
CSE 533: The PCP Theorem and Hardness of Approximation (Autumn 2005)

Lecture 1: Introduction
Sep. 28, 2005

Lecturer: Ryan O’Donnell Scribe: Ryan O’Donnell

1 Proof, and The PCP Theorem

The PCP Theorem is concerned with the notion of “proofs” for mathematical statements. We begin
with a somewhat informal definition:

Definition 1.1. A traditional proof systemworks as follows:

• A statement is given. (e.g., “this graphG = · · · is 3-colorable” or “this CNF formula
F = (x1 ∨ x2 ∨ x10) ∧ · · · is satisfiable”).

• A proverwrites down a proof, in some agreed-upon format.

• A verifierchecks the statement and the proof, and accepts or rejects.

From the perspective of theory of computer science, we usually fix a constant size alphabet
and assume the statement and proof are strings over this alphabet; we also usually writen for
the length of the statement and measure lengths of strings and running times in terms ofn. The
familiar complexity class NP can be cast in this setup:

Remark 1.2. LanguageL is in NP iff there is apolynomial timedeterministic verifierV (a Turing
Machine, say) and an arbitrarily powerful proverP , with the following properties:

• “Completeness”: For everyx ∈ L, P can write a proof of lengthpoly(|x|) thatV accepts.

• “Soundness”: For everyx 6∈ L, no matter whatpoly(|x|)-length proofP writes,V rejects.

To equate the notion of the verifier being efficient with it being a deterministic polynomial time
algorithm is nowadays a bit quaint; ever since the late ’70s we have been quite happy to consider
randomized polynomial time algorithms to be efficient. As it turns out, when proof systems are
allowed to have randomized verifiers, some very surprising things can happen. This line of research
was begun in the early-to-mid ’80s by Goldwasser, Micali, and Rackoff [9] and also independently
by Babai [3, 4]. See the accompanying notes on the history of the PCP theorem. One pinnacle of
research in this area isThe PCP Theorem:

Theorem 1.3.(due to Arora-Safra (AS) [2] and Arora-Lund-Motwani-Sudan-Szegedy (ALMSS) [1])
“The PCP (Probabilistically Checkable Proof) Theorem”:

All languagesL ⊆ NP have a P.C.P. system wherein on inputx ∈ {0, 1}n:

1

• ProverP writes down apoly(n)-bit-length proof.

• Verifier V looks atx and does polynomial-time deterministic computation. ThenV uses
O(log n) bits of randomness to chooseC random locations in the proof. HereC is a absolute
universal constant; say, 100.V also uses these random bits to produce a deterministic test
(predicate)φ onC bits.

• V reads the bits in theC randomly chosen locations from the proof and does the testφ on
them, accepting or rejecting.

• Completeness: Ifx ∈ L thenP can write a proof thatV accepts with probability1.

• Soundness: For everyx 6∈ L, no matter what proofP writes,V accepts with probability at
most1/2.

Remark 1.4. This P.C.P. system has “one-sided error”: true statements are always accepted, but
there is a chance a verifier might accept a bogus proof. Note that this chance can be made an
arbitrarily small constant by naive repetition; for example,V can repeat its same spot-check 100
times independently, thus reading100C bits and accepting false proofs with probability at most
2−100.

The first time one sees this theorem, it seems a little hard to conceive how it can be true. It’s
even more striking when one learns that essentiallyC may be taken to be 3. (See Theorem 1.12
below.) How could you possibly be convinced a proof is true just by spot-checking it in 3 bits?

Remark 1.5. By the classical theory NP-completeness, it suffices to prove the PCP Theorem for
one particular NP-complete language — say, 3-COLORING or 3-SAT — since poly-time reduc-
tions can be built into the verifier’s initial step (and into the prover’s plans).

Remark 1.6. The PCP that the prover needs to write down can be obtained in deterministic poly-
nomial time from the “standard” proofs forx ∈ L (i.e., the coloring for 3-COLORING, the as-
signment for 3-SAT).

Remark 1.7. Sometimes enthusiastic descriptions of the PCP Theorem make it seem like it greatly
reduces thetime a verifier needs to spend to check a proof. This is not accurate since the verifier
still dies polynomial-time deterministic pre-computations; these may already take more time then
it would have taken to simply check a classical proof. What the PCP Theorem saves isproof
accesses. There is other work on developing proof systems that let the verifier save on time or
space (see the accompanying notes on the history of the PCP Theorem); however it seems to have
had fewer interesting applications.

Our first task in this course will be to prove Theorem 1.3 completely. The fact that this will
be possible is only due to a very recent development. The original proof of the PCP Theorem was
very intricate and difficult; it might have been up to 100 pages, with subsequent simplifications
bringing it down to a very densely packed 30 pages or so. However in April 2005, Irit Dinur gave
a new proof [5] which is elegant and clear and only a dozen pages or so long. This is the proof we

2

will see in the course.

Subsequent to the PCP Theorem were many more “PCP Theorems” that strengthened certain
parameters or extended the result in different directions. What follows are a few of these:

Theorem 1.8. (Feige-Kilian [8], Raz [17]) (Raz’s strong version of this result is sometimes called
“the Raz Verifier” or “hardness of Label Cover”): For every constantε > 0, there is a poly-
size PCP for NP that readstwo random proof entries written withO(1)-size alphabet and has
completeness 1, soundnessε.

Remark 1.9. Note that in this theorem, the poly-size of the PCP and the alphabet size both depend
on ε; with Raz’s version, the proof has lengthnO(log 1/ε) and the alphabet has sizepoly(1/ε).

Remark 1.10. The result proven is actually stronger in a technically subtle but important way:
One can additionally have the verifier use a predicateφ(x, y) with the “projection property”,
namely, that for every choice ofx there is exactly one choice ofy that makesφ(x, y) true.

Remark 1.11. Comparing this result to the basic PCP Theorem, we see that it uses a constant-
size alphabet and two queries to get arbitrarily small constant soundness, whereas the basic PCP
Theorem uses constantly many queries to a size-two alphabet. It might not be immediately clear
which is better, but it is indeed the former. There are several ways to look at this: For example,
with fewer queries you have fewer opportunities to “cross-check”; as an extreme, it’s clear that a
verifier that made only one query (to a constant size alphabet) could always be fooled. Or suppose
that you tried to encode every triple of bits in a proof with a single character from an alphabet of
size 8 — although you could now read three bits with just one query, the prover can cheat you by
encoding a single bit in different ways in different triples.

We hope to prove Theorem 1.8 in this course — at least, the Feige-Kilian version without the
projection property.

The following result essentially shows that we can takeC = 3 in the original PCP Theorem:

Theorem 1.12. (Håstad [12]) “3-LIN hardness”: For every constantε > 0, there is a poly-size
PCP for NP that reads justthreerandombitsand tests their XOR. Its completeness is1− ε and its
soundness is1/2 + ε.

Remark 1.13. This result has “imperfect completeness”. However, if one is willing to allow an
adaptivethree-bit-querying verifier (i.e., the verifier does not have to pick the three bits in advance
but can base what bit it reads next on what it’s seen so far) then one can get completeness1. This
is due to Guruswami, Lewin, Sudan, and Trevisan [10].

This result, which we will prove in the course, requires Theorem 1.8.

Finally, here is one more PCP Theorem which wewon’t prove:

Theorem 1.14.(due to Dinur [5], based heavily on a result of Ben-Sasson and Sudan [?]): In the
basic PCP Theorem, the proof length can be maden · polylog(n) rather thanpoly(n).

3

1.1 Hardness of approximation

Perhaps the most important consequence of the PCP theorems and the most active area of research
in the area are results about “hardness of approximation”. These will be the major focus of the
second half of this course. To be able to state hardness of approximation results, we need to
understand the notion of(NP) combinatorial optimization problems. Instead of making a formal
definition we will just give some examples. Briefly, these are “find the best solution” versions of
classic NP-complete problems.

Definition 1.15. MAX-E3SAT: Given an E3CNF formula — i.e., a conjunction of “clauses” over
boolean variablesx1, . . . , xn, where a clause is an OR of exactly 3 literals,xi or xi — find an
assignment to the variables satisfying as many clauses as possible.

Definition 1.16. SET-COVER: Given a bunch of setsS1, . . . , Sm ⊆ {1, . . . , n}, find the fewest
number of them whose union covers all of{1, . . . , n}. (We assume that every ground elementi is
in at least one setSj.)

Definition 1.17. MAX-CLIQUE: Given an undirected graph, find the largest clique in it, where a
clique is a subset of vertices which contain all possible edges.

Definition 1.18. KNAPSACK: Given are “weights”w1, . . . , wn ≥ 0 of n items and also “values”
v1, . . . , vn ≥ 0. Also given is a “capacity”C. Find a set of itemsS such that

∑
i∈S wi ≤ C while

maximizing
∑

i∈S vi.

Remark 1.19.Each of these is associated to a classic NP-complete decision problem; e.g., “CLIQUE:
GivenG andk, doesG have a clique of size at leastk?” Notice that frequently the NP decision
problem is a contrived version of the more natural optimization problem.

Remark 1.20. Combinatorial optimization problems can be divided into two categories: Maxi-
mization problems (like MAX-3SAT, MAX-CLIQUE, KNAPSACK) and minimization problems (like
SET-COVER).

It is well-known that these problems are all NP-hard. However, suppose that for, say, MAX-
E3SAT, there was a polynomial time algorithm with the following guarantee: Whenever the input
instance has optimum OPT — i.e., there is an assignment satisfying OPT many clauses — the
algorithm returns a solution satisfying99.9%× OPT many clauses. Such an algorithm would be
highly useful, and would tend to refute the classical notion that the NP-hardness of MAX-E3SAT
means there is no good algorithm for it.

Indeed, such results are known for the KNAPSACK problem. As early as 1975, Ibarra and
Kim [14] showed that for everyε > 0 there is an algorithm for KNAPSACK that runs in time
poly(n/ε) and always returns a solution which is within a(1−ε) factor of the optimal solution. So,
although KNAPSACK is NP-complete, in some sense it’s very easy. Let us make some definitions
to capture these notions:

Definition 1.21. Given a combinatorial optimizationmaximizationproblem, we say algorithmA
is anα-approximation algorithm(for 0 < α ≤ 1) if whenever the optimal solution to an instance

4

has valueOPT, A is guaranteed to return a solution with value atleastα · OPT. We make the
analogous definition forminimizationproblems, withα ≥ 1 andA returning a solution with value
at mostα ·OPT. Unless otherwise specified, we will also insist thatA runs in polynomial time.

Remark 1.22. Our definition for maximization problems is sometimes considered unconventional;
some like to always haveα ≥ 1, in which case their notion is that the algorithmA returns a
solution with value at leastOPT/α.

Definition 1.23. A maximization (resp., minimization) combinatorial optimization problem is said
to have aPTAS(Polynomial Time Approximation Scheme) if it has a(1− ε)-approximation algo-
rithm (resp.,(1 + ε)-approximation algorithm) for every constantε > 0.

As mentioned, the KNAPSACK problem has a PTAS, and this is true of certain other combi-
natorial optimization problems, mostly related to scheduling and packing. But what about, say,
MAX-E3SAT? It is a remarkable consequence of the PCP Theorem that MAX-E3SAT has no
PTAS unlessP = NP. In fact, the two statements are basically equivalent!

Theorem 1.24.(credited to an unpublished 1992 result of Arora-Motwani-Safra-Sudan-Szegedy):
Speaking roughly, the PCP Theorem is equivalent to the statement, “MAX-E3SAT has no PTAS
assumingP 6= NP”.

We will precisely formulate and prove this theorem in the next lecture.

Indeed, most work in the PCP area these days is centered on proving “hardness of approx-
imation” results like Theorem 1.24. We will state here a few striking “optimal hardness-of-
approximation results” that have followed from work on PCP theorems.

Theorem 1.25.(follows from H̊astad’s Theorem 1.12): MAX-E3SAT has no(7/8+ε)-approximation
algorithm for any constantε > 0 unlessP = NP.

We will see the proof of this in the course.

Remark 1.26. There is a very easy7/8-approximation algorithm for MAX-E3SAT: Just picking a
random assignment gives a7/8-approximation in expectation, and this algorithm is easily deran-
domized.

Regarding SET-COVER:

Theorem 1.27. (Feige [6]): SET-COVER has no(1 − ε) ln n approximation algorithm for any
constantε > 0 unlessNP ⊆ DTIME(nlog log n).

Remark 1.28. The greedy algorithm achieves a(ln n + 1)-approximation algorithm. (John-
son [15])

Remark 1.29. The fact that we have the conclusion “unlessNP ⊆ DTIME(nlog log n)” is due to
technical difficulties; however since the conclusion is almost as unlikely asNP = P, we don’t
really mind much.

5

We won’t prove Feige’s theorem about SET-COVER in this course but we will prove a due to
Lund and Yannakakis [16], that shows hardness of giving aΩ(log n)-approximation.

The situation for MAX-CLIQUE is direst of all:

Theorem 1.30.(due to H̊astad [11], with a significant simplification by Samorodnitsky-Trevisan [18],
another simplification by H̊astad and Wigderson [13], and a slight improvement by Zuckerman in
September 2005 [19]): MAX-CLIQUE has no(1/n1−ε)-approximation for any constantε > 0
unlessP = NP.

Remark 1.31. There is a trivial1/n-approximation: Output a single vertex.

We won’t prove this theorem in the course, but the weaker result that(1/nΩ(1))-approximating
is hard follows relatively easily from the main PCP Theorem, via a reduction given by Feige-
Goldwasser-Lovasz-Sudan-Szegedy [7]. We will give this reduction later in the course.

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the
hardness of approximation problems.Journal of the ACM, 45(3):501–555, 1998.

[2] S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of NP.J.
ACM, 45(1):70–122, 1998.

[3] L. Babai. Trading group theory for randomness. InProceedings of the 17th Annual ACM
Symposium on Theory of Computing, STOC’85 (Providence, RI, May 6-8, 1985), pages 421–
429, New York, 1985. ACM, ACM Press.

[4] L. Babai and S. Moran. Arthur-Merlin games: A randomized proof system, and a hierarchy
of complexity classes.Journal of Computer and System Sciences, 36(2):254–276, Apr. 1988.

[5] I. Dinur. The pcp theorem by gap amplification. ECCC, TR05-046, 2005.

[6] U. Feige. A threshold of ln n for approximating set cover.J. ACM, 45(4):634–652, 1998.

[7] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Interactive proofs and the
hardness of approximating cliques.J. ACM, 43(2):268–292, 1996.

[8] U. Feige and J. Kilian. Two-prover protocols — low error at affordable rates.SIAM J.
Comput., 30(1):324–346, 2000.

[9] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof
systems.SIAM J. Comput, 18(1):186–208, 1989.

6

[10] V. Guruswami, D. Lewin, M. Sudan, and L. Trevisan. A tight characterization of NP with
3 query PCPs. InProceedings of the 39th Annual Symposium on Foundations of Computer
Science(FOCS-98), pages 8–17, Los Alamitos, CA, Nov.8–11 1998. IEEE Computer Society.

[11] J. Håstad. Clique is hard to approximate to withinn1−ε. Acta Mathematica, 182:105–142,
1999.

[12] J. Håstad. Some optimal inapproximability results.J. ACM, 48(4):798–859, 2001.

[13] J. Håstad and A. Wigderson. Simple analysis of graph tests for linearity and PCP.Random
Struct. Algorithms, 22(2):139–160, 2003.

[14] O. H. Ibarra and C. E. Kim. Fast approximation algorithms for the knapsack and sum of
subset problems.Journal of the ACM, 22(4):463–468, Oct. 1975.

[15] D. S. Johnson. Approximation algorithms for combinatorial problems.J. Comput. Syst. Sci,
9(3):256–278, 1974.

[16] C. Lund and M. Yannakakis. On the hardness of approximating minimization problems.J.
ACM, 41(5):960–981, 1994.

[17] R. Raz. A parallel repetition theorem.SIAM J. Comput, 27(3):763–803, 1998.

[18] A. Samorodnitsky and L. Trevisan. A PCP characterization ofNP with optimal amortized
query complexity. InProceedings of the 32nd Annual ACM Symposium on Theory of Com-
puting, STOC’2000 (Portland, Oregon, May 21-23, 2000), pages 191–199, New York, 2000.
ACM Press.

[19] D. Zuckerman. Linear degree extractors and the inapproximability of max clique and chro-
matic number. ECCC, TR05-100, 2005.

7

	Proof, and The PCP Theorem
	Hardness of approximation

