seminal works of 

Cohen on computer viruses [6, 7] where he showed 

that a program that detects all computer viruses 

precisely is impossible. Later, Chess and White [4] 

gave an example of a polymorphic virus that cannot 

be precisely detected by any program. Other results 

followed [2, 5, 21] which stated the impossibility of 

certain critical tasks in static and dynamic malware 

analysis. 

In this paper, we give a brief survey of the major 

undecidability results found in the malware analysis 

literature. Then we give examples from the positive  

side showing what can be done on these undecidable 

problems in practice. 

 

2. Malware Analysis and Undecidability 
 

Since Cohen [6] gave the first formal treatment of 

computer viruses, many problems in malware 

analysis have been shown to be undecidable. Many  

 

 

of these results are based on the fact that precisely 

deciding whether a given program/input satisfies a 

certain post-condition, for an arbitrary post-

condition, is undecidable. The proofs are based on 

two general techniques: Either they build a self-

contradictory program assuming the existence of a 

decider for the given problem, similar to [6], or they 

give a reduction from a well-known undecidable 

problem, such as the Halting Problem, similar to [7]. 

In this section, we review some of the most 

significant undecidability results in the field. 

 

2.1. Undecidability of the General Virus 

Detection Problem 
 

The first result on the undecidability of the 

general virus detection problem is due to Cohen [6]. 

Using a well-known proof technique, he argued that:  

“In order to determine that a given program ‘P’ is 

a virus, it must be determined that P infects other 

programs. This is undecidable since P could invoke 

any proposed decision procedure ‘D’ and infect other 

programs if and only if D determines that P is not a 

virus. We conclude that a program that precisely 

discerns a virus from any other program by 

examining its appearance is infeasible.” 

He gave the following piece of program 

“contradictory-virus” as an example that cannot be 

detected by a virus detector D in a correct way: 
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As Cohen [6] observed, “… if the decision 

procedure D determines CV to be a virus, CV will not 

infect other programs, and thus will not act as a 

virus. If D determines that CV is not a virus, CV will 

infect other programs, and thus be a virus. Therefore, 

the hypothetical decision procedure D is self-

contradictory, and precise determination of a virus 

by its appearance is undecidable.” A minor flaw in 

this argument was observed by Steinparz [25], who 

noted that this argument only shows the 

impossibility of a virus detector which is not a virus 

itself. Otherwise, if D is a virus itself, it can return 

“true” on contradictory-virus and be correct. 

A more formal proof was again given by Cohen 

himself [7] by a reduction from the Halting Problem. 

He showed that the existence of a precise virus 

detector would imply a decider for the Halting 

Problem and hence is not possible. 

Furthermore, Cohen [8] observed that whether a 

sequence is a virus or not depends on the 

environment in which it is run. Thus any given 

sequence is or is not a virus as a function of the 

environment in which it is placed. 

 

2.2. Existence of an Undetectable Virus 
 

As summarized above, Cohen [6, 7] showed the 

impossibility of a virus detector that detects all 

viruses precisely. Chess and White [4] extended this 

result by showing that there are viruses, in theory, 

with no error-free detectors. They explained, “That 

is, not only can we not write a program that detects 

all viruses known and unknown with no false 

positives, but in addition there are some viruses for 

which, even when we have a sample of the virus in 

hand and have analyzed it completely, we cannot 

write a program that detects just that particular virus 

with no false positives.” 

The result of Chess and White is based on an 

extension of the contradiction argument in Cohen’s 

first paper [6]: Consider a polymorphic virus W that 

is able to modify its code. This virus modifies its 

spreading condition such that if some particular 

subroutine in it returns “false” on W itself, it spreads. 

Furthermore, this subroutine is subject to change as a 

part of W’s polymorphism. Now, if some detector 

code C were to detect W, there is at least one 

instance of this polymorphic virus, where the 

subroutine is replaced by C, that cannot be detected 

by C: Just like Cohen’s argument, detection by C 

would result in the virus’ not spreading, and hence 

would imply a false positive. 

To illustrate their point, they gave an example 

pseudocode of such a virus W, one instance of which 

is r: 

 

 

 

 

They noted that for any algorithm C that detects 

W, there is a program s for which C does not return 

the correct result: 

 

 

 

 

 

 

 

 

 

 

 

If C(s) returns true, then s will just exit, but if 

C(s) returns false, then s is an instance of the virus 

W. 

The same argument shows the non-existence of a 

detector for W under a looser notion of detection as 

well: Say a program “detects” a virus V if it (i) 

returns “true” on every program infected with V, (ii) 

returns “false” on every program not infected with 

any virus, (iii) may return “true” or “false” on a 

program that is infected with some virus other than 

V. The impossibility argument above applies to this 

looser notion of detection verbatim. Hence, Chess 

and White [4] concluded that there exists, in theory, 

some virus that cannot be detected precisely by any 

virus detector even under this looser notion of 

detection. 

 

2.3. Semantic-Aware Malware Detection 
 

A malware detector based on a pattern matching 

approach is fundamentally limited against 

obfuscation techniques used by hackers. The goal of 

malware obfuscation is to morph or modify the 

malware to evade detection. A piece of malware can 

modify itself by, for example, encrypting its payload, 

and then later decrypting it during execution. A 

polymorphic virus tries to obfuscate its decryption 

code using several transformations, such as code 

transposition, nop insertion, and register 

reassignment. Metamorphic viruses, on the other 

hand, try to evade detection through obfuscating the 

entire code. When they replicate, these viruses 

change their code by techniques such as substitution 

of equivalent instruction sequences, code 

transposition, register reassignment, and change of 

conditional jumps. The fundamental limitation of the 

pattern-matching approach for malware detection is 

that it is mainly syntactic and does not consider the 

semantics of the program flow and the instructions. 

Christodorescu et al. [5] studied a method to 

overcome this limitation by incorporating instruction 

semantics to detect malicious code traits. In their 

framework, malicious behavior is defined by hand-

constructed “templates”. A template T is defined as a 

3-tuple (IT, VT, CT): IT is a sequence of instructions, 

if subroutine_one(r) then exit, else 

{ 

  replace the text ofsubroutine_one 

with a random program; 

  spread; 

  exit; 

} 

subroutine_one: 

  return false; 

if subroutine_one(s) then exit, else 

{ 

  replace the text of subroutine_one 

with a random program; 

  spread; 

  exit; 

} 

subroutine_one: 

  return C(argument); 
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and VT is the set of variables and CT is the set of 

symbolic constants that appear in IT. An “execution 

context” of a template T = (IT, VT, CT) is an 

assignment of values to the symbolic constants of the 

set CT. 

For a given program P, they say that P satisfies a 

template T (denoted by P  T) if P contains an 

instruction sequence I such that I contains a behavior 

specified by T. The problem of deciding whether a 

given piece of code contains such a template 

behavior (i.e., P  T) is modeled as the “Template 

Matching Problem”. 

The Template Matching Problem turns out to be 

undecidable. Christodorescu et al. [5] gave a 

reduction from the Halting Problem to the Template 

Matching Problem, and stated that a precise solution 

for the general Template Matching Problem is 

impossible. 

 

2.4. Automatic Unpacking for Malware 

Detection 
 

An obfuscation mechanism that is much used by 

modern malware is to hide the malicious portion of 

the payload as data at compile time, and then 

transform it into an executable at run time, a 

behavior known as “unpack and execute”. The 

unpack transformation can be something simple, 

such as an XOR by a block of random-looking data, 

or something more complex, such as decryption by a 

cipher like AES. 

Royal et al. [21] worked on detecting such 

polymorphic viruses by focusing on the result of the 

unpack operation. The idea is to compare the 

executable code during the run time with that before 

the run time. When a change is detected, it is written 

out for further analysis. 

The code and the data sections of a program are 

formally modeled as a Turing machine M and its 

input w. Then the unpack detection problem becomes 

whether w contains another program in it that will be 

emulated by M during computation. This problem 

can be formulated as the following formal language: 

UnpackExTM = {<M, w>: M is a UTM, and M 

simulates a Turing machine on its tape in its 

computation on w} 

Royal et al. [21] gave a theorem which stated that 

the UnpackExTM language is undecidable. They 

proved this result by a reduction from the Halting 

Problem. Their proof can be summarized as follows: 

A mapping reduction HALTTM ≤ UnpackExTM 

will be given to prove that UnpackExTM is 

undecidable. 

Let f be a function that takes <M,w> as input and 

computes <M',w'> as output where <M,w>  

HALTTM if and only if <M',w'>  UnpackExTM. The 

Turing machine F given below computes f: 

F = “On input <M,w>, a valid encoding of a Turing 

machine M and an input string w: 

1. Construct a Turing machine T: 

T=“On input x: 

    1. Ignore x and halt.” 

2. Construct the following UTM M' from M: 

    M' is the same as M, except: 

        for all q  Q,    

       if (q, ) goes to a halting state then 

    Replace this transition with a transition 

    that begins simulating T on the input 

    tape. I.e., change the transition to  

(q, ) = (qstart,T, — , —). 

3. Output <M', <T, w>>.” 

The output of the mapping F, a UTM M', will 

execute a Turing machine T in those cases where M 

will halt on w. A decider for UnpackExTM could 

decide whether M' will execute T and so decide 

HALTTM. But HALTTM does not have a decider. 

Hence, a decider for UnpackExTM cannot exist. 

Therefore, UnpackExTM is undecidable 

Hence, it turns out that determining precisely 

whether a given program contains some unpack-

execute behavior in it is impossible. 

 

2.5. Automatically Identifying Trigger-Based 

Behavior 
 

A common feature found in modern malware is to 

contain some hidden malicious behavior that is 

activated only when triggered; such behavior is 

called trigger-based behavior. Various conditions are 

used for triggering, such as date and time, some 

system event, or a command received over the 

network. 

Brumley et al. [2] studied how to automatically 

detect and analyze trigger-based behavior in 

malware. Their approach employs mixed symbolic 

and concrete execution to automatically explore 

different code paths. When a path is explored, a 

formula is constructed representing the condition that 

would trigger execution down the path. Then a solver 

is employed to see whether the condition can be true, 

and if so, what trigger value would satisfy it. 

Like many other problems in malware analysis, 

an exact, automatic identification of trigger-based 

behavior turns out to be undecidable by a reduction 

from the halting problem. Brumley et al. [2] 

observed that “Identifying trigger-based behaviors in 

malware is an extremely challenging task. Attackers 

are free to make code arbitrarily hard to analyze. 

This follows from the fact that, at a high level, 

deciding whether a piece of code contains trigger-

based behavior is undecidable, e.g., the trigger 

condition could be anything that halts the program. 

Thus, a tool that uncovers all trigger-based behavior 

all the time reduces to the halting problem.” 
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2.6. Self-Modifying Code and Formal 

Grammars 
 

Filiol [11] studied the complexity of detecting 

self-modifying code (i.e., polymorphic and 

metamorphic viruses) using formal grammars. He 

worked on the formalization of metamorphism by 

means of formals languages and grammars. He 

showed how code mutation techniques can be 

modelled by formal grammars, and how their 

detection can be converted to the problem of 

deciding a language. 

He modelled a self-modifying program as a 

grammar G2 whose language consists of grammars 

that are produced from a starting grammar G1 

according to the derivation rules specified by G2. 

This definition was used to describe the fact that the 

virus kernel changes from one metamorphic form to 

the other: It is both the virus code and the set of 

mutation rules that change. (This view of 

metamorphic viruses resembles two-level 2VW 

grammars, as Filiol pointed out.) 

In this context, detecting whether a given program 

is a form of a given metamorphic virus is an instance 

of the language decision problem for Class 0 (free) 

grammars. Filiol showed that this problem can be 

reduced from the Halting Problem and hence is 

undecidable. 

 

2.7. NP-Complete Problems 
 

Although the general cases of the aforementioned 

problems are undecidable, it turns out that it is 

possible to obtain their decidable versions by 

assuming some bound on the time or memory 

available to the malware.  

Spinellis [24] showed that a length-bounded 

version of Cohen’s problem is decidable and NP-

complete, by a reduction from the Boolean 

Satisfiability Problem (SAT).  

Borello and Mé [1] showed that detecting whether 

a given program P is a metamorphic variant of 

another given program Q is decidable and NP-

complete.  

On a related venue, Fogla and Lee [12] showed 

that detecting a polymorphic blending attack, which 

can blend in with normal traffic and can evade an 

anomaly-based IDS, is also NP-complete, by a 

reduction from the 3-SAT problem.  

Song et al. [23] studied the strengths and 

weaknesses of polymorphic shellcode. They 

developed metrics to measure the capabilities of 

polymorphic engines. In the end, they concluded that 

polymorphic behavior in general is too greatly varied 

to be modelled and detected effectively. 

Bueno et al. [3] showed that the space- and time-

bounded versions of the unpacking problem are 

decidable, and the time-bounded version is NP-

complete.  

Of course, a problem’s being NP-complete is 

hardly good news. It is usually interpreted as that no 

efficient solution exists for the worst case of that 

problem. However, efficient solutions may exist for 

the average case, or it can be possible to obtain 

reasonably good solutions by heuristics or 

approximation algorithms. 

 

3. Practical Solutions 
 

Despite the negative theoretical results on 

undecidability of some fundamental questions in 

malware analysis, practical tools have been in action 

since the very early days of computer viruses. By 

tolerating some degree of inaccuracy (i.e., tolerating 

some degree of false positives or negatives, or 

allowing inconclusive results), it is possible to build 

algorithms that are very effective in practice. In this 

section, we summarize some of the tools developed 

for the problems reviewed in Section 2. 

 

3.1. Detecting Malware by Template 

Matching 
 

Despite the fact that the general Template 

Matching Problem is undecidable, it is possible to 

detect malware using template matching algorithms 

that are mostly accurate. Christodorescu et al. [5] 

developed a toolkit for that purpose. The toolkit 

works in two phases: First, the binary program to be 

analyzed is disassembled, a control graph is 

constructed, one per program function, and an 

intermediate representation (IR) is generated. The IR 

is further processed and put into an architecture- and 

platform-independent form. In the second phase, the 

IR is compared against a given set of malware 

templates. Each comparison either returns “yes” or 

“don’t know”. Suggested malware templates for 

comparison include procedures such as a decryption 

loop or mass mail sending. 

Christodorescu et al. [5] tested their tool on a real-

world malware sample consisting of seven variants 

of Netsky (B, C, D, O, P, T, and W), seven variants 

of Bagle (I, J, N, O, P, R, and Y), and seven variants 

of Sober (A, C, D, E, F, G, and I), all being email 

worms with many diverse forms found in the wild. 

The authors tested the malware against templates 

capturing the decryption loop and mass mailing 

functionalities. The tool detected all Netsky and 

Bagle variants with 100% success. The Sober worm 

was not detected due to a limitation in the prototype 

implementation, related to matching calls into the 

Microsoft Visual Basic runtime library. 

Nevertheless, their test demonstrated the success of 

their template matching algorithm on diverse forms 

of malware. 

The tool was tested on a benign sample as well in 

order to test its false positive rates. 97.78% of the 

programs in the given sample were detected as 
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benign after successful disassembly, while 2.22% 

could not be disassembled. 

Kwon et al. [16] developed a technique called 

BinGraph, in which they leveraged the semantics in 

API call sequences of different malware families as 

templates and detected metamorphic malware 

samples using signatures and template matching. 

They extracted signatures from subgraphs of API 

calls and used them to represent semantic behaviors 

of metamorphic malware. In first phase, using the 

Import Address Table (IAT) from executable they 

constructed initial behavior graph with edges 

representing API call sequences. Followed by 

subgraph extraction and graph abstraction, they 

stored the abstracted semantic graphs in a 128x128 

adjacency matrix. At the final step of sematic 

signature extraction, they applied graph mining 

techniques using a greedy strategy to select candidate 

signatures. 

Kwon et al. [16] used 166 malware programs 

(randomly selected 20% of their malware collection) 

and generated 32 semantic signatures representing 

this set. They compared these signatures against the 

set of remaining 661 (unseen) malicious and 1,202 

safe binaries. They achieved a 98.18% detection rate 

on the malicious sample and detected 649 malware 

programs, with no positive matches on the benign 

sample. 

Luh et al. [17] used sentiment analysis technique 

by collecting kernel level events in order to model 

malicious and benign behaviors. Timestamped 

process, thread, image load, file, registry and 

Network event logs were collected from the 

Windows kernel and runaway entries were 

eliminated. Log-likelihood ratio scores for each pre-

processed bi-gram event traces were calculated and 

used in compilation of malicious and safe semantic 

dictionaries. At the final step, score normalization 

and adjustment was applied to calculated values 

using whether monitored trace is a part of some 

malicious event sequence or not. 

Safe event logs are collected from standard 

Windows users having more than 80 OS session and 

over 500 processes in each. Different types of 

malware samples like MyDoom, Zeus, Koobface, 

etc. were used to infect machines in controlled 

environments and their respective event traces were 

used in bi-gram extraction from malicious behaviors. 

Luh et al. [17] achieved 98.2% accuracy for 

malicious behavior detection with low false positive 

rates. Moreover, it is reported that threshold 

optimization on determined confidence values could 

increase the performance of related classification 

technique up to 100.0% for this particular test set 

used in conducted experiment. 

 

 

 

3.2. Detecting Unpack-Execute Behavior 
 

Although the general problem of unpack-execute 

behavior is undecidable, Royal et al. [21] gave an 

algorithm for a bounded version of this problem. Let 

n denote the number of instructions of a given 

program P to execute before it halts. The program 

ExtractUnpackedCode(P,n) works in two phases: 

• Phase 1: Static Analysis. Program P is 

disassembled to identify code and data. Blocks 

of code that are separated by non-instruction 

data are partitioned into sequences of 

instructions. These sequences form the set I, 

which will be queried repeatedly in the next 

phase to detect if P is executing unpacked code. 

• Phase 2: Dynamic Analysis. Program P is 

executed one instruction at a time. The current 

instruction sequence is captured by in-memory 

disassembly starting at the current value of the 

program counter until some non-instruction data 

is encountered. The current instruction sequence 

is compared against each instruction sequence in 

the set I. If the current sequence is not a 

subsequence of any instruction sequence in I, 

then it did not exist in P. 

Royal et al. [21] developed this algorithm into a 

practical tool for MS Windows systems, called 

PolyUnpack. They tested the tool on the OARC 

malware suspect repository and compared its 

performance with that of the Portable Executable 

Identifier (PEiD), a popular reverse-engineering tool 

which uses a specific set of signatures to detect 

unpack-execute behavior [20]. PolyUnpack 

performed very well and was able to identify many 

samples with unpack-execute behavior which PEiD 

was unable to detect. 

Another technique developed by Korczynski [15] 

helped reconstructing packed binaries with self-

modifying code blocks up to some accuracy, easing 

further analysis on them by malware analysts. Both 

static and dynamic analysis were used in related 

work and binaries having self-modifying property 

and IAT destruction are focused for binary 

reconstruction. Tough it is not directly related with 

malware detection, Korczynski’s [15] technique 

helps further methods and algorithms to be 

developed for bounded version of undecidable 

unpack-execute behavior. 

There are mainly two phases in general unpacking 

technique of developed by Korczynski [15]: 

• First phase: Self-modifying code detection, 

where dynamically loaded modules are being 

tracked and several snapshots are being captured 

including exported functions, in-direct 

references and memory writes 

• Second phase: Recovering import address table 

using dynamically loaded function branches 

using a heuristic filtering method 
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Korczynski [15] carried out two experiments to 

verify that the developed technique improves self-

modifying code discovery and IAT reconstruction 

compared with the clean memory dumps. 117 

malware samples belonging to 9 different malware 

families were used in the first experiment. Initially, 

35% of the malware had no IAT in the clean memory 

dumps. This sample was analyzed and successful 

IAT reconstructions up to some degree were 

performed on 66% of them. In the second 

experiment, a simple so-called hello world 

application was developed and packed with 21 

different packers. IAT reconstruction was partially 

done on 61% of the packed binaries. 

Kim et al. [14] studied distinctive properties of 

obfuscation techniques applied on safe and malicious 

samples and developed a technique named as 

DynODet, first to detect dynamic obfuscation and 

then use features of present obfuscation to classify 

unknown sample as either clean of malware. 

DynODet uses both static and dynamic analysis 

results while determining whether any obfuscation is 

present or not. Static analysis leverages finding the 

expected path of the program before its execution 

and using this discovery to compare seen actual 

paths in dynamic analysis. Six different obfuscation 

techniques were tracked and used by Kim et al. [14]: 

self-modification, section mislabel obfuscation, 

dynamically generated code, unconditional to 

conditional branch obfuscation, exception-based 

obfuscation, and overlapping code sequences. 

Kim et al. [14] used 6,192 safe Windows 

programs in their experiment and using distinctive 

obfuscation features they reduced the false positive 

rate nearly 70% in terms of one or more false 

obfuscation detection on these safe samples. Totally 

100,208 malware samples used for malicious data set 

and using distinctive obfuscation features, one or 

more of the tracked obfuscation techniques were 

detected on 32.74% of the malware set with a 

detection rate of 2.5% on the clean set. Findings 

from the DynODet research showed its usefulness to 

develop a new detection technique using the 

presence of distinctive obfuscation techniques in 

unknown samples. 

 

3.3. Detecting Trigger-Based Behavior 
 

Detection of trigger-based behavior by manual 

analysis is a virtually impossible task due to the 

intensive labor required. On the other hand, a precise 

automatic analysis is not possible either; as explained 

in Section 2.5, the general problem of automatic 

identification of trigger-based behavior is 

undecidable. Nevertheless, a great deal of help can 

be obtained from automatic analysis to alleviate the 

burden of manual analysis. Brumley et al. [2] 

designed a tool for this task. Their approach 

consisted of several phases: First, the different types 

of triggers of interest are specified. Then, different 

code paths are explored using mixed symbolic and 

concrete execution. For a path explored by this 

process, a formula is constructed representing the 

condition that would trigger execution down the 

path. Then a solver is employed to see whether the 

condition can be true, and if so, what trigger value 

would satisfy it. 

Brumley et al. [2] developed this approach into a 

program called MineSweeper. They tested 

MineSweeper on real-world malware containing 

trigger-based behavior. On every case, MineSweeper 

was able to detect the trigger condition and the 

trigger-based behavior. The analysis time varied 

depending on the complexity of the malware, from 2 

to 28 minutes. In general, MineSweeper is not 

guaranteed to detect every piece of malware 

containing trigger-based behavior, but it can 

definitely be used as a tool of great assistance over 

the impractical alternative of manual analysis. 

Kang et al. [13] researched specifically botnet 

malware samples and developed a trigger-based 

behavior detection technique called BotMelt. In an 

approach different from [2], they used dynamic 

symbolic execution (also known as symbol 

propagation) where network packets were used to 

mark the data flow. This technique allows revealing 

outbound trigger conditions different from locally-

decided trigger conditions. Authors evaluated their 

technique in terms of validness of executed codes, 

malicious activity detection rate and behavior 

detection ratio among all possible behavior branches. 

four different botnet malware samples, HwDoor, 

Bisonal, KeyBoy, and Plez were used in evaluation 

experiments, and BotMelt yielded successful results 

in all evaluation criteria. 

Papp et al. [18] developed a framework to detect 

trigger-based malicious behavior in source code level 

using a semi-automated approach. First, automated 

source code instrumentation technique is being 

applied to discover function calls and variables that 

interact with running environment. Then fresh 

symbolic values are given via replaced dummy 

functions and mixed concrete and symbolic 

execution tool is used to generate potentially 

malicious test cases that could trigger hidden 

malicious behavior of malware. At the final step, 

execution traces for each generated test case input 

were generated and passed to analysts for manual 

analysis in order to classify them as either malicious 

or benign. 

In the experiment phase, Papp et al. [18] collected 

five real-world malware samples, all written in C and 

including some kind of trigger-based behavior in 

implementation. The developed framework 

succeeded in revealing trigger-based behaviors in 

three of them. Moreover, unsuccessful cases of 

hidden behavior detection were reported as failed 

due to limitations of the open-source tools used. 
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3.4. Malware Protection by Whitelisting and 

Default Deny Approach  
 

Given that some fundamental problems in 

malware analysis and detection are undecidable, an 

alternative solution applied by practical security 

tools (e.g., Comodo’s Endpoint Security [9]) is the 

default deny approach to protect users from malware 

infections: Rather than blocking only blacklisted 

malware applications and allowing all other safe and 

unknown applications, only whitelisted applications 

[22] are permitted to run on a host’s real operating 

system (OS). Samples blacklisted as malware are 

blocked by default. And, unknown programs are 

permitted to run in some virtualized environments 

such as containments, sandboxes, etc. Creating these 

shadow file systems, registries, and communication 

ports helps blocking most damages caused by 

malicious application, and correctly defining a 

program for virus detection [10]. 

Although the default deny approach provides a 

higher level of protection compared to the default 

allow approach, one of the current problems using 

these virtualized environments is encountered in 

application usability. Purdila and Terzis [19] 

developed a dynamic browser containment 

environment to protect users from web-based 

malware, where they intercept system service 

requests of processes and limit browser’s access to 

critical system resources to prevent malware 

damages. Although they managed to provide the 

desired protection, their proposed technique 

introduced some overhead; an 11.8% increase in 

latency and a 13.4% decrease in throughput. 

Song et al. [23] studied shellcode decoding 

routines of polymorphic malware and reported the 

intractability of modelling this kind of characteristic 

behavior using known methods. They concluded that 

modelling and whitelisting safe behaviors and 

content would be a more promising and viable way 

to pursue. 

 

4. Conclusion 
 

Malware detection has been a major problem 

since the early days of computing. Theoretical results 

have been given on the inexistence of perfect 

detectors on various problems. Nevertheless, there is 

a great deal of work to be done using less-than-

perfect tools. Bounded versions of the undecidable 

malware detection problems are in fact decidable. By 

assuming certain bounds on the time or memory 

available to the malware, it should be possible to 

develop detectors that work quite accurately in 

practice. 
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