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Abstract
We provide a comprehensive study of a natural geometric optimization problem motivated by
questions in the context of satellite communication and astrophysics. In the problem Minimum
Scan Cover with Angular Costs (msc), we are given a graph G that is embedded in Euclidean
space. The edges of G need to be scanned, i.e., probed from both of their vertices. In order to scan
their edge, two vertices need to face each other; changing the heading of a vertex takes some time
proportional to the corresponding turn angle. Our goal is to minimize the time until all scans are
completed, i.e., to compute a schedule of minimum makespan.

We show that msc is closely related to both graph coloring and the minimum (directed and
undirected) cut cover problem; in particular, we show that the minimum scan time for instances in
1D and 2D lies in Θ(logχ(G)), while for 3D the minimum scan time is not upper bounded by χ(G).
We use this relationship to prove that the existence of a constant-factor approximation implies
P = NP , even for one-dimensional instances. In 2D, we show that it is NP-hard to approximate
a minimum scan cover within less than a factor of 3/2, even for bipartite graphs; conversely, we
present a 9/2-approximation algorithm for this scenario. Generally, we give an O(c)-approximation
for k-colored graphs with k ≤ χ(G)c. For general metric cost functions, we provide approximation
algorithms whose performance guarantee depend on the arboricity of the graph.
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2 Minimum Scan Cover

1 Introduction

Many problems of geometric optimization arise from questions of communication, where
different locations need to be connected. For physical networks, the cost of a connection
corresponds to the geometric distance between the involved vertices, e.g., the length of an
electro-optic link. Often wireless transmissions may be used instead; however, for ultra-
long distances such as in space, this requires focused transmission, e.g., by communication
partners facing each other with directional, paraboloid antennas or laser beams. This makes
it impossible to exchange information with multiple partners at once; moreover, a change of
communication partner requires a change of heading, which is costly in the context of space
missions with limited resources, making it worthwhile to invest in a good schedule.

With the advent of satellite swarms of ever-growing size, problems of this type are of
increasingly practical importance for ensuring communication between spacecraft. They also
come into play when astro- and geophysical measurements are to be performed, in which
groups of spacecraft can determine physical quantities not just at their current locations,
but also along their common line of sight.

Figure 1 Artist’s rendition of the European Data Relay Satellite constellation architecture. Note
the intersatellite links shown in red. (Image credit: ESA)

We consider an optimization problem arising from this context: How can we schedule a
given set of intersatellite communications, such that the overall timetable is as efficient as
possible? In particular, we study the question of a Minimum Scan Cover with Angular
Costs (msc), in which we need to establish a collection of connections between a given set
of locations, described by a graph G = (V,E) that is embedded in space. For any connection
(or scan) of an edge, the two involved vertices need to face each other; changing the heading
of a vertex to cover a different connection takes an amount of time proportional to the
corresponding turn angle. Our goal is to minimize the time until all tasks are completed, i.e.,
compute a geometric schedule of minimum makespan.

In this paper, we provide a comprehensive study of this problem. We show that msc is
closely related to both graph coloring and the minimum (directed and undirected) cut cover
problem. We also provide a number of hardness results and approximation algorithms for a
variety of geometric scenarios; see Section 1.2 for an overview.
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1.1 Problem Definition: Minimum Scan Cover
In the abstract version of Minimum Scan Cover, denoted by a-msc, we are given a simple
graph G = (V,E) and a metric cost function α : {(e, e′) ∈ E × E | e ∩ e′ 6= ∅} → R+ that
describes the cost for switching between two incident edges uv, vw for the common vertex v.
A scan cover is an assignment S : E → R+, such that for every vertex v and every pair of
incident edges uv and vw it holds that

|S(uv)− S(vw)| ≥ α(uv, vw).

This condition provides sufficient time for the vertices to face each other. We seek a scan
cover that minimizes the scan time maxe∈E S(e). Note that a-msc generalizes the Path-TSP
(see Observation 8), so the problem becomes intractable if the cost function α is not metric.

Given the practical motivation, our main focus is the (geometric) Minimum Scan
Cover Problem (msc), for which every vertex v corresponds to a point in Rd, d ∈ {1, 2, 3},
the turn cost α(uv, vw) of v from uv and vw is the (smaller) angle at v between the segments
uv and vw. Figure 2 illustrates a minimum scan cover for a point set in the plane that can
be scanned in 300◦ with eleven discrete time steps.

0◦ 30◦ 60◦ 90◦ 120◦

150◦ 180◦ 240◦ 270◦ 300◦

Figure 2 (Left) A set of seven points in R2, for which the complete graph K7 needs to be
scanned. (Bottom) A sequence of edge scans; note how some edges can be scanned in parallel.

In fact, a scan cover is completely determined by an edge order: For each edge sequence
e1, . . . , em, the best scan cover that scans the edges in this order can be computed by

S(e1) = 0 and S(ei) = max{S(ej) + α(ei, ej)|j : j < i, ei ∩ ej 6= ∅)} for i > 1.

In some settings, we may be given an initial heading of each vertex. However, the cost
of changing from the initial heading to any other is usually negligible compared to the cost
of the remaining schedule. In fact, any C-approximation without initial headings yields
a (C + 1)-approximation for the variant with initial headings, as turning from the initial
heading to any edge via a smallest angle is not more expensive than the minimum makespan.
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4 Minimum Scan Cover

1.2 Overview of Results and Organization

In Section 2, we show that the msc in 1D corresponds to a minimum directed cut cover and
has a strong correlation to the chromatic number. We provide an improved upper bound of
dlog2 χ(G) + 1

2 log2 log2 χ(G) + 1e (Theorems 1 and 2) for the minimum directed cut cover
number, which is essentially tight in general; even for directed acyclic graphs corresponding
to minimum scan covers (Lemma 1) this is in the right order of magnitude. This implies
that, unless P = NP , there exists no constant-factor approximation even in 1D (Theorem 3).
Nevertheless, we show that instances in which the underlying graphs are bipartite or complete
graphs can be solved in polynomial time (Observations 3 and 4).

In Section 3, we consider the problem in 2D and show that it is NP-hard to approximate
minimum scan covers of bipartite graphs better than 3/2 (Theorem 4). Furthermore, we
provide absolute and relative bounds. On the one hand, every bipartite graph in 2D has a
scan cover of length 360◦ (Theorem 5). On the other hand, we present a 9/2-approximation
algorithm (Theorem 6). More generally, we present an O(c)-approximation for a k-colored
graph with k ≤ χ(G)c (Theorem 7). This has immediate consequences for several interesting
graph classes, e.g., the scan time of graphs in 1D and 2D lies in Θ(log2 χ(G)) and there exist
constant factor approximations (Theorems 8 and 9).

In Section 4, we consider msc in 3D and the abstract version a-msc. We show that in
contrast to 2D, the length of a minimum scan cover in 3D may exceed O(log2 n) (Observa-
tion 11). Complementary to the fact that a-msc for stars is equivalent to path-TSP and
thus NP-hard, we provide a 2.5-approximation of a-msc for trees (Theorem 10). This yields
an O(A)-approximation for every graph with arboricity A (Theorem 11).

1.3 Related Work

The use of directional antennas has introduced a number of geometric questions. Carmi
et al. [9] study the α-MST problem, which arises from finding orientations of directional
antennas with α-cones, such that the connectivity graph yields a spanning tree of minimum
weight, based on bidirectional communication. They prove that for α < π/3, a solution may
not exist, while α ≥ π/3 always suffices. See Aschner and Katz [7] for more recent hardness
proofs and constant-factor approximations for some specific values of α.

Many other geometric optimization problems deal with turn cost. Arkin et al. [5, 6] show
hardness of finding an optimal milling tour with turn cost, even in relatively constrained
settings, and give a 2.5-approximation algorithm for obtaining a cycle cover, yielding a
3.75-approximation algorithm for tours. The complexity of finding an optimal cycle cover in
a 2-dimensional grid graph was stated as Problem 53 in The Open Problems Project [11]
and shown to be NP-complete in [13], which also provides constant-factor approximations;
practical methods and results are given in [14], and visualized in the video [8].

Finding a fastest roundtrip for a set of points in the plane for which the travel time
depends only on the turn cost is called the Angular Metric Traveling Salesman Problem.
Aggarwal et al. [1] prove hardness and provide an O(logn) approximation algorithm for cycle
covers and tours that works even for distance costs and higher dimensions. For the abstract
version on graphs in which “turns” correspond to weighted changes between edges, Fellows
et al. [16] show that the problem is fixed-parameter tractable in the number of turns, the
treewidth, and the maximum degree. Fekete and Woeginger [15] consider the problem of
connecting a set of points by a tour in which the angles of successive edges are constrained.
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Our paper also draws connections to other graph optimization problems. In particular,
for each point in time, the set of scanned edges induces a bipartite graph. Therefore, one
approach for scanning all edges of the given graph is to partition it into a small number of
bipartite graphs, each corresponding to the set of edges separated by the cut induced by a
partition of vertices into two non-trivial sets. This problem is also known as the Minimum
Cut Cover Problem: Find the minimum number of cuts to cover all edges of a graph.
Loulou [22] shows that for complete graphs, an optimal solution consists of dlog2 |V |e cuts.
Motwani and Naor [23] prove that, unless P = NP , the problem on general graphs is not
approximable within 1.5 of the optimum, or OPT +ε log |V | for some ε > 0 in absolute terms,
due to a direct relationship with graph coloring. Hoshino [18] considers practical methods
based on integer programming and heuristics for cut covers. Chuzhoy and Khanna [10] show
that the directed version of covering a directed graph by the minimum number of directed
cuts is also an NP-hard problem.

On the application side, Korth et al. [20] describe the use of tomography (i.e., determining
physical phenomena by measuring aggregated effects along a ray between two sensors) in
the context of astrophysics. Using multiple sensors (e.g., satellites) for performing efficient
measurements is one of the motivations for the algorithmic work in this paper. Scheduling
satellite communication has received a growing amount of attention, corresponding to the
increasing size of satellite swarms. See Krupke et al. [21] for a recent overview.

In the context of scheduling, Allahverdi et al. [2, 3, 4] provide a nice and comprehensive
survey on scheduling variants with sequence-dependent setup costs. Sotskov et al. [25]
consider a scheduling variant that can directly be expressed as vertex coloring.

2 One-Dimensional Point Sets

In the one-dimensional case, all vertices lie on a single line L. Therefore, an instance can be
described by a graph G = (V,E) and a total order of the vertices <L on L. We assume this
line to be horizontal, so vertices face either left or right when scanning an edge. Moreover,
scan times can be restricted to discrete multiples of 180◦. This allows us to encode the
headings of a vertex v at these time steps by a 0-1-vector s(v), where a right heading is
denoted by 0, and a left one by 1; we denote by si(v) the ith bit of s(v). Then a scan cover
with N steps of (G,<L) is an assignment s : V → {0, 1}N , such that for every edge uv ∈ E,
u <L v, there exists an index i ∈ [N ] with si(u) = 0 and si(v) = 1. The value of such a scan
cover is clearly 180◦(N − 1). For an example, consider Figure 3.

0
0
0

 1
0
0

 0
1
0

 1
0
1

 1
1
1



Figure 3 This instance can be scanned in three steps. However, two steps are not sufficient
because the edges of a monotone path would need to be scanned in alternating time steps; making it
impossible to scan the green edge.
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6 Minimum Scan Cover

2.1 Bounds Based on Chromatic Number and Cut Cover Number
In the following, we establish a strong relationship between the length of a msc in 1D and
the chromatic number χ(G), which is closely linked to the cut cover number c(G) of the
involved graph G = (V,E), i.e., the size of a smallest partition of the edge set into bipartite
graphs. Motwani and Naor [23] show that

c(G) = dlog2 χ(G)e.

Because the scanned edges in each time step form a bipartite graph, a scan cover induces
a cut cover. However, the resulting bipartite graphs have the additional property that for
each vertex all neighbors are either smaller or larger with respect to <L. Thus, not every cut
cover corresponds to a scan cover. However, scan covers correspond to directed cut covers of
the directed graph, induced by orienting the edges from left to right. Watanabe et al. [26]
bound the directed cut cover number ~c(G) of a directed graph G:

~c(G) ≤ dlog2 χ(G)e+ dlog2dlog2 χ(G) + 1ee

We improve this bound by showing an upper bound for the size of a smallest scan cover in
terms of the chromatic number (and the cut cover number); this bound is best possible for
the directed cut cover number as we explain later.

I Theorem 1. For every graph G with χ(G) ≥ 2 and every ordering <L of the vertices,
there exists a scan cover of (G,<L) with N steps such that

N ≤ dlog2 χ(G) + 1
2 log2 log2 χ(G) + 1e

Proof. Consider a coloring of G with C := χ(G) colors and choose an N large enough such
that C ≤

(
N
bN/2c

)
. For k := bN2 c, we consider the set of vectors {0, 1}Nk of length N with

exactly k many 1’s. We define a scan cover s : V → {0, 1}Nk , such that for all vertices of
the same color, we assign the same vector, while vertices of different color obtain different
vectors. Such an assignment exists, because the number of vectors, i.e.,

(
N
bN/2c

)
, is at least as

large as the number of colors.
To see that s is a scan cover, consider a fixed but arbitrary edge uv of G. Because the

vectors s(u) and s(v) differ but have the same number of 1’s, they are incomparable, i.e., there
exist i and j such that si(u) = 0, si(v) = 1 and sj(u) = 1, sj(v) = 0. Therefore, depending
on the ordering of u and v on L, the edge uv is either scanned in step i or j.

It remains to show that defining N := dlog2 C + 1
2 log2 log2 C + 1e satisfies C ≤

(
N
bN/2c

)
.

By a variant of Stirling’s formula [24], it holds that

e1/(12n+1) ≤ n!√
2πn(n/e)n

≤ e1/(12n).

This implies that
(

N
bN/2c

)
≥
√

2
πN · 2

N · e
−1

4N−1 , so it suffices to guarantee

C ≤
√

2
πN
· 2N · e

−1
4N−1 ⇐⇒ log2 C ≤ N + 1

2(1− log2 π − log2 N)− 1
4N − 1 log2 e.

If C ≥ 3, this holds for N = dlog2 C + 1
2 log2 log2 C + 1e ≥ 3 ; in case of C = 2, it holds that

N = dlog2 C + 1
2 log2 log2 C + 1e = 2, and thus C ≤

(
N
bN/2c

)
. J
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Note that the assigned vectors in the proof of Theorem 1 are pairwise incomparable.
Therefore, such an assignment yields a directed cut cover for all edge directions and thus a
general bound on the directed cut cover number.

I Corollary 2. For every directed graph G, the directed cut cover number is bounded by

~c(G) ≤ dlog2 χ(G) + 1
2 log2 log2 χ(G) + 1e.

In fact, the bound in Theorem 2 is best possible for general directed graphs, because a cut
cover of the complete bidirected graph corresponds to an assignment of pairwise incomparable
vectors (and Sperner’s theorem asserts that the used set of vectors is maximal).

Figure 3 illustrates an example of a graph G and an ordering <L showing that the bound
of Theorems 1 and 2 is also tight for some (directed acyclic) graphs with χ(G) = 3. In the
following, we show a general lower bound for our more special setting.

I Lemma 1. For every C, there exists a graph G and an ordering <L such that χ(G) > C

and the number N of steps in every scan cover of (G,<L) is at least

N ≥ dlog2 χ(G) + 1
4 log2 log2 χ(G)e.

Proof. Let ` ≥ 4 be an integer divisible by 4 and n := 2` such that 2n > C. We consider the
Turan graph G on n2n vertices partitioned into 2n independent sets of size n. Because G is
a complete 2n-partite graph, it holds that χ(G) = 2n. We place the vertices on the line, such
that for a fixed {1, . . . , 2n}-coloring of G, there exist n disjoint intervals in which the colors
appear in the order 1, . . . , 2n. For an illustration consider Figure 4.

. . .

1

..
.

2

2n

Figure 4 Illustration of G and the ordering <L of the vertices on L for n = 2 (` = 1).

For a contradiction, suppose that there exists a scan cover s : V → {0, 1}k of (G,<L)
with k := dlog2 χ(G) + 1

4 log2 log2 χ(G)e− 1 = n+ `
4 − 1 steps. Thus, the number of different

vectors is 2k = 2n−1n1/4.
Let t denote the number of different color classes in which some vector is used at least

n3/4 times. We show that t ≥ 1
2 2n. Clearly, each vector may only appear in one color class,

i.e., the color classes induce a partition of the set of vectors. Consider the 2n− t color classes
(and their assigned vectors) in which no vector is used n3/4 times. Let δ denote the average
usage of vectors in these classes. Note that δ is lower bounded by the ratio of the number of
vertices, namely (2n − t)n, and the maximum number of remaining vectors, namely 2k − t.
Consequently, δ ≥ n2n−tn

2k−t . Moreover, δ < n3/4, because otherwise there exists a further color
class for which some vector appears at least n3/4 times. Therefore, we obtain the following
chain of implications:

δ < n3/4 =⇒ n2n − tn
2k − t < n3/4 ⇐⇒ t > 2n · 1

2(1− n−1/4)
=⇒ t >

1
22n

arX iv



8 Minimum Scan Cover

For each of these t color classes, we choose a vector with a maximal number of appearances
and introduce an interval on L from the first to the last occurrence. By the ordering of the
vertices, every two vertices of the same color have a distance of at least 2n, and hence the
interval spans at least d = 2nn3/4 vertices. On average, every vertex is contained in the
following number of intervals

t · d
|V |
≥

1
2 2n · 2nn3/4

n2n = 2n

2n1/4 = 2n−1n−1/4.

By the pigeonhole principle, there exists a set S of at least 2n−1n−1/4 vectors with mutually
intersecting intervals. We claim that any two vectors a and b of S are pairwise incomparable,
i.e., there exist two indices i, j such that ai = 0, bi = 1 and aj = 1, bj = 0: Because the
intervals intersect, among the four occurrences of a and b on <L, there exist three such that
they appear alternating. To scan the corresponding edges, the vectors must be incomparable.
Thus, there must exist 2n−1n−1/4 pairwise incomparable vectors.

However, by Sperner’s theorem, every set of vectors of length k contains at most
(

k
bk/2c

)
pairwise incomparable vectors and(

k

bk/2c

)
≤
√

2
kπ

2k(1 + 1
11) ≤ 2k 1√

k
.

It remains to show that the number of necessary incomparable vectors exceeds this:

2k · 1√
k
<

2n

2n1/4 ⇐⇒ n < k

This holds for ` > 4 and yields a contradiction. For ` = 4 it holds that k = n. Thus, each
color class has a unique vector, all of which need to be incomparable, a contradiction. J

2.2 No Constant-Factor Approximation in 1D

Theorem 1 implies the following.

I Lemma 2. A C-approximation algorithm for msc implies a polynomial-time algorithm
for computing a coloring of graph G, k := χ(G), with 4C · kC ·

√
log2(k)C colors.

Proof. Let `∗ denote the length of a minimum scan cover of G. Then a C-approximation
algorithm computes a scan cover of length ` ≤ C · `∗. Theorem 1 implies that C · `∗ ≤
C · dlog2 k + 1

2 log2 log2 k + 1e, yielding a coloring with 2` colors. Thus,

2` ≤ 2C(dlog2 k+ 1
2 log2 log2 k+1e) ≤ 2C·log2 k · 2 1

2 ·C·log2 log2 k · 22C ≤ 4C · kC ·
√

log2(k)
C
. J

I Theorem 3. Even in 1D, a C-approximation for msc for any C ≥ 1 implies P = NP .

Proof. Suppose there is a C-approximation for some constant C > 1. By Lemma 2, a
C-approximation of msc in 1D implies that there is a polynomial-time algorithm for finding
for every k-colorable graph G a coloring with 4C · kC ·

√
log2(k)C colors. Khot [19] showed

that, for sufficiently large k, it is NP-hard to color a k-colorable graph with at most klog2(k)/25

colors. However, for every C we can find a k such that 4C ·kC ·
√

log2(k)C < klog2(k)/25. This
yields a polynomial-time algorithm for an NP -hard problem, implying that P = NP . J
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2.3 Polynomially Solvable Cases
Even though there is no constant-factor approximation in general, we would like to note that
bipartite and complete graphs in 1D can be solved in polynomial time.

I Observation 3. For instances of msc in 1D for which the underlying graph G is bipartite,
there exists a polynomial-time algorithm for computing an optimal scan cover.

Proof. We assume that χ(G) = 2, otherwise there is no edge to scan. If for every vertex, all
its neighbors lie either before or after it, G can be scanned within one step, which is clearly
optimal. Otherwise, every scan cover needs at least two steps. By Theorem 1, there exists a
scan cover with 2 steps. Because bipartite graphs can be colored in polynomial time, the
proof of Theorem 1 provides a scan cover. J

I Observation 4. For instances of msc in 1D for which the underlying graph G is a complete
graph, there exists a polynomial-time algorithm for computing an optimal scan cover.

Proof. Because every scan cover induces a cut cover and c(G) = dlog2 ne, it suffices to
provide a scan cover with this number of steps. To this end, we recursively scan the bipartite
graphs induced by two vertex sets when split into halves with respect to <L. J

3 Two-Dimensional Point Sets

For two-dimensional point sets, we show that even for bipartite graphs, it is hard to
approximate msc better than 3/2. Conversely, we present a 9/2-approximation algorithm for
these graphs and apply the gained insights to achieve approximations for k-colorable graphs.

3.1 Bipartite Graphs
By Theorem 3, we cannot hope for a constant-factor approximation for general graphs.
However, bipartite graphs in 1D can be solved in polynomial time. We show that the added
geometry of 2D makes the msc hard to approximate even for bipartite graphs.

3.1.1 No Approximation Better than 1.5 for Bipartite Graphs in 2D
As a stepping stone for the geometric case, we establish the following.

I Lemma 5. It is NP-hard to approximate a-msc better than 3/2 even for bipartite graphs.

Proof. The proof is based on a reduction from Not-All-Equal-3-Sat where a satisfying
assignment fulfills the property that each clause has a true and a false literal, i.e., all false
or all true is prohibited. The nice feature of this variant is that the negation of a satisfying
assignment is also a satisfying assignment.

For every instance I of Not-All-Equal-3-Sat, we construct a graph GI and a cost
function α where each edge pair has a transition cost of 0, φ, or 2φ. Thus, every optimal
scan cover has discrete time steps at distance φ. We show that there exists a scan cover
of (GI , α) with three time steps, i.e., a scan time of 2φ, only if I is a satisfiable instance.
Otherwise, every scan cover has at least four steps, i.e., a value of 3φ.

We now describe our construction of GI , which is a special variant of a clause-variable-
incidence graph. For an illustration, see Figure 5. There are four types of vertices and three
types of edges: For every clause Ci of I, we introduce a clause gadget consisting of a clause
vertex and three entry vertices, each of which represents one of the literals appearing in

arX iv



10 Minimum Scan Cover

C1 C2

x1 x1 x2 x2 x3 x3 x4 x4

C3 φ2φ 0

(x2 ∨ x3 ∨ x4)(x1 ∨ x2 ∨ x3) (x1 ∨ x2 ∨ x3)

Figure 5 Illustration of the graph GI for the instance I = (x1∨x2∨x3)∧(x1∨x2∨x3)∧(x1∨x2∨x3).
The edge set consists of clause edges (blue), incidence edges (orange), and variable edges (black).

the clause. The clause vertex is adjacent to every entry vertex of its gadget by a clause
edge. For every variable xi of I, we introduce a variable vertex and two literal vertices. The
variable vertex is adjacent to both literal vertices via a variable edge. Moreover, for every
entry vertex, we introduce an incidence edge to the literal vertex that it represents.

We define α as follows: The transition cost for any edge pair is φ if it contains a clause
edge, 2φ if it contains a variable edge, and 0 otherwise. Note that every variable and clause
edge are pairwise disjoint; hence this is well-defined.

We now show that if I is a satisfiable instance of Not-All-Equal-3-Sat, then there
exists a scan cover with three time steps: If a literal is set to true, then the variable edge
of this literal vertex is scanned in the first time step and all remaining edges of the literal
vertex in the third step. Likewise, if a literal is false, then its variable edge is scanned in the
third step, and all other incident edges in the first step.

For each clause we choose one positive and negative literal to be responsible, the third
literal is intermediate. The clause edges are scanned in the first, second, or third step,
depending on whether their entry vertex corresponds to a responsible positive literal, an
intermediate literal, or a responsible negative literal, respectively. Note that the edge pairs
with transition costs of 2φ, namely the edges incident to literal vertices, are scanned in the
first or third step. Thus, the value of this scan cover is 2φ. For an example, consider Figure 6.

C1 C2

x1 x1 x2 x2 x3 x3 x4 x4

C3

(x2 ∨ x3 ∨ x4)(x1 ∨ x2 ∨ x3) (x1 ∨ x2 ∨ x3)
1

3
2

Figure 6 Illustration of a scan cover of the graph GI as in Figure 5. Green edges are scanned in
the first, yellow in the second, and red edges in the third step.
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Now, we consider the reverse direction and show that a scan cover with three time steps
corresponds to a satisfying assignment of I. Because the transition cost of any two edges
incident to a literal vertex is 2φ, each variable or incidence edge is scanned either in the
first or third step. Therefore, we may define an assignment of I by setting the literals
whose variable edge is scanned in the first time step to true. It remains to argue that in
this assignment, every clause has a true and false literal. Note that the three edges of a
clause gadgets, must be scanned at different time steps. Consequently, there exists a clause
edge that is scanned in the first time step. Its adjacent incident edge is therefore scanned
in the third step. This implies that the variable edge of the literal vertex is also scanned
in the first time step and thus set to true. Likewise, the clause gadget in the third step
corresponds to a false literal. Consequently, this assignment shows that I is a true-instance
of Not-All-Equal-3-Sat. J

We now use Lemma 5 for showing hardness of bipartite graphs in the geometric version.

I Theorem 4. Even for bipartite graphs in 2D, a C-approximation for msc for any C < 3/2

implies P = NP.

Proof. Suppose that there is a (3/2− ε)-approximation for some ε > 0. For every instance I
of Not-All-Equal-3-Sat, we can construct a graph GI for msc in 2D such that it has
a scan time of 240◦ if I is satisfiable, and a scan time of at least 360◦ − ε otherwise. We
essentially use the same reduction as in the proof of Lemma 5. It remains to embed the
constructed graph GI in the plane such that the transition costs are reflected by the angle
differences. The basic idea is to embed GI on a triangular grid; see Figure 7 for some of the
gadgets.

clause gadget

incidence path

variable gadget

Figure 7 Embedding the graph GI into the plane by using φ = 120◦. Additional leaves are added
to force the usage of the larger angle of 240◦. The clause and variable gadgets are connected by
paths instead of edges (solid and dashed orange edges).

In particular, we choose φ = 120◦. For each clause gadget we create a star on four vertices
with 120◦ angles between the edges. The incidence edges also leave with 120◦ from the three
entry vertices.

The vertices of the variable gadget can also easily be embedded in the triangular grid.
However, because the smaller angle between any two segments is at most 180◦, we cannot
directly construct angles of 240◦. Therefore, we insert additional edges and vertices into the
240◦ angle with an angle difference of ε as illustrated in Figure 7. If an incident vertex uses
the shorter 120◦ angle, it would still need to cover the additional edges resulting in an overall
turning angle of at least 360◦ − ε = 3φ− ε.
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12 Minimum Scan Cover

To connect the clause gadgets with the variable gadgets we now need incidence paths
instead of incidence edges. We use paths consisting of three edges with angles of 240◦ on the
interior vertices. A path will propagate the decision by always scanning all odd or all even
edges at the same time with a difference of 240◦. Thus, the first and the last edge of it are
scanned at the same time.

If we allow the points to share the same coordinates, we can position all clause and
variable gadgets at the same locations, respectively. This results in a constant number of
coordinates.

If all coordinates shall be unique, the gadgets can easily be moved up or down as the
incident paths can be stretched. This replicates the behavior of the original construction
except of a tiny angle difference of ε for the 2φ angles.

A (3/2 − ε)-approximation would now yield for a satisfiable instance a scan time of at
most (3/2− ε) · 240◦ = 360◦ − ε · 240◦ and decide the satisfiability because an unsatisfiable
solution would have a scan time of at least 360◦− ε > 360◦− ε · 240◦. This is a contradiction
to the NP-hardness of Not-All-Equal-3-Sat. J

3.1.2 4.5-Approximation for Bipartite Graphs in 2D
Conversely, we give absolute and relative performance guarantees for bipartite graphs in 2D.

I Theorem 5. Let I = (P,E) be a bipartite instance of msc with vertex classes P = P1∪P2.
Then I has a scan cover of time 360◦. Moreover, if P1 and P2 are separated by a line, there
is a scan cover of time 180◦.

Proof. We show that the following strategy yields a scan cover of time 360◦: All points turn
in clockwise direction, with the points in P1 starting with heading north and the points in P2
with heading south; see Figure 8a for an example. Note that the connecting line between any
point p1 ∈ P1 and any point p2 ∈ P2 forms alternate angles with the parallel vertical lines
through p1 and p2, so both face each other when reaching this angle during their rotation;
see Figure 8b. In the case of separated point sets, a rotation of 180◦ suffices to sweep the
other set, as illustrated in Figure 8c. J

(a)

ϕ3

ϕ1

ϕ2

ϕ2

ϕ1

ϕ3

ϕ4

ϕ4

(b) (c)

Figure 8 (a) The vertices in P1 and P2 rotate clockwise and start by heading north and south,
respectively. (b) Due to alternate angles, vertices of different parts of the vertex partition face each
other at the same time. (c) When P1 and P2 are separated by a line, a scan time of 180◦ suffices.

Theorem 5 yields an absolute bound for bipartite graphs. Now we give a constant-factor
approximation even for small optimal values.

I Theorem 6. There is a 4.5-approximation algorithm for msc for bipartite graphs in 2D.
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Proof. Consider an instance I of msc in 2D and let Λ denote the minimum angle such that
for every vertex some Λ-cone contains all its edges. Clearly, Λ is a lower bound on the value
OPT of a minimum scan cover of I. We use one of two strategies depending on Λ.

If Λ ≥ 90◦, we use the strategy of Theorem 5 which yields a scan cover of at most 360◦
and hence a 4-approximation.

If Λ < 90◦, we use an adaptive strategy as follows. For each vertex, we partition the set
of headings [0, 360◦) into 2s sectors of size Λ′ = 360◦

/2s, see Figure 9a. We choose s maximal
(and, thus, Λ′ minimal) such that Λ′ ≥ Λ. This implies that the edges of every vertex are
contained in at most two adjacent sectors, see Figure 9a. Note also that Λ′ < 3/2Λ, because
Λ > 360◦

/2(s+1) and s ≥ 2.

≤ Λ′

(a)

v ϕ
ϕ

ci

cic′i

c′i w

(b)

Figure 9 (a) Dividing the headings into 2s sectors with angle Λ′ = 360◦
/2s by inserting s lines.

For every vertex, the incident edges lie in at most two adjacent sectors of size Λ′, because Λ ≤ Λ′.
(b) An edge e = vw that lies in ci for v, lies in c′i = ci+s for w. If v scans c1 and w scans c′1 (both
counterclockwise), they scan e at the same time ϕ due to the alternate angles in the parallelogram.

Let the sectors be ci = [(i ·Λ′, (i+1) ·Λ′), for i = 0, . . . , 2s−1. Moreover, c′i := ci+s mod 2s
is the sector opposite of ci. Note that an edge e = vw is in the sector ci of v if and only
if e is in the opposite sector c′i of w, see Figure 9b. Let Ceven be the set of sectors with
even indices, Codd the one with odd indices, and C ′even and C ′odd the set of opposite sectors,
respectively. Because the incident edges of each vertex are contained in at most two adjacent
sectors, every vertex has edges in (at most) one sector of Ceven and one sector of Codd.

This allows the following strategy. Denote the bipartition of the vertex set by P = P1∪P2.
In the first phase, the vertices in P1 scan the sector with edges in Ceven in clockwise direction,
while the vertices in P2 scan the sector in C ′even. In the second phase, vertices in P1 scan the
sector with edges in Codd in counterclockwise direction, while the vertices in P2 scan the
sector in C ′odd.

Figure 10 depicts an example scan cover. As in Theorem 5, every edge is scanned in

Figure 10 An example with Λ′ = 90◦. P1 and P2 are indicated by squares and circles, respectively.
The blue sectors are scanned in the first scan phase; the orange sectors in the second. Each scan
phase and the turning phase costs Λ′.
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14 Minimum Scan Cover

the first or second phase due to the alternate angles. Clearly, each scan phase needs Λ′.
Between the two scan phases, every vertex v needs to turn to change its heading from the
end heading of the first scan phase to the start heading of the second. Because both sectors
of v are incident and due to the reversed direction, the turning angle is at most Λ′; in
particular, either the end heading of the first sector is contained in the boundary of the
second sector or the two start headings of both phases coincide. The resulting scan time is
3Λ′ ≤ 3 · 3/2Λ ≤ 4.5 ·OPT. J

3.2 Graphs with Bounded Chromatic Number
Like in 1D, the value of a minimum scan cover in 2D has a strong relation to the chromatic
number. More specifically, we show that the optimal scan time lies in Θ(log2 χ(G)) and that
for a given coloring of the graph G with χ(G)c colors, we can provide an O(c)-approximation.

I Lemma 6. Let I = (P,E) be an instance of msc in Rd, d > 1. If I has a scan cover of
length T > 0, then G has a cut cover of size d · d T90◦ e, i.e., c(G) ≤ d · d T90◦ e.

Proof. Partition the scan cover into d T90◦ e intervals of length at most 90◦. For each interval i,
we consider the set of edges that are scanned within this interval, inducing a graph Gi. We
show that each Gi is 2d-partite. Because c(Gi) = dlog2(χ(Gi))e ≤ d, this implies the claim.

We first consider the case d = 2. We classify the points of P into four sets, depending on
their turning behavior within the interval i. Each point has a quadrant [0, 90◦), [90◦, 180◦),
[180◦, 270◦), or [270◦, 360◦) to which it is heading at the time 45◦; we assign each point this
quadrant. Note that every point can only leave its assigned quadrant by less than ±45◦.
Two points that are assigned to the same quadrant are independent in Gi: When their edge
is scanned, the headings of the two points have to be opposite, i.e., they differ by exactly
180◦. Thus, the only case in which two point headings could differ by 180◦ is if one leaves its
quadrant by 45◦ in clockwise and the other by 45◦ in counterclockwise direction. However,
in this case, the points would not have been assigned to the same half-open sector. For an
illustration consider Figure 11.

> 45◦

≥ 45◦

Figure 11 Every vertex is assigned to the (orange) sector to which it is heading at time 45◦. The
boundary of the reachable headings within 90◦ is shown in red. Since the sector is half-open, two
vertices assigned to the same sector cannot reach opposing headings and thus cannot scan their edge.

For d ≥ 3, the idea is analogous. To simplify the argument we choose a coordinate system,
i.e., an orthonormal basis (ONB), such that, at time 45◦, no point heads in a direction that
lies on a lower-dimensional subspace spanned by the basis vectors. Let B denote the set of
all potential basis vectors in Rd, i.e., B = Rd. For every point, we delete the line spanned
by its heading h at time 45◦ and the (d− 1)-dimensional subspace orthogonal to h from B.
The remaining set B′ is a d-dimensional space minus a finite number of lower-dimensional
subspaces. It follows by induction that B′ contains an ONB.

The points of P are partitioned into 2d different sets, depending on the orthant in which
they are contained at time 45◦. Note that if two point headings of the same orthant differ by
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180◦, their angle difference at time 45◦ is 90◦, i.e., they lie on a lower dimensional subspace
spanned by the basis vectors. This is a contradiction to the choice of the ONB. J

Because c(G) = dlog2 χ(G)e, Lemma 6 has the following implication.

I Lemma 7. Every instance I of msc in Rd needs a scan time T of at least Ω(log2 χ(GI)),
with GI denoting the underlying graph of I. More precisely, T ≥ dlog2 χ(G)e−d

d · 90◦.

Proof. Because c(G) = dlog2 χ(G)e, Lemma 6 implies that dlog2 χ(G)e ≤ dd T90◦ e. In
particular, it holds that dlog2 χ(G)e ≤ d T

90◦ + d ⇐⇒ dlog2 χ(G)e−d
d · 90◦ ≤ T. J

These insights have the following implications.

I Theorem 7. For instances of msc in 2D with a k-coloring of the graph G = (V,E), such
that k ≤ χ(G)c for some function c, there is an O(c)-approximation.

Proof. Partition G into dlog2 ke bipartite graphs Gi. By Theorem 6, each Gi can be scanned
in time β · OPTi, with β = 4.5 and OPTi denoting the optimum of the instance induced
by Gi. Clearly, OPTi ≤ OPT , and turning from the last scan of one bipartite graph to
the next takes at most a time of OPT . Hence, this scan cover needs a time of at most
(β + 1)OPT dlog2 ke.

If χ(G) ≤ 4, then O(dlog2 ke) ≤ O(dc · log2(χ(G))e) ≤ O(dc · log2(4)e) ≤ O(d2ce) ∈ O(c).
If χ(G) ≥ 5, then Lemma 7 ensures that OPT ≥ Ω(log2(χ(G))) > 0. Therefore, the

performance guarantee is in O
(

log2 k
log2(χ(G))

)
= O

(
c log2(χ(G))
log2(χ(G))

)
= O(c). J

As a direct implication of Theorem 7, we get a spectrum of approximation algorithms for
interesting special cases.

I Corollary 8. msc in 2D allows the following approximation factors.
1. O(log2 n) for all graphs. Furthermore, the minimum scan time lies in Θ(log2 χ(G)).
2. O(1) for planar graphs.
3. O(log2 d) for d-degenerate graphs.
4. O(1) for graphs of bounded treewidth.
5. O(1) for complete graphs.
The following bound shows a refined approximation for complete graphs.

I Corollary 9. Consider the msc for complete graphs with n vertices in 2D. There is a
c-approximation algorithm with c→ 6 for n→∞.

Proof. We may assume without loss of generality that n > 4. By Lemma 7, the minimum
scan time is at least (dlog2(n)e − 2) · 45◦ > 0. For the upper bound, we partition the point
set recursively into dlog2(n)e bipartite graphs by lines (alternating horizontal and vertical).
Hence, Theorem 5 allows us to scan each bipartite graph within 180◦. The transition
between two scan phases is at most 90◦. Therefore, the scan time is upper bounded by
dlog2(n)e180◦ + (dlog2(n)e − 1)90◦. This yields a performance guarantee of

270◦(dlog2(n)e − 2) + 450◦

45◦(dlog2(n)e − 2) = 6 + 10
(dlog2(n)e − 2) . J

The factor in Theorem 9 is c ≤ 8 when n ≥ 27 and c ≤ 7 when n ≥ 212.
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16 Minimum Scan Cover

4 Three-Dimensional Point Sets and Abstract MSC

In the following, we observe that a-msc generalizes the Path-TSP.

I Observation 8. Let G = (V,E) be a star on n+ 1 vertices with center v and α a metric
transition cost function on E × E. Then, an a-msc of (G,α) corresponds to a TSP-path of
the complete graph on V \ {v} with metric cost c(u1, u2) = α(vu1, vu2) and vice versa.

Observation 8 has two immediate consequences. Firstly, because the metric Path-TSP is
NP-hard, it follows that

I Observation 9. a-msc is NP-hard even for stars.

Secondly, the 1.5-approximation for metric Path-TSP by Zenklusen [27] can be applied.

I Observation 10. There exists a 1.5-approximation algorithm for a-msc for stars.

In contrast to 1D and 2D, we show that the chromatic number does not provide an upper
bound for msc in 3D and a-msc.

I Observation 11. There are instances of msc in 3D with χ(G) = 2 that need at least
Ω(
√
n). There are instances of msc in nD with χ(G) = 2 that need at least Ω(n).

Proof. For the first claim consider a geodesic triangular grid on a sphere and embed a star
graph such that its leaves are grid points and the center of the star lies in the center of the
sphere. The Ω(

√
n) can be achieved by increasing the resolution of the grid by subdivision,

see Figure 12: While the minimum turn cost between two consecutive edges approximately
halves, the number of vertices roughly quadruples, doubling the overall costs that is lower
bounded by (n− 1) · l if l is the minimum edge length.

Figure 12 The geodesic grid is refined by subdividing the edges. Because a triangulation with n
vertices has 3n− 6 edges, subdividing roughly quadruples the number of vertices.

The second claim follows from considering a star on n vertices for which each leaf is
placed on a different coordinate axis. Therefore, the turn cost between any two edges is 90◦
and it takes 90◦n to scan the graph. J

The approximation technique for bipartite graphs in 2D relies on alternate angles and
fails for 3D or a-msc. Nevertheless, we provide a 2.5-approximation for trees.

I Theorem 10. There exists a 2.5-approximation algorithm for a-msc for trees.

Proof. Let I = (G,α) be an instance of a-msc for which G is a tree, and let OPT be the
minimum scan time of I. For every vertex v, we approximate an ordering of minimum cost
over all its incident edges Ev. Let N(v) denote the set of neighbors of v. By Observation 8
such an ordering corresponds to a TSP-path. Consequently, we may use the 1.5-approximation
algorithm for metric Path-TSP by Zenklusen [27]. Moreover, we enhance the edge ordering
to a cyclic ordering by inserting an edge from the last to the first edge; because the cost
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function is metric, the cost of the additional edge is upper bounded by the minimum cost
ordering of the incident edges. Therefore, the scan time `v of the computed cyclic edge
ordering of v is at most `v ≤ (1.5 + 1)OPT .

We construct a scan cover as follows: Every vertex follows its cyclic edge ordering. The
start headings of the vertices are chosen such that the scan time of each edge e = uv is
synchronized at the vertices u and v. To this end, we choose some vertex r as the root and
denote the parent of each vertex v by par(v) in the tree G with respect to the root r. We
scan the edges of r according to the cyclic edge orderings by starting with any heading, see
also Figure 13.

r

Figure 13 Root r can choose its schedule. The (cyclic) schedules of the children are synchronized
with the timing of its parent. Because the graph is a tree, there are no cyclic dependencies.

We then determine the start headings by a tree traversal (e.g., DFS or BFS): Let v be a
vertex whose start heading has to be determined, and assume the start heading of u := par(v)
is already fixed. When uv is scanned at time t for u, then the cyclic ordering of Ev is shifted,
so that v sees uv also at time t. If this time lies between two scans, we simply start at the next
incident edge and let the vertex wait for the appropriate time. Because all vertices start at
the same time, the resulting scan cover has a scan time of at most maxv `v ≤ 2.5 ·OPT . J

Theorem 10 allows an approximation algorithm in terms of the arboricity of the underlying
graph. Recall that the arboricity of a graph denotes the minimum number of forests into
which its edges can be partitioned.

I Theorem 11. There is a 3.5A-approximation for the a-msc for graphs of arboricity A.

Proof. We compute a decomposition into A forests in polynomial time [17]. To obtain a scan
cover we use the approximation algorithm of Theorem 10 for each forest and concatenate
the resulting scan covers in any order. Because the transition cost between any two forests
is upper bounded by the minimum scan time OPT , the resulting scan cover has time of at
most (2.5 + 1)OPT ·A. Consequently, we obtain a 3.5A-approximation. J

5 Conclusion and Open Problems

We have presented several algorithmic results for the abstract and geometric version of
the minimum scan cover problem with a metric angular cost function, which has strong
connections to the chromatic number.

There is a spectrum of interesting directions for future work. How can we make use of
methods for solving graph coloring problems to compute practical solutions to real-world
instances? In many scenarios, this will involve considering satellites on different trajectories,
in the presence of a large obstacle: the earth. This gives rise to a variety of generalizations,
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such as the presence of time windows for possible communication. Other variations of both
practical and theoretical interest arise from considering objective functions such as minimizing
the total energy of all satellites or minimizing the maximum energy per satellite.
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