54 CHAPTER 10 HARDNESS OF APPROXIMATIONS

Sha92. A. Shamir. IP = PSPACE. J. of the ACM, 39(4):869-877, October 1992.

Sim90. H. U. Simon. On approximate solutions for combinatorial optimization
problems. STAM J. Algebraic Discrete Methods, 3:294-310, 1990.

Sud92. Madhu Sudan. FEfficient checking of polynomials and proofs and the
hardness of approximation problems. PhD thesis, U.C. Berkeley, 1992.

Yan79. M. Yannakakis. The effect of a connectivity requirement on the
complexity of of maximum subgraph problems. Journal of the ACM,
26:618-630, 1979.

Yan81. M. Yannakakis. Edge deletion problems. SIAM Journal of Computing,
10:77-89, 1981.

Yan92. M. Yannakakis. On the approximation of maximum satisfiability. In
Proceedings of 3rd Annual ACM-STAM Symposium on Discrete
Algorithms, pages 1-9, 1992.

Zuc93. D. Zuckerman. NP-complete problems have a version that’s hard to
approximate. In 8th Structure in Complexity Theory Conf., pages
305-312, 1993.

REFERENCES 53

KMR93.

KToa1.

Lev73.

LFKN92.

LovT75.

LPS8s.

LR88.

LS91.

Lun92.

LY93.

LY94.

NN93.

PR90.

PY91.

PY93.

Raz94.
RS92.

SGT6.

D. Karger, R. Motwani, and G.D.S. Ramkumar. On approximating the
longest path in a graph. In Proceedings of Workshop on Algorithms and
Data Structures, pages 421-430. LNCS (Springer-Verlag), v. 709, 1993.

P. G. Kolaitis and M. N. Thakur. Approximation properties of NP
minimization classes. In Proc. of the 6th Conference on Structure in
Complexity Theory, pages 353-366, 1991.

L. Levin. Universal’nyfe perebornyle zadachi (universal search problems :
in Russian). Problemy Peredachi Informatsii, 9(3):265-266, 1973.

C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for
interactive proof systems. J. of the ACM, 39(4):859-868, October 1992.

L. Lovasz. On the ratio of optimal integral and fractional covers.
Discrete Mathematics, 13:383-390, 1975.

A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujam graphs.
Combinatorica, 8:261-277, 1988.

T. Leighton and S. Rao. An approximate max-flow min-cut theorem for
uniform multicommodity flow problems with applications to
approximation algorithms. In Proc. 29th IEEFE Symp. on Foundations of
Computer Science, pages 422—431, 1988.

D. Lapidot and A. Shamir. Fully parallelized multi prover protocols for
NEXPTIME. In Proc. 32nd IEFE Symp. on Foundations of Computer
Science, pages 13—-18, 1991.

Carsten Lund. The Power of Interaction. MIT Press, Cambridge, Mass.,
1992.

C. Lund and M. Yannakakis. The approximation of maximum subgraph
problems. In Proceedings of International Colloquium on Automata,
Languages and Programming, ICALP, pages 40-51, 1993.

Carsten Lund and Mihalis Yannakakis. On the hardness of approximating
minimization problems. Journal of the ACM, 41(5):960-981, 1994.

J. Naor and M. Naor. Small-bias probability spaces: efficient
constructions and applications. SIAM J. on Computing, 22:838-856,
1993. Prelim. version in ACM STOC’90.

A. Panconesi and D. Ranjan. Quantifiers and approximation. In Proc. of
the 22nd ACM Symp. on the Theory of Computing, pages 446-456, 1990.

C. Papadimitrion and M. Yannakakis. Optimization, approximation and
complexity classes. Journal of Computer and System Sciences,
43:425-440, 1991.

C. Papadimitriou and M. Yannakakis. The traveling salesman problem
with distances one and two. Mathematics of Operations Research,
18(1):1-11, 1993.

R. Raz. A parallel repetition theorem. Manuscript, 1994.

R. Rubinfeld and M. Sudan. Testing polynomial functions efficiently and
over rational domains. In Proc. 3rd Annual ACM-SIAM Symp. on
Discrete Algorithms, pages 23-32, 1992.

S. Sahni and T. Gonzalez. P-complete approximation problems. Journal
of the ACM, 23:555-565, 1976.

52

Fur95s.

GG8I.

GI76.

GI79.

GMRS89.

GMWS87.

Gol94.

GVY93.

GW94.

Hal93.

Has95.

JohT4.

Joh92.

Kan87.

Kan92.

Kar72.

KLS93.

CHAPTER 10 HARDNESS OF APPROXIMATIONS

M. Firer. Improved hardness results for approximating the chromatic
number. In Proc. 36th IFEE Symp. on Foundations of Computer Science,
1995.

O. Gabber and 7. Galil. Explicit constructions of linear sized
superconcentrators. Journal of Computer and System Sciences,
22:407-425, 1981.

M. R. Garey and D. S. Johnson. The complexity of near-optimal graph
coloring. Journal of the ACM, 23:43—-49, 1976.

M. R. Garey and D. S. Johnson. Computers and Intractability: a guide to
the theory of NP-completeness. W. H. Freeman, 1979.

S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of
interactive proofs. STAM J. on Computing, 18:186-208, 1989.

O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game
or a completeness theorem for protocols with honest majority. In Proc.
19th ACM Symp. on Theory of Computing, pages 218—229, 1987.

O. Goldreich. Probabilistic proof systems. Technical Report RS-94-28,
Basic Research in Computer Science, Center of the Danish National
Research Foundation, September 1994. (To appear in the Proceedings of
the International Congress of Mathematicians, 1994. Birkhauser Verlag.).

N. Garg, V.V. Vazirani, and M. Yannakakis. Approximate max-flow
min-(multi)-cut theorems and their applications. In Proc. 25th ACM
Symp. on Theory of Computing, pages 698 =707, 1993.

M. Goemans and D. Williamson. A 0.878 approximation algorithm for
MAX-2SAT and MAX-CUT. In Proc. 26th ACM Symp. on Theory of
Computing, pages 422—431, 1994.

Halldorsson. A still better performance guarantee for approximate graph
coloring. Information Processing Letters, 45:19-23, 1993.

J. Hastad. Fast and efficient testing of the long code. unpublished
manuscript, 1995.

D. S. Johnson. Approximation algorithms for combinatorial problems.
Journal of Computer and System Sciences, 9:256-278, 1974.

D. S. Johnson. The NP-completeness column: an ongoing guide. Journal
of Algorithms, 13:502-524, 1992.

R. Kannan. Minkowski’s convex body theorem and integer programming.
Mathematics of Operations Research, 12(3), 1987.

V. Kann. On the approzimability of NP-complete optimization problems.
PhD thesis, Royal Institute of Technology, Stockholm, Sweden, 1992.

R. M. Karp. Reducibility among combinatorial problems. In Miller and
Thatcher, editors, Complexity of Computer Computations, pages 85-103.
Plenum Press, 1972.

S. Khanna, N. Linial, and S. Safra. On the hardness of approximating the
chromatic number. In Proceedings of the 2nd Israel Symposium on Theory
and Computing Systems, ISTCS, pages 250-260. IEEE Computer Society
Press, 1993.

REFERENCES 51

BILt91.

BK89.

BP&9.

BR93.

BS92.

BS94.

CK94.

Con93.

CooTl.

DIPt92.

Fag74.

Fei95.

FGL191.

FK94.

FK95.

FL92.

FRS8S.

A. Blum, T. Jiang, M. Li, J. Tromp, and M. Yannakakis. Linear
approximation of shortest superstrings. In Proc. 23rd ACM Symp. on
Theory of Computing, pages 328-336, 1991.

M. Blum and S. Kannan. Designing programs that check their work. In
Proc. 21st ACM Symp. on Theory of Computing, pages 8697, 1989.

M. Bern and P. Plassmann. The Steiner problem with edge lengths 1 and
2. Information Processing Letters, 32:171-176, 1989.

M. Bellare and P. Rogaway. The complexity of approximating non-linear
programs. In P.M. Pardalos, editor, Complexity of Numerical
Optimization. World Scientific, 1993. Preliminary version: IBM Research
Report RC 17831 (March 1992).

Piotr Berman and Georg Schnitger. On the complexity of approximating
the independent set problem. Information and Computation, 96(1):77-94,
1992.

M. Bellare and M. Sudan. Improved non-approximability results. In
Proc. 26th ACM Symp. on Theory of Computing, pages 184-193, 1994.

P. Crescenzi and V. Kann. A compendium of NP optimization problems.
manuscript, 1994.

A. Condon. The complexity of the max-word problem and the power of
one-way interactive proof systems. Computational Complexity, 3:292-305,
1993.

S. Cook. The complexity of theorem-proving procedures. In Proc. 3rd
ACM Symp. on Theory of Computing, pages 151-158, 1971.

E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and
M. Yannakakis. The complexity of multiway cuts. In Proc. 24th ACM
Symp. on Theory of Computing, pages 241-451, 1992.

R. Fagin. Generalized first-order spectra and polynomial-time
recognizable sets. In Richard Karp, editor, Complexity of Computer
Computations, pages 43-73. AMS, 1974.

U. Feige. A threshold of In n for approximating set cover. Manuscript,
1995.

U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy.
Approximating clique is almost NP-complete. In Proc. 32nd IEEFE Symp.
on Foundations of Computer Science, pages 2—12, 1991.

U. Feige and J. Kilian. Two prover protocols—low error at affordable rates.
In Proc. 26th ACM Symp. on Theory of Computing, pages 172-183, 1994.

U. Feige and J. Kilian. Zero knowledge and the chromatic number.
unpublished manuscript, 1995.

U. Feige and L. Lovasz. Two-prover one-round proof systems: Their
power and their problems. In Proc. 24th ACM Symp. on Theory of
Computing, pages 733-741, 1992.

L. Fortnow, J. Rompel, and M. Sipser. On the power of multi-prover
interactive protocols. In Proceedings of the 3rd Conference on Structure
in Complexity Theory, pages 156-161, 1988.

50

AK93.

ALM7192.

AMSP80.

Aro9%4.

Aro95.

AS92.

Bab8g5s.

Bab94.

Bel93.

BFLa1.

BFLS91.

BGKWSs.

BGLRY3.

BGS95.

BH92.

CHAPTER 10 HARDNESS OF APPROXIMATIONS

M. Amaldi and V. Kann. The complexity and approximability of finding
maximum feasible subsystems of linear relations. Technical report,
Department of Numerical Analysis and Computing Science, Royal Institue

of Technilogy, Stockholm, 1993. Technical Report TRITA-NA-9313.
S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof

verification and intractability of approximation problems. In Proc. 33rd
IFEE Symp. on Foundations of Computer Science, pages 13-22, 1992.

G. Ausiello, A. Marchetti-Spaccamela, and M. Protasi. Toward a unified
approach for the classification of NP-complete optimization problems.
Theoretical Computer Science, 12:83-96, 1980.

S. Arora. Probabilistic checking of proofs and the hardness of
approximation problems. PhD thesis, U.C. Berkeley, 1994. Available via
anonymous ftp as Princeton TR94-476.

S. Arora. Reductions, codes, PCPs, and inapproximability. In Proc. 36th
IEEE Symp. on Foundations of Computer Science, 1995.

S. Arora and S. Safra. Probabilistic checking of proofs: A new
characterization of NP. In Proc. 33rd IEFFE Symp. on Foundations of
Computer Science, pages 2—13, 1992.

L. Babai. Trading group theory for randomness. In Proc. 17th ACM
Symp. on Theory of Computing, pages 421-429, 1985.

I.. Babai. Transparent proofs and limits to approximations. In
Proceedings of the First Furopean Congress of Mathematicians.
Birkhauser, 1994.

M. Bellare. Interactive Proofs and approximation: Reductions from two
provers in one round. In Proceedings of the 2nd Israel Symposium on
Theory and Computing Systems. IEEE Computer Press, 1993.
Preliminary version: IBM Research Report RC 17969 (May 1992).

I.. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time
has two-prover interactive protocols. Computational Complexity, 1:3-40,
1991.

L. Babai, L. Fortnow, I.. Levin, and M. Szegedy. Checking computations
in polylogarithmic time. In Proc. 28rd ACM Symp. on Theory of
Computing, pages 21-31, 1991.

M. Ben-or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi prover
interactive proofs: How to remove intractability assumptions. In Proc.
20th ACM Symp. on Theory of Computing, pages 113121, 1988.

M. Bellare, S. Goldwasser, C. LLund, and A. Russell. Efficient multi-prover
interactive proofs with applications to approximation problems. In Proc.
25th ACM Symp. on Theory of Computing, pages 113—-131, 1993.

M. Bellare, O. Goldreich, and M. Sudan. Free bits and
non-approximability— towards tight results. In Proc. 36th IEFE Symp. on
Foundations of Computer Science, 1995. Full version available from the
authors.

R. B. Boppana and M. M. Halldérsson. Approximating maximum
independent sets by excluding subgraphs. BIT, 32(2):180-196, June 1992.

REFERENCES 49

proximation, instead of Quasi-NP-hardness. The first question was partially an-
swered in [Bel93, BR93, Zuc93], which showed the inapproximability of a variety
of problems. Then the second question was answered — positively— in [AS92],
which showed that approximating clique is NP-hard. Proving this result involved
a new probabilistic characterization of NP in terms of PCP (a definition of the
class PCP also makes an appearance in this paper). Then [ALM*92] gave fur-
ther evidence of the usefulness of PCPs for proving inapproximability results.
They proved the PCP Theorem, and showed that Max-SNP-hard problems do
not have polynomial-time approximation schemes. The proof of the PCP The-
orem uses many ideas from the then-unpublished [AS92] and papers on pro-
gram checking [BK89, RS92]. Some observers attribute the PCP Theorem to
[AS92, ALM*92] together.

An interesting development that went largely unnoticed is Condon’s inap-
proximability result for the max-word problem [Con93]. She uses a different
probabilistic characterization of NP.

The connection between interactive proof systems and inapproximability
has provided the impetus for new constructions of various interactive proof sys-

tems [LS91, FL92, BGLR93, FK94, Raz94, BS94, BGS95).

10.9.0.0.7 Further reading. For a self-contained proof of the PCP Theorem
and a detailed survey of related topics, see [Aro94]. The surveys by Babai
[Bab94], Johnson [Joh92], and Goldreich [Gol94] provide three different per-
spectives (mostly without proofs) of the developments mentioned above. Sudan
[Sud92] describes program checking for algebraic programs and how it figures in
the proof of the PCP Theorem. For a listing of optimization problems according
to their approximation properties; consult [CK94].

References

ABSS93. S. Arora, [.. Babai, J. Stern, and 7. Sweedyk. The hardness of
approximate optima in lattices, codes and linear equations. In Proc. 3jth
IFEE Symp. on Foundations of Computer Science, pages 724-733, 1993.

ADPT7T7. G. Ausiello, A. D’Atri, and M. Protasi. On the structure of combinatorial
problems and structure preserving reductions. In Proc. 4th Intl. Coll. on
Automata, Languages and Programming, 1977.

ADP80. G. Ausiello, A. D’Atri, and M. Protasi. Structure preserving reductions
among convex optimization problems. Journal of Computer and System
Sciences, 21:136-153, 1980.

AFWZ93. N. Alon, U. Feige, A. Wigderson, and D. Zuckerman. Derandomized
graph products. Manuscript, 1993.

AGHP92. N. Alon, O. Goldreich, J. Hastad, and R. Peralta. Simple constructions of
almost k-wise independent random variables. Random Structures and
Algorithms, 3, 1992. See also Addendum in Random Structures and
Algorithms 4 pages 77 1993.

48 CHAPTER 10 HARDNESS OF APPROXIMATIONS

—
CHAPTER NOTES

i 0

10.9.0.0.4 Approximability. The question of approximability started receiving
attention [Joh74, SG76] soon after NP-completeness was discovered. (See [GIT9]
for a discussion.) Much of the work attempted to discover a classification frame-
work for optimization (and approximation) problems analogous to the framework
of NP-completeness for decision problems. (See [ADP77, ADP80, AMSP80] for
some of these attempts.) The most successful attempt was due to Papadim-
itriou and Yannakakis, who based their classification around a complexity class
they called Max-SNP (see Section 10.2.1). They proved that MAX-3SAT is com-
plete for Max-SNP| in other words, any inapproximability result for MAX-3SAT
transfers automatically to a host of other problems. The desire to prove such an
inapproximability result motivated the discovery of the PCP theorem.

The idea (in [PY91]) of using logical characterizations of optimization prob-
lems to understand their approximability has also been extended in many direc-

tions [KT91, PRIO0].

10.9.0.0.5 Interactive Proof Systems. The PCP Theorem is a descendent of a
long line of results in interactive proofs systems. These proofs systems were in-
vented in [GMRR9, Bab85], and quickly found applications in cryptography and
complexity theory [GMWS87, BGKWS88]. The notion of probabilistically check-
able membership proofs first appears in [FRS88]. For a survey of all probabilistic
proof systems that have been defined and studied, see [Gol94].

Surprisingly, complexity classes defined in terms of interactive proofs are ac-
tually equivalent to conventional complexity classes. For example, IP = PSPACE
[LFKN92, Sha92] and MIP = NEXPTIME [BFTL.91]. Lund’s dissertation [L.un92]

describes these characterizations.

10.9.0.0.6 Connection to inapproximability. Feige et al. [FGLT91] showed how
to extend some of the ideas in the MIP = NEXPTIME result to the class NP.
They identified the notion of probabilistically checkable proofs (although under
a different name) and proved a surprising result that in hindsight is a clear pre-
cursor of the PCP Theorem. Their work was paralleled by that in [BFLS91], who
defined transparent math proofs, a notion related to probabilistically checkable
proofs.

All the above results were very surprising. Even more surprising was the
following result, which [FGLT91] proved as a corollary of their result about
proof-checking: Approximating the clique number within a factor 2log' 1 g
Quasi-NP-hard.

The [FGL*T91] result focused attention on the notion of probabilistically
checkable proofs, and raised two important questions. First, could their tech-
niques prove the inapproximability of any important problem other than clique?
Second, could their techniques be sharpened to prove the NP-hardness of ap-

10.8 OPEN PROBLEMS 47

OPEN PROBLEM 10.4

A look at Table 10.2 shows that many inapproximability results rely on an as-
sumption stronger than P # NP. Can this assumption be weakened to P # NP7
Currently, the reason for resorting to the stronger assumption is that the reduc-
tion to LABELCOVER in Theorem 10.2, part 3, uses a self-improvement prop-
erty, and needs quasipolynomial time. A more efficient reduction could possibly
merge Classes IIT and TV.

OPEN PROBLEM 10.5

Identify limitations of current techniques for proving inapproximability. For ex-
ample, identify inapproximability results they inherently cannot prove. (A recent
paper [Aro95] takes a first step in this direction.)

OPEN PROBLEM 10.6

Prove inapproximability results for the following problems: SHORTEST LAT-
TICE VECTOR (in Euclidean norm), EUCLIDEAN TSP, and coloring a 3-
colorable graph with the minimum possible number of colors. For the last prob-
lem, Khanna et al. [KLS93] have shown that it is NP-hard to color a 3 colorable
graph using only 4 colors.

OPEN PROBLEM 10.7

The best approximation algorithm for GRAPH BISECTION [LR&8] outputs an
integer that approximates the cost of the minimum bisection, without outputting
a bisection of this approximate cost (it outputs a 1/3 :2/3 cut of the graph and
not a bisection). Approximation algorithms for some other problems also be-
have similarly; they output an approximation to the cost of the optimal solution
without outputting a near-optimal solution. Prove (for any natural problem)
that finding approximate solutions is harder than finding an approximation to
the cost of the optimum solution.

OPEN PROBLEM 10.8

Explain why inapproximable problems form the four classes we have described.
Are these classes “real,” or does the classification reflect a limitation of our proof
techniques. (A partial answer — namely, a nice explanation of class T — seems
to lie in the Max-SNP class of [PY91].)

OPEN PROBLEM 10.9

Prove inapproximability results for some of the counting (or # P) problems dis-
cussed in Chapter 12. For example, no good approximation algorithm is known
for the problem of approximating the number of perfect matchings in a graph.

46 CHAPTER 10 HARDNESS OF APPROXIMATIONS

that each f; involves O(1) variables. But, remember that each f; just represents
a possible run of the (logn, 1)-restricted verifier for SAT. Thus the description
of each f; — that is, a description of what function it is and which variables
it depends upon — is derived from the program of the verifier. The current
construction of this verifier is very involved. It involves defining a complicated
algebraic object, which exists iff the input boolean formula is satisfiable. The
verifier expects a membership proof to contain a representation of this object.
In each of its runs the verifier examines a different part of this provided object.
Thus the function f; representing that run is a correctness condition for that
part of the object.

For details on the algebraic object, we refer the reader to the relevant papers.
A detail worth mentioning is that each part of the object — and thus, the defi-
nition of each f; — depends on every input bit (i.e., on every clause of the input
boolean formula). This imparts the reduction a global structure. Tn contrast,
classical NP-completeness reductions usually perform local transformations of
the input.

—
OPEN PROBLEMS

o2

We list some open problems about the hardness of approximation.

OPEN PROBLEM 10.1

As shown in this chapter, all known inapproximability results can be derived from
the PCP Theorem and Raz’s Parallel Repetition Theorem [Raz94] (note that the
latter was used to prove the inapproximability of Label Cover). The proofs of
both these theorems are currently very difficult. Can they be simplified?

OPEN PROBLEM 10.2

For many problems such as CLIQUE, COLORING, and MAX-3SAT, there is a
large gap between the approximation ratio that is provably hard to achieve, and

the ratio that we can achieve in polynomial time (see Section 10.6). Can this gap
be closed?

OPEN PROBLEM 10.3

Prove inapproximability results for edge deletion problems [Yan81], such as (DI-
RECTED) FEEDBACK ARC SET, GRAPH BISECTION, GRAPH EXPAN-
SION, ete. Algorithms for many of these problems use similar ideas and achieve
approximation ratios close to O(logn) [LR88].

10.7 PROBABILISTICALLY CHECKABLE PROOFS AND INAPPROXIMABILITY 45

of size 3, as follows. For a k-clause Iy V la V -V [} (the [;’s are literals), write
the formula

k-4
(11 ViV 21) A (lk—l ViV —|Zk_2) A /\ (—|Zt vV IH_Q vV Zt_|_1), (10.11)

t=1
where z1,2s,...,2p—2 are new variables which are not to be used again for any
other k-clause. Clearly, a fixed assignment to ly,ls, ..., I} satisfies the original
k-clause iff there 1s a further assignment to z1,29,...,2p—> that satisfies the

formula in (10.11).

Thus the formula of (10.10) has been rewritten as a 3CNF formula that is
satisfiable iff # € L. Further, if # ¢ L, every unsatisfied k-clause in (10.10) yields
an unsatisfied 3-clause in the new formula, so the fraction of unsatisfied 3-clauses
is at least ﬁ : Zklﬁ

Hence the lemma has been proved for the value of € given by

L !]
T+e (k—2)2b+1

—
PROBLEMS

N

EXERCISE 10.9

Note that the MAX-£-FUNCTION-SAT problem exactly represents the decision
process of a (logn, 1)-restricted verifier that examines k bits in membership
proof. The optimum assignment for the MAX-£-FUNCTION-SAT instance can
be viewed as a proof that maximizes the verifier’s acceptance probability. The
next exercise further clarifies the connection between the PCP Theorem and the
inapproximability of MAX-SNP-hard problems.

1. Prove that MAX-k-FUNCTION-SAT is in Max-SNP for every fixed k.

2. Prove that for every Max-SNP problem, there is some integer k such that every
instance of the problem can be represented as instances of MAX-k-FUNCTION-
SAT.

Thus we have shown that MAX-k-FUNCTION-SAT is Max-SNP-hard.

10.7.3 WHERE THE GAP COMES FROM.

The gap of a factor of 1 + ¢ in reduction (10.8) came from two sources: the
gap 1 versus 1/2 in the fraction of satisfiable f;’s in Lemma 10.12, and the fact

44 CHAPTER 10 HARDNESS OF APPROXIMATIONS

Proof. Since SAT € NP, it has a (logn, 1)-restricted verifier. Suppose the veri-
fier uses clogn random bits and examines k bits in the proof. Note that it has at
most 2°1°8” = pn° different possible runs, and in each run it reads only £ bits in
the proof-string. Hence assume w.l.o.g. that the number of bits in any provided
proof-string is at most kn°. For concreteness, assume this number is N.

For boolean-valued variables yi, 42, ..., yn, the set of possible assignments
to y1,Y2, ..., YN 18 1N one-to-one correspondence with the set of possible proof-
strings. Assume w.l.o.g. that the proof-string is an assignment to the variables
Y1,92, .-, YN-

Fixing the verifier’s random string to R € {0,1} , fixes the sequence
of locations that it will examine in the proof. TLet i1(R),iz(R),...,ix(R)
be this sequence. The verifier’s decision depends only on the assignments
to Yi (R)s Yis(R) - - > Yin(r). Define a boolean function on k bits, fgr, as
fr(by, ... by) = true iff the verifier accepts when the assignment to the se-
quence of variables y; gy, ..., ¥i,(r) 18 b1,b2,...,bg. Since the verifier runs in
polynomial time, we can compute the truth table of fg in polynomial time by
going through all possible 2 values of by, bs, ..., by, and computing the verifier’s
decision on each sequence.

The reduction consists in outputting the set of n® functions

{fR . Re {0, I}CIOgn} defined above. By definition of PCP(logn, 1), when the

clogn

c

input is in the language, there is an assignment to the y1, ¥y, ..., yy that makes
all functions in this set evaluate to true. Otherwise no assignment makes more
than 1/2 of them evaluate to true.]

Now we prove the “only if” part of our earlier assertion.

THEOREM 10.7 Tf NP C PCP(logn, 1) then the reduction described in (10.8)

exists.

Proof. Given a SAT instance, reduce it to MAX-k-FUNCTION-SAT us-
ing Lemma 10.12. Let yi,y2,...,yn be the set of boolean variables and
{fi :1<i<n} the collection of functions in the instance of MAX-k-
FUNCTION-SAT. We indicate how to rewrite them using a 3CNF formula.

Consider a function f; from this collection. Let f; be a function of variables
Yii s Yiny - > Yir- Then f; can be expressed as a conjunction of at most 2% clauses
in these variables, each of size at most k. Let Cj1,Cja,...,C;j o denote these
clauses. (From now on we use the terms k-clause and 3-clause to talk about
clauses of size k and 3 respectively.)

Then the k-CNF formula

ne 2k

AN Ci (10.10)

i=1j=1

is satisfiable iff © € L. Also, if # € I, then every assignment fails to satisfy half
the f;’s, each of which yields an unsatisfied k-clause. So if ¢ L the fraction of
unsatisfied clauses is at least % . 2%, which 1s some fixed constant.

To obtain a 3CNF formula rewrite every k-clause as a conjunction of clauses

10.7 PROBABILISTICALLY CHECKABLE PROOFS AND INAPPROXIMABILITY 43

10.7.2 CONNECTION TO INAPPROXIMABILITY OF MAX-3SAT

The PCP Theorem, specifically, its nontrivial half NP C PCP(logn, 1), is both
sufficient and necessary to prove Theorem 10.1 about the inapproximability of
MAX-3SAT. That is to say, NP C PCP(logn, 1) iff there is a reduction 7 from
SAT to MAX-3SAT that ensures the following for some fixed € > 0:
I € SAT = MAX-3SAT(r(])) =1,
I & SAT = MAX-3SAT(r(1)) < 1 _11_6.

Let’s first check that the “if” part holds: if the above reduction exists then
NP C PCP(logn,1). Given any NP language I and an input, the verifier reduces
it to SAT, and then to MAX-3SAT using the above reduction. It expects the
membership proof to contain a satisfying assignment to the MAX-3SAT instance.
To check this membership proof probabilistically, it picks a clause uniformly at
random, reads the values of the variables in it (notice, this requires reading only
3 bits), and accepts iff these values satisfy the clause. Clearly, if the original input
is in L, there is a proof which the verifier accepts with probability 1. Otherwise
every proof is rejected with probability at least 1—1/(14¢). Of course, repeating
the verification O(1/¢) times makes the rejection probability > 1/2.

Now we turn to the “only if” part. Suppose NP C PCP(logn,1). As a first
step in proving the inapproximability of MAX-3SAT, we prove the inapproxima-
bility of the following problem.

(10.8)

DEFINITION 10.14 MAX-%k-FUNCTION-SAT Let k be a fixed integer.

Input: Truth tables for m boolean functions, each a function of a set of k£ variables
out of y1,ya, ..., Yn-

i Wi Yins - 0i) 11 < i< m}.

Output: An assignment to z1,2s,..., 2, that maximizes the number of func-
tions that evaluate to 1. The objective function 1s the fraction of functions that
evaluate to 1.

The next lemma is based upon the observation that MAX-k-FUNCTION-
SAT is exactly the following problem: given the program of a (log n, 1)-restricted
verifier that examines k bits in the proof, determine the maximum (over all
possible proof strings) probability with which it accepts any proof string. Thus
the statement NP C PCP(logn, 1) implies the inapproximability of MAX-k-
FUNCTION-SAT for some constant k.

LEMMA 10.12 T1f NP C PCP(logn,1), then there is an integer k such that
there is a reduction 7 from SAT to MAX-k-FUNCTION-SAT that ensures
I € SAT =— MAX-k-FUNCTION-SAT (7'(I)) = 1,
1
I ¢ SAT =— MAX-k-FUNCTION-SAT (7'(I)) < 7 (10.9)

42 CHAPTER 10 HARDNESS OF APPROXIMATIONS

DEFINITION 10.11 A verifier is (r(n), ¢(n))-restricted if on each input of size
n it uses at most O(r(n)) random bits for its computation, and queries at most

O(q(n)) bits of the proof.

In other words, an (r(n), g(n))-restricted verifier has two associated integers
¢, k. The random string has length ¢r(n). The verifier operates as follows on
an input of size n. It reads the random string R, computes a sequence of k ¢(n)
locations i1 (R),i2(R), . . ., ixgn)(R), and queries those locations in II. Depending
on what these bits were, 1t accepts or rejects.

Define M(z, R) to be 1 if M accepts input z, with access to the proof II,
using a string of random bits R, and 0 otherwise.

DEFINITION 10.12 A verifier M probabilistically checks membership proofs
for language L if

® For every input x in L, there is a proof I, that causes M to accept for
every random string (i.e., with probability 1).

e For any input x not in L, every proof II is rejected with probability at
least 1/2. T.e.,

%Y[Mn(x’R) =1]<

| —

Note: The choice of probability 1/2 in the second part is arbitrary. By repeating
the verifier’s program O(1) times, (and rejecting if the verifier rejects even once)
the probability of rejection 1/2 in the second part can be reduced to any arbitrary
positive constant. Thus we could have used any constant less than 1 instead of

1/2.

DEFINITION 10.13 A language L is in PCP(r(n),q(n)) if there is an
(r(n), g(n))-restricted verifier M that probabilistically checks membership proofs
for L.

Note that NP = PCP(0, poly(n)), since PCP(0,poly(n)) is the set of languages
for which membership proofs can be checked in deterministic polynomial-time.
This set is exactly NP. The next theorem, called the PCP Theorem, gives an
alternative characterization of NP in terms of PCP.

THEOREM 10.6 PCP Theorem [AS92, ALM*92] NP = PCP(logn,1).

The proof of the PCP Theorem is complicated. Proving that PCP(logn, 1) C
NP is easier, however; see Lemma 10.12 for a hint on how to proceed.

10.7 PROBABILISTICALLY CHECKABLE PROOFS AND INAPPROXIMABILITY 41

in the old system. Then each assignment clears at most (CN(;_E)) tuples, each
of which contributes T satisfied equations in the new system. The assignment
does not clear the other (JZ) — (CN%_E)) tuples, so each of those contributes only
k satisfied equations each. Thus no assignment can satisfy more than (JZ) k4
(CN(;_E)) (T = k) equations in the new system.

By choosing T'= N*t1 we see that the gap between the optima in the two
cases is approximately (1 — ¢)*. Thus we have described a simple construction
that allows us to “boost” the gap between the optimum value in the two cases.
This shows that MAX-SATISFY is self-improvable.

Using k = poly(log N) in the above construction, we get a gap of
where N’/ = 2poly(1087) i the number of equations in the new system. Thus we
have proved that achieving an approximation ratio 2108 "N for MAX-SATISFY
18 Quasi-NP-hard, in other words, that MAX-SATISFY is in Class III.

log'=" N’
2'°8 ,

10.6.1.0.3 MAX-SATISFY isin Class IV. Finally, it should be clear that instead
of using the trivial booster, namely, the set of all subsets of size k, we can use
the booster of Theorem 10.4 in the above self-improvement construction. Write
down T equations for every subset of k equations that form a set in the booster.
Use k = log N, and o < ec/100. Thus the NP-hardness of N°-approximation
follows for some 6 > 0.

—
PROBABILISTICALLY CHECKABLE PROOFS AND
INAPPROXIMABILITY

o7

The introduction mentioned the close connection between inapproximability and
new probabilistic definitions of NP. This section fleshes out the connection.

10.7.1 THE PCP THEOREM

Let a wverifier be a polynomial-time probabilistic Turing Machine containing an
input tape, a work tape, a tape that contains a random string, and a tape called
the proof string and denoted as II. The proof string should be thought of as an
array of bits; out of which the verifier will examine a few. The verifier works as
follows. First, it reads the input and the random string, and writes down on its
work tape some addresses of locations in the proof string II. Next, it examines
the bits in those locations in II. The process of reading a bit from 1II is called a
query. Finally, the verifier decides to accept or reject, based on what the input,
the random string, and the queried bits of Il were.

40 CHAPTER 10 HARDNESS OF APPROXIMATIONS

containing m clauses, construct a system of at most 3m equations as follows.
First, assume w.l.o.g. that each clause contains exactly 2 literals (which could
be the same literal). Tntroduce a rational variable z; for each boolean variable
z;. For a clause z; V z; write the following system of equations.

4+ x; =1, r; =1, xz; = 1.

(Tf the clause involves —z; then use 1 — z; instead of x;). First, we claim that
w.l.0.g. we may assume that the optimal assignment to the z;’s — that is, the
one that satisfies the maximum fraction of equations — assigns 0 or 1 to all
the variables. For, given an assignment that is not all 0/1, we can construct the
following assignment: if x; > 1/2, change z; to 1 and otherwise change x; to 0.
This does not decrease the number of satisfied equations, as is clear by looking
at each group of 3 equations representing a clause.

So assume that the optimal assignment is 0/1. Thus in each group of 3
equations representing a clause, either 2 equations are satisfied or 0 equations
are. View this assignment as a boolean assignment in the obvious way. The
boolean assignment satisfies a clause iff exactly 2 equations corresponding to it
were satisfied. Thus the number of satisfied clauses is exactly 1/2 the number of
satisfied equations.

Thus we have shown that given a MAX-SATISFY instance 7,1t is NP-hard to
distinguish whether the fraction of satisfiable equations is either > ¢ or < ¢(1—¢),

where ¢ = 2d/3.

10.6.1.0.2 Self-improvement. Now we show a self-improvement property for
MAX-SATISFY, which helps us show that it is in Class II1. Suppose we have
(as above) N equations, in which the answer to MAX-SATISFY is either ¢ or
¢ (1 —¢) for some ¢,¢ > 0. Let the equations be written as p; = 0,py =
0,...,pn = 0. Let k, T be integers (to be specified later). Write down a new set
of equations containing, for every k-tuple (p;,, pis, ..., pi,) of old equations, a
set of T equations Zlepijyj =0, where y = 1,2,...,T. Note that the number
of equations in this new system is (JZ) - T, whereas the number of variables is
unchanged.

For each assignment to the variables and each k-tuple of the old equations,
let us say the assignment clears the tuple if it satisfies all k£ equations in it.
Note that if an assignment clears a tuple, then in the new system of equations it
satisfies all T" new equations corresponding to this tuple. Now we claim that if
it does not clear the tuple, then it satisfies at most k of those T equations. The
reason for the claimis that if (p;,, pi,, ..., pi,) is a k-tuple that that is not cleared
by the assignment, then the following vector is not zero: (v;,, v;,, ..., v;,), Where
vi; denotes the value of the left-hand-side of equation p;; under this assignment.
Thus the univariate polynomial Zle Vi ¥’ is not identically zero, and therefore
has at most k roots.

If some assignment to the variables satisfies a fraction ¢ of the equations
in the original system, then it clears (CIJCV) k-tuples, so the number of satisfied
equations in the new system is at least (CIJCV) -T.

Conversely, suppose every assignment satisfies less than ¢N -(1—¢) equations

10.6 INAPPROXIMABILITY RESULTS AT A GLANCE 39

10.6.0.0.1 Older inapproximability results. Various inapproximability results
were obtained in the 1970s, including those for the TRAVELING SALES-
PERSON PROBLEM without the triangle inequality [SG76] and for certain
maximum-subgraph problems [Yan79]. Many other results of this type have also
been discovered (see eg [CK94]). We did not describe these results, since the
techniques involved are closer to those occurring in [GJ79], and seem not to
generalize to the problems considered here.

10.6.1 HOW TO PROVE OTHER HARDNESS RESULTS: A CASE STUDY

The first step in proving an inapproximability result for a given problem is to
check whether it is already known to be inapproximable. For instance, the prob-
lem might be listed in the compendium [CK94].

As a second step, one should try to prove that the problem is in Class I,
specifically, to prove that it is MAX-SNP-hard. Note that Class I is the richest
of the four classes in our classification. Usually one can find a problem in this
class, such as MAX-3SAT or MAX-CUT, that reduces in a gap-preserving fashion
to the problem at hand. (When stuck in this process, leafing through the many
reductions in [PY91] is known to help.)

What if one i1s unable to show in a reasonable amount of time that the
problem is in Class 17 According to past experience, proving that the problem
is in one of the other classes will then be nearly impossible. (Indeed, we know of
only one problem — the Shortest Lattice Vector Problem under the ¢, norm —
which is not known to be Max-SNP-hard, but is known to be in a higher class —
namely, Class T1T.)

But if the problem does turn out to be in Class I, then it 1s worthwhile trying
to place it in a higher class as well. For instance, one might try to think which of
the other canonical problems it resembles. Is there a way to reduce SETCOVER
to 1t7 Or CLIQUE? Is the problem “self-improvable?”

There is no general recipe to the search we have outlined above. Therefore we
illustrate it with a case-study: MAX-SATISFY. This is the problem of finding,
in a system of m equations in n variables with rational coefficients, the largest
feasible subsystem. (Note that the corresponding decision problem, in which we
have to decide whether or not the entire system is feasible, is solvable in poly-
nomial time using Gaussian elimination.) The objective function is the fraction
of satisfied equations.

A simple greedy algorithm is known to approximate MAX-SATISFY within
a factor n + 1, and no substantially better algorithm is known. We will describe
a proof from [ABSS93, AK93] that the problem is in Class IV, and hence NP-
hard to approximate within a factor n® for some § > 0. But to illustrate our
methodology, we will first show that the problem is in Classes T and III.

Let us first attempt to show Max-SNP-hardness. We use the fact that the
problem MAX-2SAT is Max-SNP-hard, from which it follows that there exist
d,e > 0 such that given an 2CNF ¢ it is NP-hard to distinguish the cases when
MAX-2SAT(p) > d and when MAX-2SAT(p) < d(1—¢). Given a 2CNF formula

38 CHAPTER 10

HARDNESS OF APPROXIMATIONS

Comments Problem Hard Ratio | Assumption
Class 1 MAX-SAT ([PY91]) 1.027 NP #£ P
MAX-3SAT ([PY91]) 1.027 NP #£ P
Referenced papers MAX-CUT ([PY91]) 1.012 NP # P
in second column VERTEX COVER ([PY91]) 1.04 NP # P
show the given SHORTEST SUPERSTRING ([BJL1*91]) NP #£ P
problem is 3D-MATCHING ([Kan92]) 14e¢ NP # P
Max-SNP-hard. MAX-2SAT ([PY91]) 1.010 NP #£ P
METRIC TSP ([PY93]) 1+4e€ NP #£ P
Hardness first proved MULTIWAY CUTS ([DJP*92]) 14e¢ NP # P
in [ALM™*92]; improve- STEINER TREE ([BP89]) 14e¢ NP # P
-ments in factors MAX-3-COLORABLE
due to [BS94, BGSI5] -SUBGRAPH ([PY91]) 1+4e€ NP #£ P
INTEGER-MULTICOMMODITY
-FLOW ([GVY93]) 1+4e€ NP #£ P
Class II SETCOVER (1=46)IN NP ¢ P
HITTING SET (1=46)IN NPg P
All results are DOMINATING SET (1=46)IN NPg P
from [LY94]; Improve- HYPERGRAPH TRANSVERSAL (1=46)IN NPg P
-ments are in MINIMUM EXACT COVER (1=46)IN NPg P
[BGLR93, Fei95]
Class IIT LABELCOVER ([ABSS93]) p NP ¢ P
NEAREST LATTICE
Referenced papers VECTOR ([ABSS93]) p NP ¢ P
give reductions NEAREST CODEWORD ([ABSS93]) p NPg¢ P
from 2-Prover MIN-UNSATISFY ([ABSS93, AK93]) p NPg P
proof systems. LEARNING HALFSPACES
These systems are WITH ERROR ([ABSS93]) p NPg¢ P
equivalent to QUADRATIC PROGRAMMING
LABELCOVERmax. ([FL92, BR93]) p NP¢ P
MAX-7-SUBGRAPH ([LY93]) p NP¢ P
SHORTEST LATTICE
VECTOR (£ norm) ([ABSS93]) p NP¢ P
LONGEST PATH ([KMR93] p NP¢ P
Class IV CLIQUE ([FGL¥91, AS92, ALMT92]) n* NP #£ P
RCLIQUE ([LY94]) n* NP #£ P
Assuming stronger INDEPENDENT SET
complexity conjectures, ([FGL*91, AS92, ALM192]) n¢ NP #£ P
following factors CHROMATIC NUMBER ([LY94]) n¢ NP # P
are hard to achieve: CLIQUE COVER ([Sim90],[LY94]) n¢ NP # P
n®®7¢ for CLIQUE BICLIQUE COVER ([Sim90],[LY94]) n* NP #£ P
[Has95],
n'/*=¢ for FRACTIONAL CHROMATIC
CHROMATIC NUM- NUMBER ([Lov75],[LY94]) n* NP #£ P
BER [FK95]
MAX-PLANAR-SUBGRAPH ([LY93]) n* NP #£ P
MAX-SET-PACKING ([Zuc93])) n* NP #£ P
MAX-SATISFY ([ABSS93, AK93] n* NP #£ P

Table 10.2: Known inapproximability results. Here ¢ denotes some fixed positive
constant (that might depend upon the problem in question), § is any positive
constant, p denotes 218" "1 for any & > 0, where n is the input size. NP ¢
P means NP does not have quasipolynomial-time (i.e., time ppoly(logn) time)
deterministic algorithms. For the results in Class I, we estimate ¢ to be of the

order of 1072; for results in Class IV, ¢ is at least 0.1.

10.6 INAPPROXIMABILITY RESULTS AT A GLANCE 37

—
INAPPROXIMABILITY RESULTS AT A GLANCE

) oo

As already mentioned, optimization problems fall into four classes, based on

the approximation ratio that is hard to achieve for them. In earlier sections
we described inapproximability results for some of the problems in each class.
Table 10.2 lists references where other inapproximability results can be found.

All results in the papers mentioned in Table 10.2 are provable using our
canonical problems, except one: the result for the Shortest Lattice Vector prob-
lem in £, norm, a problem related to the nearest lattice vector problem described
in Section 10.4.3. This problem lies in Class ITT [ABSS93], but its inapproxima-
bility result uses special geometric facts about the construction in [FT.92].

We note that inapproximability results for most problems in Class IIT were
originally proved (see Table 10.2) using reductions from 2-Prover 1-Round proof
systems for NP. (Such proof systems first appear in [FL92], and predate the
PCP Theorem.) In the (unified) framework we have presented here, all those
results can be derived using the LABELCOVER,ax problem. The reason is that
the LABELCOVER1ax problem exactly captures the combinatorial structure of
2-Prover 1-Round proof systems [ABSS93].

As mentioned in the introduction, we have not attempted to optimize the re-
sults of this chapter. Such optimization is the subject of many recent papers, how-
ever. For example, our hardness result for MAX-3SAT asserts the existence of an
€ > 0 such that achieving an approximation ratio 1+¢ is NP-hard. Optimizing the
value of € seems to involve delving into the proof of the PCP Theorem. The best
result (in [BGS95], following earlier improvements in [BGLR93, FK94, BS94])
says that ¢ > 1/38. Optimizing the inapproximability result for clique, on the
other hand, has involved looking at the free bit parameter of the PCP verifier
[FK94, BS94]. A recent result [BGS95] shows that the free bit parameter is in-
timately connected to inapproximability results for clique. In our terminology,
the [BGS95] result can be restated thus: Every reduction to CLIQUE can be
modified to produce instances of R-CLIQUE(a seemingly more restrictive prob-
lem). That paper also shows that approximating clique within a ratio pl/3=o(1)
is hard. This has since been improved to n%*~¢ [Has95]. Similarly, we know that
achieving approximation ratio n'/3=¢ for Chromatic number is hard [FK95] (see
also [Fiir95]).

Despite such encouraging progress, the provably hard approximation ratio
for most problems is much worse than the best ratios that we can achieve for
these problems in polynomial time. The best ratio achievable for CLIQUEis
O(n/log” n) [BH92], for Chromatic number is O(n(loglogn)?/log® n) [Hal93],
and for MAX-3SAT is & 1.33 [Yan92, GW94]. Can this gap between inapprox-
imability results and algorithmic results be bridged? A recent result in [Aro95]
suggests that the gap may well be inherent: at least the current techniques can-
not prove the NP-hardness of approximating clique within a factor better than

N

36 CHAPTER 10 HARDNESS OF APPROXIMATIONS

shift of ey coincides with the ¢th shift of e5. Hence if e1 = {(j1,q1), (j2,¢2)} and
es = {(j1,4)), (J2, ¢5)} we have

(T(jla (J1) + 5) - (T jla qll) + t)

(T(jZa (J2) + 5) - (T jZa qlz) + t)
This implies that T(j1,q1) — T(j1,¢7) = T(j2,q2) — T(j2,95) and hence that
T(jr,q1) + T(j2, 45) + T(j2. 45) = T(j2, q2) + T(j1, ¢1) + T(j2, ¢5). The property
of T from Equation 10.7 implies that (j;,¢;) = (ji, ¢}) for i = 1,2, and thus e
and es are the same edge. This is a contradiction. It follows that G’ is 2-uniquely
shiftable. Similarly, we can prove that G’ is also 3 uniquely-shiftable. |

P

Comments. The above reduction is due to Khanna et al [KLS93] and is a
simplification of the original reduction in [LY94]. Note that it reduces R-CTLIQUE
to COLORING and strongly uses the structure of the R-CLIQUE problems. Can
a similar reduction be done from CLIQUE to COLORING? This is still open, but
partial progress was made in [LY94], which contains a reduction from CLIQUE
to COLORING that proves the hardness of approximating COLORING within
any constant factor.

, The inapproximability of the chromatic number implies inapproximability
of many other problems, via gap-preserving reductions: CLIQUE PARTITION,
CLIQUE COVER [Sim90], BICLIQUE COVER [Sim90] and FRACTIONAL
CHROMATIC NUMBER [Lov75] (see Table refl0:table:results).

— —
PROBLEMS

N

EXERCISE 10.8

The fractional chromatic number of a graph G = (V, E), denoted x (), is the
optimum value of the following linear program, which contains a variable zg for
every maximal independent set S in (.

Minimize) ¢xg subject to
Z{S:vES}xSZl Vv e V.

1. Prove that x (G) < x(G) < xf(G)-2(1+In |G]). (Hint: Use the randomized rounding
technique of Chapter 11.)

2. Conclude that there is an € > 0 such that approximating x ;(G) within a factor n¢
is NP-hard.

10.5 INAPPROXIMABILITY RESULTS FOR PROBLEMS IN CLASS IV 35

Proof. Clearly, w(G) < w(él, since a clique in (7 is a clique in . Now let '
be any clique in G of size w(G). Since G is 2 uniquely-shiftable, we know that
every edge in C' has a unique shift associated with 1t. We show that this shift is
the same for all edges in C', whence it follows that C'is just the shifted version of
some clique in in G and the proof is complete. So assume the shifts are not all the
same. Then there exist three vertices vy, ve,v3 in C such that the edges (v, va)
and (v, v3) have different shifts. But this contradicts the assumption that G is
3 uniquely-shiftable, since {vi,vs,v3} is a triangle in G. Hence it follows that
every edge in C' has the same shift. []

It only remains to show that every r x k graphs can be made 2, 3 uniquely-
shiftable without much increase in size. We will need the mapping defined in the
following lemma.

LEMMA 10.10 For every positive integer m, we can in poly(m) time construct
an injective map 7' : {0,1,...,m — 1} — {0,1,...,m’ — 1}, where m’ > 6m®
and for all distinct ordered triples (uy, us, us) and (vy, va, vs) (i.e., uy < us < ug,
vy < vy < ws, and (uy, us, uz) # (vi,vs,v3)),

T(vi) + T(va) + T(vs) # T(ur) + T(usz) + T(us) mod m’. (10.7)

Proof. Construct T by greedily assigning values, in order, to 7'(0), T(1),...,.
Assuming all values up to T(7) have been assigned, we only have to ensure that
T(i + 1) does not satisfy any of 6i° equality constraints imposed by the values
of T(0),...,T(i). Since 6i° < m’, we can choose a value for T(i + 1) easily, and
continue on. []

The next lemma shows how to make every r x k graph 2, 3 uniquely-shiftable.

LEMMA 10.11 Every r x k graph G can be changed in polynomial time to
an r x k' graph G’ that is 2,3 uniquely-shiftable and satisfies w(G) = w(G").
Further, this is possible for k' < 6(rk)S.

Proof. Transform (' as follows. Choose a map T" according to Lemma 10.10 by
substituting m = rk = |R x K|. Denote the integer m’ obtained from the lemma
as k', and let W =1{0,1,..., k' —1}. We will think of T" as a function from R x K
the vertices of (G, to W. The vertex set of the new graph G’ is R x W, and its
edges are defined according to the following rule: For ji, 7 € R and wy,ws € W,
the vertices (j1,w1) and (j2, w2) are adjacent iff there is an edge ((j1, ¢1), (ja, ¢2))
in GG such that T(j1,¢1) = w and T'(ja, ¢2) = w2. In other words, G’ is obtained
by mapping every vertex (j,q) in G to the vertex (j,7(j,q)) in G/, and putting
in edges accordingly. Since T is injective, it follows that cliques in ' and G’
correspond to each other and so w(G) = w(G’).

_To show that G’ is 2-uniquely shiftable, we need to show that for every edge
in (7, the extension of G/, there is a unique shift 7 < &’ — 1 such that the edge
belongs to the ith copy G% of G. Assume this is not the case. Then there are
distinct edges e; and €5 in G and distinct shifts s,# < k' — 1 such that the sth

34 CHAPTER 10 HARDNESS OF APPROXIMATIONS

clique partition needs to have k cliques just to cover this independent set. Thus
X(H)=k. [|

The next proposition suggests how the reduction could ensure the condition

in (10.6).

PROPOSITION 10.2 TLet H be an r x k graph such that w(f]) =w(H). Then
for every p > 1,

1
R-CLIQUE(H) < p = X(H) > kp.

Proof. Recall that /jr/w(f]) is a lower bound ong(ﬁ), since H has kr vertices.
Hence if w(H) = w(H) then w(H) <r/p=w(X(H) > k- p. [|

Unfortunately Proposition 10.2 is not enough to ensure the condition in
(10.6), since not every rxk graph G satisfies the property w(G) = w(G). However,
even if (G does not satisfy this property, we show how to convert it in polynomial
time into an »x k' graph G’ that does. Here k' is roughly (rK)°. Further, this new
graph G’ has the same clique number as G. Thus it follows from Propositions 10.1

and 10.2 that

R-CLIQUE(G) =1 — R—CLIQUE(G/) =1 = x(G"H= K
and

1 1 —
R-CLIQUE(G) <~ = R—CLIQUE(G’)<; = XG> kp.

As we already indicated, our reduction, when given a graph G, first con-
structs G’ and then outputs its extension G’. Thus it satisfies both properties
desired for it.

To finish up, we describe the transformation from G to G’. For a positive
integer I, an r x k graph G is | uniquely-shiftable if it satisfies the following: For
every clique C' in G of size [, there is a a unique shift i € {0,1,... k — 1} such
that C'is a clique in some copy G; of (G, and C' is an independent set in every
other copy Gy for i’ # i. Graph G is said to be 2,3 uniquely-shiftable if it is
both 2 uniquely-shiftable and 3 uniquely-shiftable. _

Note that if G is 2,3 uniquely-shiftable then its extension ' has certain
special properties. For instance, 2 uniquely-shiftability implies that every edge
e of (G is obtained from exactly one edge of (&, by using an appropriate shift 7.
(That is, for every two distinct edges ¢, ¢” in (G, the sth shift of ¢/ does not
coincide with the ¢ th shift of e’ for every pair of shifts s,¢.) Thus if G is 2
uniquely-shiftable, we may talk of this shift ¢ as the shift of the edge e. If in
addition (G is 3 uniquely-shiftable, then in every triangle in GG, all three edges of
the triangle have the same shift.

LEMMA 10.9 Tfan rxk graph G is 2, 3 uniquely-shiftable, then w(G) = w(G).

10.5 INAPPROXIMABILITY RESULTS FOR PROBLEMS IN CLASS IV 33

{j} x K constitute the jth independent set.

Note that given an r-partite graph — in other words, an instance of
R-CLIQUE — we can easily convert it into an » x k graph (for some suitable k)
by adding isolated vertices to equalize the sizes of the r-partitions. Thus we can
trivially rephrase Theorem 10.2, part 2, so that it gives us a reduction 7" which

reduces SAT to R-CLIQUE as follows, for some ¢ > 0:
VI TeSAT — R-CLIQUE(7(I)) =1
1
I ¢ SAT — R-CLIQUE(7'(I)) < vl (10.4)

where 7/(T) is an r x k graph and n = rk is the size of /(7).
In this section we describe a reduction 7 that, given an r x k graph G|,
produces an r x k’ graph G/ such that, for every constant ¢ > 0:

R-CLIQUE(G) = 1 = x(r(I)) = ¥’ (10.5)
R-CLIQUE(G) < 1/nf = Y(7(I)) > N7 . ¥/, (10.6)

where n = rk and N = rk’ are the numbers of vertices in G and 7(G) respectively.

Note that the NP-hardness of approximating Y follows, once we compose
this reduction with the one in (10.4).

Our reduction 7 consists of applying two transformations —defined below—
on the graph: first make it 2, 3-uniquely shiftable, and then produce the exztension
of the resulting graph.

First, we describe the extension of an r x k graph G = (R x K, F). For i =
0,1,...,k—1, define the ith copy of G as a graph G; = (Rx K, E;) containing the
same number of vertices and edges as (G, but whose edges are shifted according
to the following rule: ((4,¢),(j’,¢')) is an edge in G; if and only if ((j, (¢ +
i) mod k), (7', (¢’ + 7) mod k)) is an edge in (. Since this shifting of edges may
be viewed also as a renumbering of the vertices, it follows that graphs G and Gj
are isomorphic.

DEFINITION 10.10 Let H be an r x k graph and Ho, ..., H;_1 be its copies,
as described above. The extension of H, denoted H, is an r x k graph with the
same number of vertices as H and whose edges are UZK:_ol E(H;).

The next proposition suggests how the reduction could ensure the condition

in (10.5).

PROPOSITION 10.1 1If H is an r x k graph, then

Proof. Suppose C is a clique in H of size r. Define for ¢ = 0,1,...,k — 1, the

d ~
set of vertices C} :ef{(j, q) : (j,(¢+ 1) mod k) € C'}. Each Cj is a clique in H
of size r and furthermore, Co, ..., Cg_1 are disjoint. Tt follows that Y (/) < k.

In addition, ¥(H) > k, since H contains an independent set of size k and so a

32 CHAPTER 10 HARDNESS OF APPROXIMATIONS

Comments: The first inapproximability result for the clique problem, due to
[FGL*T91], showed that achieving an approximation ratio of 2log' " n jg Quasi-NP-
hard. Then [AS92] showed that the same approximation is actually NP-hard.
Soon after, [ALM*92] showed that achieving a ratio n¢ is NP-hard. The proof
given in this section is due to [AFWZ93]; it is a simplification of the original
proof in [ALM*92].

—
PROBLEMS

N

EXERCISE 10.7 Randomized Construction of Boosters

Let a be any positive fraction and ¢ be any fixed positive integer. Let n be a
“large enough” integer, and k = clogn. Suppose we randomly pick O(n/a%)
subsets of size k from {1,...,n}. Prove that the probability that these subsets
form a (k, n, «) booster is at least 1 — o(1).

10.5.2 COLORING

Now we prove part 5 of Theorem 10.2, concerning the hardness of approximating
the chromatic number of graphs. For ease of exposition, we prove the result for
a trivial reformulation of chromatic number, the clique cover number. A cligue
cover of size k in a graph is a partition of the vertices into k sets, each of which
is a clique. The cliqgue cover number of GG, denoted ¥((G), is the minimum size
of a clique cover of graph GG. Note that w(G) > n/¥(G), where n is the number
of vertices in (G. The reason is that a partition of V() into ¥(G) cliques must
contain some clique of size > n/Y(G)

A k-coloring of a graph G is a partition of the vertices into k& independent
sets. Thus a k-coloring in ' can be viewed as as a clique cover of size k in G, and
vice versa, where (7 is the graph containing exactly those edges that are absent
in (. Thus x(G) = X(G), which shows that the clique cover number is a trivial
reformulation of the chromatic number.

Now we give a gap-preserving reduction 7 from R-CLIQUE to the clique
cover problem. The following definition will be useful.

DEFINITION 10.9 For positive integers r» and k, an r x k graph is a graph
on rk vertices, which can be partitioned into » independent sets, each of size

exactly k. We will assume that the vertices are labelled from the set R x K,
where R = {0,1,...,r — 1}, K = {0,1,...,k — 1}, and vertices labelled by

10.5 INAPPROXIMABILITY RESULTS FOR PROBLEMS IN CLASS IV 31

Now construct a (m,logm, &) booster, §, using Theorem 10.4, by choosing
a = (/9. Construct the booster product of . The number of vertices in the
booster product is |S], and Lemma 10.8 says the clique number is either at least
((3—13)/9)°8™ |8| or at most ((3 —23)/9)!°6™ |S|. Hence the gap is now m” for
some vy > 0, and further, |§| = poly(m), so this gap is |S|° for some ¢ > 0. ®

The proof in Theorem 10.5 is the easiest known proof of the inapproxima-
bility of CLIQUE. Next, we describe the slightly more complicated reduction to
R-CLIQUE, which also proves Theorem 10.2, part 2.

Proof of Theorem 10.2, part 2. For each ¢ > (0 we give a gap-preserving
reduction 7 from MAX-3SAT to R-CLIQUE that has parameters ((1,1 +
€),(1,n7%)), where n is the size of the new instance and 6§ > 0 is some con-
stant depending on e. (Remember that R-CLIQUE(G) of an r-partite graph G
is the ratio of w(G)/r.) In other words, 7 ensures, for every 3CNF formula ¢,

1

MAX-3SAT(¢) = 1 = R-CLIQUE((¢))
MAX-3SAT(p) < %_1_6 = R-CLIQUE(r(g)) < n™".

Let C4 VO3V ---V)y be a 3CNF formula in n variables xq,22,...,2,.
Construct a (m,logm,) booster, 8, using Theorem 10.4 and with o = ¢/100.
Let k denote the size of each set in the booster (i.e., logm). Interpret each set
S; € 8 as aset of k clauses. Construct a graph H on n = |§|3" vertices as follows.
Corresponding to each set S; € S it has 3% vertices, each labelled by a k+ 1-tuple
of the form (7,t1,1a,...,1;), where each ¢; = 1,2, or 3. Notice, the first entry
in the tuple indicates the set in § it corresponds to, and the remaining entries
pick out a literal (numbered 1 to 3) from each clause appearing in this set. Put
edges in the new graph as follows: vertices (7,%1,%a,...,tx) and (j, 51,82, ..., %)
are adjacent iff ¢ # j and if the literals picked out by #1,%a,..., 1%, s1,...,8k, do
not contain both a variable and its negation.

Note that the graph is |S|-partite; the vertices corresponding to any set in S
are mutually nonadjacent. Also, in any clique of H, a variable and its negation
cannot both appear. Thus a clique corresponds to a (partial) assignment that
satisfies all the clauses appearing in the clique.

Suppose the 3CNF formula has a satisfying assignment. Then there is a
corresponding clique in H of size |S|: pick a true literal from each clause, and
pick the corresponding k-tuple from each set in §. Since all k-tuples involve true
literals, they never involve both a variable and its negation. So all |S] of them
are adjacent to each other, and we have thus identified a clique of size |S].

Conversely, assume every assignment satisfies less than 1/(1 + ¢) fraction of
the clauses. Let B be a clique in H and let A be the set of clauses appearing
in it. Then |A|/m < m/(1 + €). The property of the booster implies that |B| is
at most (|A] /m + a)*|S| < (1/(1 + €) + «)*|S]. Thus w(H) is upperbounded by
(1/(1 4+ €) + a)*|S| < m™7|8| for some small v > 0. Hence w(H) < S/n~* for
some small & > 0. Thus the correctness of the reduction has been proved. [|

30 CHAPTER 10 HARDNESS OF APPROXIMATIONS

The rapid increase in problem size when using self-improvement may seem
hard to avoid. Surprisingly, the following combinatorial object (specifically, as
constructed in Theorem 10.4) often allows us to do just that.

DEFINITION 10.8 Tet n be an integer. A (k,n,) boosteris a collection S of
subsets of {1,2,...,n}, each of size k. For every subset A C {1,2,...,n}, the
sets in the collection that are subsets of A constitute a fraction between (p— a)*
and (p+a)* of all sets in &, where p = l‘%l. When p < 1.1a, the quantity (p—a)*
should be considered to be 0.

Example 10.4 The set of all subsets of {1,2,...,n} of size k is a booster with
a a2 0. This is because for any A C {1,2,...,n}, |A| = pn, the fraction of sets
contained in A is (pk")/(;;), which is & p*. The problem with this booster is that
its size is (Z) = O(n*), hence k must be O(1) if the booster has to be used in

polynomial-time reductions.

The following theorem appears in [AFWZ93]. Its proof uses explicit con-
structions of expander graphs [GG81].

THEOREM 10.4 [AFWZ93] For any & = O(logn) and o > 0, an (n, k, o)

booster of size poly(n) can be constructed in poly(n) time.

Let GG be a graph on n vertices. Using a booster, we can define the booster
product of a graph, which is similar to the product in [BS92]. This is the graph
whose vertices are the sets of the booster §, and there is an edge between sets

S;, 85 € Siff S; U S is a clique in G

LEMMA 10.8 TFor any graph GG, and any (k, n, o) booster, the clique number of
the booster product of G lies between (w(G)/n — a)* |S| and (w(G)/n + o) |S].

Proof. Tet A C {1,2,...,n} be a clique of size w(G) in graph G. Then the
number of sets from & that are subsets of A is between (w(G)/n — a)* |S| and
(w(G)/n + a)*|8]. Clearly, all such sets form a clique in the booster product.
Conversely, given the largest clique B in the booster product, let A be the
union of all sets in the clique. Then A is a clique in G, and hence must have size
at most w((G). The booster property implies that the size of B is as claimed. [|

THEOREM 10.5 [ALM*92] There is an ¢ > 0 such that approximating
CLIQUE within a factor n® is NP-hard, where n is the number of vertices in
the input graph.

Proof. Let GG be the graph obtained from the reduction in Lemma 10.1, and
suppose it has m vertices. The reduction ensures, for some fixed g > 0, that
w(G) is either at least m/3 or at most m(1 — 8)/3, and it is NP-hard to decide
which case holds.

10.5 INAPPROXIMABILITY RESULTS FOR PROBLEMS IN CLASS IV 29

—
INAPPROXIMABILITY RESULTS FOR PROBLEMS IN
CLASS IV

- E8

In this section we demonstrate problems for which it is NP-hard to achieve an
approximation ratio of n® for some ¢ > 0. The canonical problems in this class are
CLIQUE (or R-CLIQUE) and COLORING. We describe the inapproximability
results for the canonical problems, and indicate how to prove the inapproxima-
bility of the other problems.

The inapproximability result for CLIQUE uses the fact that the clique
number has a self~improvement property [GJ79, BS92]. Problems other than
CLIQUE also display this property; see Section 10.6.1 for example. Also, a clas-
sical inapproximability result for COLORING[GJ76] uses a similar property.

10.5.1 CLIQUE

The hardness result for clique number relies upon its interesting self-improvement
behavior when we take graph products. The next example describes this behav-
ior.

DEFINITION 10.7 For a graph G = (V, F) let E denote E with all self-loops
added, that is, £ = E U {{u,u}:u € V}. For graphs Gy = (Vi,E1) and Gy =
(Va, Ea), their product Gy x G5 is the graph whose vertex set is the set Vj x Vo,
and edge set is

{((Ul,vl), (9, v9)) : (u1,us) € By and (v1,v5) € Ez}.

Example 10.3 Tet w(G) be the size of the largest clique in a graph. Tt is easily
checked that w(Gy x G2) = w(G)w(Ga).

Now suppose a reduction exists from SAT to clique, such that the graph
G produced by the reduction has clique number either [, or (1 — ¢)l, depending
on whether or not the SAT formula was satisfiable. In other words, achieving
an approximation ratio (1 — ¢)~! for clique number is NP-hard. Then we claim
that achieving any constant approximation ratio is NP-hard. Consider G*, the
product of G with itself k times. Then w(G*) is either I* or (1—¢)*1*. The gap in
clique numbers, (1 —¢)~*, can be made arbitrarily large by increasing k enough.
This is what we mean by self-improvement.

Note however that G* has size n*, so k must remain O(1) if the above
construction has to work in polynomial time.

28 CHAPTER 10 HARDNESS OF APPROXIMATIONS

—
PROBLEMS

B

The following two problems are from [ABSS93].

EXERCISE 10.5

In the NEAREST CODEWORD problem, we are given a matrix M with m rows
and n columns (m < n) and a vector by with n entries. All entries in M and
by are 0 or 1 (interpreted as elements of the field GF(2)). The goal is to find a
0/1 vector € {0,1}" such that z7 - M differs from by in as few positions as
possible. Let NEAREST-CODEWORD(M, bg) denote the number of positions
in which 7 - M and by differ. (Note: In the language of coding theory, M is the
generator matrix of a binary code and bg is a received message. We wish to find
out the codeword it is nearest to.)

1. Show that the NEAREST CODEWORD problem is in Class I.
2. Show that the NEAREST CODEWORD problem is in Class I1I. (Hint: Modify our

construction for the nearest lattice vector problem.)

EXERCISE 10.6

In the MIN-UNSATISFY problem we are given a system of n linear equations
in m variables x1, ..., x,,. The the coefficients of the system are integers and
n > m (i.e., there are more equations than variables). The goal is to remove as
few equations from the system as possible, such that the remaining system is
feasible (i.e., has a solution in which each z; is a real number). For a system S,
let MIN-UNSATISFY(S) denote the minimum number of equations that must
be removed to make it feasible.

1. Show that the MIN-UNSATISFY problem is in Class [I.
2. Show that the MIN-UNSATISFY problem is in Class TII.

3. Consider the version of MIN-UNSATISFY problem in which linear system contains
strict inequalities instead of equations. Prove the results in parts 1 and 2 for that
problem.

10.4 INAPPROXIMABILITY RESULTS FOR PROBLEMS IN CLASS llI 27

Proof. The vectors {Uy,Us, ..., Uy} are linearly independent and do not span
1.]

Next, we show that if a lattice vector is “near” by then its associated labelling
is a total cover.

COROLLARY 10.4 If ||z — bg||]> < K for a lattice vector z, then P” is a total

cover.

Proof. Let 2 =3, , cyabya and let e be any edge, say (u,v). Every coordinate
in the e-projection of x — by is an integer multiple of K. If ||z — V4[| < K, these
coordinates must be all 0. Thus if ||z — V4|2 < K, the e-projections of the basis
vectors form a linear combination as described in the hypothesis of Lemma 10.6,
where T in the lemma statement comes from the e-projection of by. We conclude
that ¢yq, = Zalzﬂe(al):az Cua, for every as and there is at least one as such that
Cya, 7 0. Further, if ¢,,4, # 0, then there exists some a; such that ¢,,, # 0 and
M.(a1) = as. Hence PT covers e. [|

The next lemma shows that the distance || — bg]|2 is related to the cost
of labelling P”. It also proves the second property of the reduction claimed in
Theorem 10.3.

LEMMA 10.7 For every lattice vector x,

|| = bol|2 > \/|Vi| LABELCOVER s (£).

Proof. The definition of LABELCOVERwin implies that
LABELCOVERmin(£) < N. Since K = |WV|(N + 1), it follows that
[Vi|LABELCOVERmin(£) < K. Corollary 10.4 implies that if P is not
a total cover then ||z — bg|ls > K. Thus the lemma needs to be proven only
when P7 is a total cover. The definitions of P* and of the (v, ay)-projections
of basis vectors imply that

|| — bg||> > v/Number of nonzero coordinates in 2 — bg

= /[{(vi,a1) : (v1,a;)-projection of z is # 0} |
> Vcost of P*
> /|Vi| LABELCOVER,,in(£)

Thus the Lemma has been proved. [|

Remarks: The hardness result for the nearest vector problem is from [ABSS93],
which also uses similar constructions to prove the hardness of a variety of prob-
lems involving lattices, codes, and linear systems.

26 CHAPTER 10 HARDNESS OF APPROXIMATIONS

e-projection (v1, a1)-projection

" A

bo, ay K- (1= Un,(a)) 1

vg, a0 K - U, 0

FIGURE 10.2

The e-projections of vectors by, 4, and by, 4, when
e = (v1,v2). In the figure we assume that M, (ay) is
defined; otherwise the e-projection of by, o, s 0.

Then Tl.(a;) = as. Hence the e-projection of Viq, + Vya, is

-

K-(I-Un(ay)+K Uy =K1

In particular, since the e-projection of by is K - 1, the e-projection of Via, +
Via, — bo is 0.

Now we prove the first property of the reduction. Assume there is a total
cover with cost 1, i.e., which uses only one label per vertex. Let P(u) denote
the label it assigns to vertex u € Vi3 U V5. Let = be the lattice vector z =
Y vievy buy Por) T2 v, Dua, P(vs)- Then the e-projection of # —bg is 0 for every
edge e. Further, exactly |V1| of the other coordinates in & — by are 1. Hence the
distance ||z — bg||2 is exactly /|V4].

Next, we show the second property of the reduction. The following lemma
shows that if the e-projection of any integer combination of basis vectors is K - T,
then the combination contains some vectors by 4, and b, 4, such that aq, as cover
e.

LEMMA 10.6 For some integers {d, :a € {1,...,N}}U{d, :a e {l,... N}},
if

S (da Ustd, (T-U)) =1,

a

then d, = d/, for every a and there exists some a such that d, and d’, are nonzero.

10.4 INAPPROXIMABILITY RESULTS FOR PROBLEMS IN CLASS llI 25

where K(T) is a polynomial-time computable function.

This is an example (refer to the comments after Definition 10.2) of a gap-
preserving reduction for which we do not know an equivalent L-reduction. How-
ever, this reduction is still good enough for proving inapproximability in con-
junction with the inapproximability result for LABELCOVER stated in Theo-
rem 10.2 part 3, since that result (quite conveniently, it seems) in one of the
cases produces instances of LABELCOVER with optimum cost exactly 1.

Proof of Theorem 10.3. Tet (V3,V5, E,TI,N) be an instance of
LABELCOVERin. Remember, a labelling is a function P from vertices
to sets of labels, where P(v) denotes the set of labels assigned to the vertex
v € V1 UVa. A labelling that covers every edge is called a total cover.

The reduction produces a lattice basis containing one vector for every pair
(v, a), where v is a vertex and a is a label. For convenience, we index the basis vec-
tors by such pairs, i.e., the basis is denoted by {b,4|v € ViUV5,a € {1,2,...,N}}.

Note, with every lattice vector # = Zv,a Cyabyq we may associate a labelling
PT, defined as P7(v) = {a : cyq # 0}. That is, P” assigns a label a to vertex v iff
the basis vector b,, has a nonzero contribution to x. The reduction will construct
a fixed point by in such a way that the cost of the labelling P” is related to the
distance ||z — bol|o; the distance is small iff P* forms a total cover.

The basis vectors (and hence, also the lattice vectors) have |E|(N+1)+|V1|N
coordinates: N 4 1 coordinates for each edge ¢ € F and 1 for each pair (v1,a1)
for v1 € Vy and a1 € {1,2,..., N}. Call the coordinates corresponding to e as
the e-projection of the vector, and the coordinate corresponding to pair (vq,ay)
as the (v1,ay)-projection. The (v, ay)-projection of a basis-vector by, is 1 iff
(v,a) = (v1,a1). Thus only the basis vectors corresponding to vertices in ¥ can
have a nonzero (vy, aj)-projection. As will be clear later, this corresponds to fact
that in the Label Cover problem, only labels assigned to vertices in V3 contribute
to the cost of the cover.

Let K be the integer |E|(N +1). For j =1,2,..., N, let U; be a vector with
N +1 coordinates, in which the j’th entry is 1 and all the other entries are 0. Let
0 and T denote, respectively, the all-zero vector and all-one vector with N + 1
coordinates.

The basis is defined as follows. Let e be any edge and a be a label. For vertex
v € V1,

{ K- (T— Umt,(a)) if € is incident to vy and Tl.(a) is defined

the e-projection of by, , = th .
otherwise

For vertex vy € Vi, the e-projection of the vector by,q is K - Uy if € 1s incident
to vg, and 0 otherwise.

The fixed vector by contains, for every edge e, the vector K - Tin its e
projection. Tt’s (v1, ay)-projection is 0 for all pairs (v1,a1).

Thus for every edge e, the e-projections of the basis vectors are either K - U,
for some label a, or K - (T— Ug), or 0. Suppose labels a;, as cover edge e = (u,v).

24 CHAPTER 10 HARDNESS OF APPROXIMATIONS

expected number of edges still left covered 1s at least
Sy
Ny
(u,v)EE

Since each vertex in V; has the same degree, say d, the number of edges, |F|, is
d V1], and the above expectation can be rewritten as

d _ 1 [Vi]?
Youevi iy = A ueviny 2 dyv -
weVy
- d [Vy|? _ | E|
OPTmin[Vil — OPTmm"

The crucial fact used above is that), 1/n,, is minimized when all n,, are equal.

Thus we have shown a randomized way to construct a candidate solution to
the maximization version, such that the expected fraction of edges covered 1s at
least 1/O PThin. It follows that there must exist a candidate solution that covers
this many edges. Hence we have proved

1
Pl > —— 1
© B OPTmin

Remarks: The Label Cover problem was implicit in [LY94], and explicitly de-
fined for the first time in [ABSS93]. A weaker version of the “weak duality”
described in Lemma 10.5 was implicit in a calculation in [LY94]; the version
given here is from [Aro94].

Note that original proof of the hardness of approximating
LABELCOVERhax used [FL92] instead of [Raz94].

10.4.3 NEAREST LATTICE VECTOR PROBLEM

Let m, k be integers and {b1,bs,..., by} be a set of independent vectors in VA
The lattice generated by basis {b1,ba, ... by}, denoted L(by,ba, ..., by), is the
set of all their integer linear combinations, i.e., {3""", a;b; : oy € Z}. Many im-
portant optimization problems can be phrased as problems involving lattices (see
the survey by Kannan [Kan87]). The following lattice problem is quite basic.

DEFINITION 10.6 Nearest Lattice Vector Problem (NLVP) Given a lat-
tice basis {b1,bs,...,by,}, and a point by € Q" find the lattice vector nearest
(in the Euclidean norm) to by.

In conjunction with the inapproximability result for LABELCOVERuin
(Theorem 10.2, part 3) the next result shows that NLVP is in Class TTI.

THEOREM 10.3 There is polynomial-time reduction T from
LABELCOVER iy to NLVP that ensures for every number p > 1:

LABELCOVERmin(I) = 1 = NLVP(7(I)) = K(I),
LABELCOVERmin(1) > p = NIVP(7(I)) > /5 - K(I),

10.4 INAPPROXIMABILITY RESULTS FOR PROBLEMS IN CLASS llI 23

10.4.2 LABELCOVER (MIN. VERSION)

The hardness result for the min. version of Label Cover follows from the hardness
result for the max. version, since the two versions are linked by the following
“weak duality.”

LEMMA 10.5 For any instance I of LABELCOVER:

> ! .
=~ LABELCOVERmin (1)

LABELCOVER pay (1)

To see why the inapproximability of the min. version follows, recall our quasi-
polynomial-time reduction 7 from SAT to LABELCOVER,ax. It ensures for all
I

I € SAT = LABELCOVER 0y (7'(1)) = 1,
I & SAT = LABELCOVER 0, (7'(1)) < p,

where p = 2-106"""n for some fixed v > 0, and n is the size of the Label Cover
instance.

But LABELCOVERmax(7/(7)) = 1 means there is a way to assign one label
per vertex such that all edges are covered, hence LABELCOVER win (7/(7)) = 1.
Further, the weak duality implies that if LABELCOVERmax(7/(7)) < p, then
LABELCOVERmin (7(1)) > 1/p.

Thus 7/ can be viewed as a reduction to LABELCOVER i, as well, with a
gap of 2108" "N in the cost of the minimum label cover depending on whether
or not the boolean formula was satisfiable.

Thus to finish the proof of the inapproximability of LABELCOVER i, it
suffices to prove the weak duality.

Proof of Lemma 10.5. TLet OPTn,, and OPTn.x be shorthands for
LABELCOVERmin(I) and LABELCOVERmax(7) respectively. Consider
the solution of the minimization version, namely, a labelling using on an average
O PThin labels per vertex in V] and covering all the edges. For any vertex u € V
let the labelling assign n,, labels to u. Then by definition of cost

> ny = OPTin - V]
ueVy

We randomly delete all labels for each vertex in V; U V5 except one. This
gives a labelling that assigns only 1 label per vertex, in other words, a candidate
solution for the maximization version. The original labelling covered every edge.
In other words, for each edge e = (u,v) and for every label as assigned to v it
assigns a label a; to u such that T.(a1) = as. The probability that this preimage
ay survives is 1/n,. Therefore in the new (randomly constructed) labelling the

22 CHAPTER 10 HARDNESS OF APPROXIMATIONS

Thus the reduction produces a gap: the optimum value in the
LABELCOVER1ax instance is either 1 or less than 1 — §. We desire a big-
ger gap: the value should be either 1 or less than 2~ 10g" " N where N is the size
of Label Cover instance in question, and ¥ is any fixed positive rational number.
We use the following construction to “boost” the gap.

Given any instance £ = (Vi, Vo, E, N,) of LABELCOVER 1y we define its
kth power, denoted £*, as follows. It is another instance of LABELCOVERpax
whose underlying bipartite graph is (V{¥, V¥, E*), where V¥ is the set of all k-
tuples of V; and E*, the new set of edges, is the set of all k-tuples of old edges.
The number of new labels is N*, and the set of labels are to be viewed as k-
tuples of labels of £, i.e., as elements of {1,2,..., N}*¥. (Thus a labelling must
now assign k-tuples of labels from {1,2,..., N} to vertices in V¥ UVF.) The new
edge-functions, denoted ¥, are defined as follows. Let e be a k-tuple of edges
(e1,€a,...,¢ep), where each e; is an edge in the original graph. Then define

ME(aj,af, ... a}) = (e, (a}), Hey(af), .. e, (af)).

In other words, the pair of k-tuples of labels ((al,a?, ..., a¥), (al, ak, ... ak))
can be used to cover the new edge (e, ..., ex) iff fori = 1,... k the pair (a},a)
can be used to cover the edge e;.

The reduction consists in constructing £* for some suitable k. Since
L% has size N = n*) where n is the size of £, the running time
of the reduction is poly(N). If LABELCOVERpax(£) = 1 to start with,
then LABELCOVERmax(£*) = 1, as is easily checked. But Lemma 10.4
below shows that if TABELCOVERmax(£) < 1 — 6 to start with, then
LABELCOVERmax(£*) < (1 —6)°*, where ¢ > 0 is a fixed constant. (Note that
the number of labels, N, is O(1) in instances of Label Cover obtained in Exam-
ple 10.1.) Now for k& = (log n)O(I_TV) we get that the size of £F m is 2Pol(logn)
and the gap 1/(1— 6)°* is at least 2108’ ~"m This finishes the description of the
reduction.

The next lemma, also called Raz’s Parallel Repetition Theorem 6 shows that
if LABELCOVERmax(£) < 1, then LABELCOVER max (£*) decreases exponen-

tially as we increase k.

LEMMA 10.4 Implicit in [Raz94] There is a fixed constant ¢ > 0

such that for any LABELCOVER instance £: LABELCOVERuy.(LF) <
ck

LABELCOVERmax(£)™s¥ | where N is the number of labels allowed in L.

Raz’s result implies that LABELCOVER is in the class of problems with a
self-improvement property (see Section 10.5.1). His proof is quite complicated.

6This Lemma had been conjectured for many years in the literature on interactive proofs.
Tt can be viewed as saying that parallel repetition of a 2 Prover 1 Round proof system drives
down the error probability at an exponential rate.

10.4 INAPPROXIMABILITY RESULTS FOR PROBLEMS IN CLASS llI 21

HITTING SET, HYPERGRAPH TRANSVERSAL, DOMINATING SET and
MINIMUM EXACT COVER. These problems are defined in [GJ79]. (Hint: Try
to show that SETCOVER is a subcase of these problems.)

—
INAPPROXIMABILITY RESULTS FOR PROBLEMS IN
CLASS 1l

-

In this section we show hardness results for problems in Class TII. Achieving
a ratio 2198777 for these problems is quasi- NP-hard, for every fixed v > 0.
LABELCOVER (in both its minimization and maximization versions) is the
canonical problem in this class.

Sections 10.4.1 and 10.4.2 outline the inapproximability result for the max.
and the min. versions of Label Cover. A hardness result for the nearest lattice
vector problem appears in Section 10.4.3. This result, involving a gap-preserving
reduction from Label Cover, is illustrative of the hardness results for Class III.

10.4.1 LABELCOVER (MAXIMIZATION VERSION)

We give a quasi-polynomial-time reduction from SAT to LABELCOVER (maxi-
mization version) that maps satisfiable formulae to LABELCOVER instances
in which some labelling can cover all edges (i.e., the labelling has value 1),
and unsatisfiable formulae to instances in which every labelling covers at most
2= 108" "N fraction of edges, where N is the size of the instance. The proof of
the correctness of the reduction relies upon a difficult result from [Raz94], which
we will not prove.

The starting point is a gap-preserving polynomial-time reduction 7 from
MAX-3SAT(5) to LABELCOVERpax from Example 10.1. The reduction ensures
for all 3CNF formulae 7 and all € > 0 that:

MAX-3SAT(7) = 1 = LABELCOVERpax(7(7)) = 1,
MAX-3SAT(7) < (1 — ¢) = LABELCOVERmax(7(1)) < (1 — g)
Note that by composing this reduction with the reduction from SAT to

MAX-3SAT(5) in part 1 of Theorem 10.2, we get a polynomial-time reduction
7 from SAT to LABELCOVER,.x which, for some § > 0, ensures

I € SAT = LABELCOVER 0y (7/(1)) = 1,
I & SAT = LABELCOVER oy (7'(1)) < (1 — 6). (10.3)

20 CHAPTER 10 HARDNESS OF APPROXIMATIONS

Given m,! and a rational ¢ > 0 they show how to construct a set X, of
O(m?/€?) vectors of m bits each, with the following property. Let 4y, 1s,...,4 be
any [distinct coordinates and (y1,ys, ..., y) be any I-bit sub-sequence. Consider
two experiments: (i) picking a sequence 2 uniformly at random from X, and
(ii) picking a sequence z uniformly at random from the set of all 2™ strings
of length m. Then, regardless of ¢;’s and the y;’s, the collection satisfies the
inequality |p, — pz| < ¢, where p, and p, are the probabilities that z and =z
respectively matches y in the indicated coordinates. But, p, = 2=%. Hence p, €
[21—1 — € 21—1 + €]. By choosing ¢ = 2701 we see that the number of vectors is
O(m?*2?"). Furthermore, p, > 21—1 — 21% > 0, implying there exists a x € X, that
matches y. Thus we have shown how to construct the desired set-system. [|

Briefly, we indicate the proof of Theorem 10.2, part 4.

Proof of Part 4 of Theorem 10.2. Part 3 of Theorem 10.2 describes a reduc-
tion from SAT to LABELCOVERax. By composing that reduction with the
reduction described in this section, part 4 follows. [|

REMARK 10.3 The reduction to SETCOVER is easily modified to prove hard-
ness results for HITTING SET, HYPERGRAPH TRANSVERSAL, DOMINAT-
ING SET and MINIMUM EXACT COVER (see Table 10.2). Also, the constant
¢ = 1/48 in the inapproximability result is not obtimal. In fact, Feige [Fei95]
proved for any ¢ > 0 that approximating SETCOVER within a factor (1+¢)In |S|
18 Quasi-NP-hard. It is an open question whether approximating SETCOVER
within a factor Q(logn) is NP-hard. A result in [BGLR93] implies that ap-
proximating within any constant factor is NP-hard. An alternative proof of
the [BGLRI3] result follows from the reduction of this section, in conjunction
with the product technique of Section 10.4.1, which implies that approximating
LABELCOVERax within any constant factor is NP-hard.

—
PROBLEMS

B

EXERCISE 10.3 (Randomized construction of (m,!) systems)

Let I,m be “large enough” positive integers such that 21 < logm. Let X =
{0,11™ be the set of sequences of bits of length m. Suppose we pick a set B
uniformly at random from among all subsets of X of size 22'm?, and set C; =
{x € B : the ith bit of x is 1}. Prove that the probability that (B,C4,...,Cp
is an (m, () set system is 1 — o(1).

EXERCISE 10.4
Use the inapproximability of SETCOVER to prove the inapproximability of

10.3 INAPPROXIMABILITY RESULTS FOR PROBLEMS IN CLASS Il 19

where |S| = N(|Vi| + |V2]) is the number of sets in S and |£]| = N - |F]| is the

size of L.

Proof. Tet!=4[log|L[]. Assume that S has a cover of size less than MW.
Then Lemma 10.2 implies that

LABELCOVERm..(£) > 2/1% = 1/8[log|£[1% > 1/log” | L]

for large |£]. This is a contradiction. Hence SETCOVER(S) > W.
Now we express [in terms of log|S|. Recall that |B| = O(22m?) and m = N
Hence

log|S| = log(N([Vi]+[V2])) < log(m) + 2log(|£])
< 3

Thus SETCOVER(S) > “E5L(|1; | 4 |14]).
|]

Note that the previous Corollary continues to hold if we define |S]| to be the
sum of the number of sets in S and the size of their ground set.

To finish the description of the reduction, we show how to construct an
(m, [)-system.

LEMMA 10.3 There is an explicit algorithm to construct, given integers m, !
where | < m, an (I, m)-system (B;C1,Co,...,Cp) with |B| = O(2%m?). The
algorithm runs in time poly(| BJ).

Proof. We note that to construct the (m,!) system it suffices to construct a
collection X of m-bit vectors with the following property: Given any [distinct
coordinates 1,79, ...,4; and any [-bit sub-sequence (y1,¥ys2,...,) there exists a
vector # € X whose components in the indicated coordinates exactly match the
bits of y. That is, z;;, = y; for 7 =1,2,...,1.

To see that it suffices to construct this collection of vectors, assume we are
given a collection X. Define the set-system with B = X and C; as {z € X|2; =
1}, the set of vectors with 1 in the ith coordinate. Suppose iy,1s,...,4 is any
set of indices in {1,2,...,m} and D;,, D;,,..., D;, is a collection of subsets of
X such that D, is equal to either (. or the complement of Cj,. We claim that
Uj<iDy; cannot be B. For, define an I-bit subsequence y such that y; = 0 if
D;; = Cji; and 1 otherwise. The known property of X implies there exists a
vector x € X such that z;, = y; for j =1,2,... 1. By construction, x & D;, for
all j =1,2,...,1. Thus we have shown U;<;D;; # B. Since this is true for every
sequence 1y, ..., 1, it follows that (B, C4,...,Cy,) is an (m,[)-system.

An explicit construction® of the desired collection of vectors follows from
a result of Naor and Naor on e-biased distributions ([NN93]; for an improved
construction, see [AGHP92]).

5A randomized construction is quite trivial; see the exercises.

18 CHAPTER 10 HARDNESS OF APPROXIMATIONS

LEMMA 10.2 Suppose there is a set cover of size less than MW. Then
there is a labelling that uses 1 label per vertex and covers a l% fraction of the

edges (in other words, LABELCOVERpax(£) > l%)

Proof. Let I be the collection of sets in the set cover. We say that I associates
a label a with vertex u if S, o € I. Since |Vi| = |V, and I associates at most
/16 labels per vertex on average, at least 3/4 of the vertices in both Vi and V»
have fewer than [/2 labels associated with them.

Now define a labelling by picking, for each vertex, a random label from the
set of labels associated with it. We show now that the expected fraction of edges
covered by this labelling is at least 2/1?. Note that this also implies the existence
of a labelling that covers at least this fraction.

First, we claim that for 1/2 the edges, the end-points have fewer than [/2
labels associated with them. To see this, imagine picking an edge ¢ = (u,v)
uniformly at random. Since the bipartite graph is regular, the endpoints u, v of
this edge are also distributed uniformly (but not necessarily independently) in
Vi, Vs respectively. With probability at least 1 — 2 -1/4 = 1/2, both end points
have at most [/2 labels. Thus our claim follows.

Now let e = (u,v) be an edge such that both u,v have fewer than [/2
labels associated with them. We claim that with probability at least (2/1)? the
randomly-picked labelling covers this edge. The reason is that C is a set cover,
and so

{e} x BC (U S) U (U S) :
a1 as
where the two unions range over the sets of labels associated with u and v
respectively. But recall the property of an (m,)-system: the only way to cover
B with fewer than [sets is to use two sets that are complements of one another.
In our construction, complementary sets correspond to pairs of labels that can
cover the edge. We conclude that there are some labels ay,as associated with
u, v respectively such that TT.(a1) = as. Now, let us pick labels randomly for u, v
from among all labels associated with them. With probability at least (2/1)? we
pick a; and as, in which case the labelling covers edge e.

To conclude, we have shown that for 1/2 the edges, the labelling has a
probability at least (2/1)? of satisfying that edge. Hence the expected number of
covered edges is at least 1/2-(4/1%) = 2/12. [|

The following corollary finishes the proof of the correctness of the reduction.
The proof also specifies the values of various parameters that were not stated
above.

COROLLARY 10.3 Let £ be any instance of LABELCOVER, .« as described
above, and § be the instance of SETCOVER produced using the above
reduction. If LABELCOVERmax(£) < 1/1og” |£] then

log |S|

SETCOVER(S) > — 2

(IVa] =+ [Val),

10.3 INAPPROXIMABILITY RESULTS FOR PROBLEMS IN CLASS Il 17

in which case the size of B, ; is poly(m).

Now we describe the reduction. First, we assume w.l.o.g. that |Vi| = [Val.
For, if |Vi| # |Va], then just construct a new bipartite graph (V{, V3, E’) with
[Vi]|Va| vertices on each side (i.e., |[Va| copies of Vi and |Vi| copies of V2), and
the new set of edges E’ consisting of copies of E between each new copy of V;
and V5. If the old instance had a labelling that covers all edges (i.e., has value
1), then so does the new one. Conversely, if the old instance had no labelling of
value > p then neither does the new one. Thus we can assume that |Vi| = |Va].

Let [be an even integer (to be determined later) and m = N. Let B,,; =
(B;Cy,Cq,...,Cp) be an (m,)-system. Since the labels in the LABELCOVER
instance are integers from 1 to N, we can talk about the set ', for any label a.
The instance of SETCOVER is as follows. Its ground set U is F/ x B. The given
collection of subsets of S contains a set S, , for every vertex v in G = (V1, V5, E)
and label a. For every u € V; and ay € {1,2,..., N}, let S, 4, be defined by

Su,a; = {(e,b)|le = (u,v), M.(ay) is defined and b ¢ CHe(al)}~

(That is, Sy 4, is the union of all sets of the type {e} x (B — Cl4,), where e is an
edge containing u and as is the image M.(a1) of a;.)
For every v € V5 and as € {1,2,..., N}, let S, 4, be defined by

Sv.as = {(e,b)]e = (u,v) and b € C4, }.

(That is, Sy,a, = Uezy {e} X Cay.)
Note that the ground set U can be viewed as U.cg {e¢} x B, that is, as |F|
copies of B, one per edge. This observation underlies the next claim.

CLAIM 10.1 If LABELCOVERpay(£) = 1 then SETCOVER(S) = |Vi|+|Val.

Proof. Consider an optimal label cover, which uses one label per vertex to cover
all edges. For a vertex u € V; U V5, let a, be the label it assigns to u. We show
that the collection of |Vi| + |Va] sets

{Sw,aw rwe ViU Vz}

is a set cover.

Let e = (u,v) be any edge. Since the pair of labels ay, a, covers it, a, must
be T.(ay,). The definition of the set-cover instance ensures that {e} x C,, is
contained in S, o, and {e} X (B —Cl4,) in Sy q,. Hence {e} x B C Sy 4, USy 4,-
Since the same is true for every edge e, it follows that

ExBC | Sua..
weV UV,
Thus we have exhibited a set cover of size |Vi| 4 |Val. [|

The next lemma is more nontrivial. It uses the following restatement of the
property of an (m, [)-system (B; Cy,Ca, ..., Cp): If the union of any collection of
[sets out of {C’l, Cy,....Cm,Cy, ..., m} is B, then the collection must contain
both C; and Cj for some i.

16 CHAPTER 10 HARDNESS OF APPROXIMATIONS

INAPPROXIMABILITY RESULTS FOR PROBLEMS IN
CLASS 1l

o

In this section we show how to prove the hardness of achieving an approximation
ratio O(logn) for problems in Class TI. The canonical problem in Class TT is
SETCOVER. In Section 10.3.1 we describe the hardness result for SETCOVER,
and indicate how to use it to prove the inapproximability of other problems in
the class.

10.3.1 SETCOVER

We prove Theorem 10.2, part 4 about the inapproximability of SETCOVER.
Specifically, we give a polynomial-time reduction 7 from LABELCOVERax
to SETCOVER. Composing 1t with the inapproximability result for
LABELCOVERmax (namely, part 3 of Theorem 10.2, proved Section 10.4.1)
gives the desired result.

For every Label-cover instance £ = ((V1, Vo, E), N,), the reduction in this
section produces an instance § = 7(L£) of SETCOVER such that

LABELCOVERpay(£) = 1 = SETCOVER(S) = |Vi| + |V,

LABELCOVERmax (£) < ——— — SETCOVER(S) > 251 (113 4 1va)),
log™(|£]) 48
where |£] = N -|E] is the size of £ and |S] is the number of sets in the set-cover
instance. (Note: in the instances of SETCOVER produced by the reduction, the
number of sets and the size of the ground set are polynomially related. So ||
in the above statement could also stand for the size of the ground set; then we
need to change “48” to some other constant.)
The reduction uses the following set system as a basic building block.

DEFINITION 10.5 TLet m and [be positive integers, B some finite set, and

Cy,C4,...,Cy a collection of m subsets of B. The subsets form an (m,[) set-
system if for every set I of at most [indices from {1,2,..., m},

) pi # B,

i€l

where each D; 1s either C; or complement of Cj.

Lemma 10.3 gives explicit constructions of (m,[) set-system for all m, I,
where | B] = O(2%'m?). Denote the set system as By, ;. We will use [= O(logm),

10.2 INAPPROXIMABILITY RESULTS FOR PROBLEMS IN CLASS | 15

1s immediate.

COROLLARY 10.2 For every Max-SNP-hard problem, there exists some ¢ > 1

such that achieving an approximation ratio ¢ for it is NP-hard.

We end this section with another example of a Max-SNP-hard problem:
CLIQUE. This proof of Max-SNP-hardness will be used later to show a stronger
inapproximability result for CLIQUE.

LEMMA 10.1 For every ¢ > 0, there is a gap-preserving reduction from
MAX-3SAT to CLIQUE that has parameters (¢, 1 +¢), (eN/3, 14 ¢), where N is
the number of vertices in the new graph. In other words, CLIQUE is Max-SNP-
hard.

Proof. A textbook reduction (a modification of the one in [GJ79]) from 3SAT
to (the decision version of) CLIQUE works.

Let ¢ be a 3CNF formula in variables #1, 25 ..., 2,. By replicating literals
within clauses we can ensure that each clause has 3 literals (e.g., if the clause is
x; then change it to x; A z; A ;). Construct a new graph 7(¢) on 3m vertices
as follows. Represent each clause with a triple of vertices, one per literal. Put no
edges between vertices within the same triple. If u, v are vertices in two different
triples, put an edge between them iff the literals they stand for are not the
negations of each other.

Notice, a clique in this graph can contain only one vertex per triple. Fur-
thermore, 1t cannot contain two vertices representing literals that are negations
of each other. In other words, by looking at the literals represented in the clique
we can write in a natural way a partial assignment that satisfies as many clauses
as there are vertices in the clique. Thus,

MAX-3SAT(p) = ¢ = w(r(yp)) = em

C cm
MAX-3SAT - .
3S (¢)<1+€:>W(T(so))<1+€

—
PROBLEMS

B

EXERCISE 10.1

Prove the following result from [PY91]: For every Max-SNP problem, there is
some constant ¢ > 1 such that some polynomial-time algorithm can achieve an
approximation ratio ¢ for the problem.

EXERCISE 10.2

Prove that the following optimization problems are in Max-SNP: MAX-3SAT
and Minimum Vertex Cover restricted to graphs of degree 5.

14 CHAPTER 10 HARDNESS OF APPROXIMATIONS

arities, are fixed for the problem. Thus when the universe i has size n, the se-
quence of relations GY | ..., GY implicitly defines an “input” of size O(n®) where
c 18 the largest arity of a relation in (. Solving the optimization problem involves
finding a relation S C Y* that maximizes the number of k-tuples satisfying ¢.
Since U* = n*, this relation S¥ can be viewed as a “feasible solution” which can
be specified using n* bits.

Example 10.2 Tet MAX-CUT be the problem of partitioning the vertex set
of an undirected graph into two parts such that the number of edges cross-
ing the partition is maximized. Here’s how to see it is in Max-SNP. Let the
universe U be the vertex set of the graph, and let GG consist of F, a binary
relation whose interpretation is “adjacency.” TLet S be a unary relation (in-
terpreted as one side of the cut), and ¢(F, S, (u,v)) = (v < v) A E(u,v) A
(S(u) # S(v)). Clearly, the optimum value of MAX-CUT on the graph is
maxgscy | {(u, v) €U ¢(E, S, (u,v)) = TRUE} |.

The reader should check that MAX-3SAT and MAX-3SAT(5) are also in
Max-SNP. The paper [PY91] identified many other Max-SNP problems. It also
showed that for every Max-SNP problem, there is some constant ¢ > 1 such that
some polynomial-time algorithm can achieve an approximation ratio ¢ for the
problem (see the exercises and [PY91]). The smallest value of ¢ for which this is
true remains an object of research. For example, an algorithm to approximate
MAX-CUT within a factor 1.13 appeared recently in [GW94].

There is a notion of completeness in the class Max-SNP. According to the
original definition, a Max-SNP problem is complete for the class if every Max-
SNP problem can be reduced to it using a (so-called) L-reduction. For purposes of
proving inapproximability results, it suffices to concentrate on a notion somewhat
weaker than an L-reduction, as described in in the following definition.

DEFINITION 10.4 A maximization problem II is Maz-SNP-hard if for every
every Max-SNP problem T' and every two constants ¢ < 1,p > 1, there are two
constants ¢/ < 1, p > 1 such that there is a gap-preserving reduction from T to
T with parameters (e, p, ¢/, p').

(Notes: (i) For notational ease, we are assuming, just as in the case of
MAX-3SAT, that the value of the optimum is a fraction. Hence ¢,¢’ < 1. (ii)
The definition implies that if there is a Max-SNP problem T which is hard to
approximate within any fixed factor p > 1, then there is some p/ > 1 such that
approximating TT within a factor p’ is hard.)

FExamples of Max-SNP-hard problems include MAX-CUT, MAX-3SAT(5),
and many others (see Section 10.6 for a partial list). Note that to prove the
hardness of approximating all Max-SNP-hard problems, it suffices to exhibit
just one problem I' € Max-SNP and some ¢ > 0, such that achieving an approx-

imation ratio (1+ ¢) for T is NP-hard. But we already exhibited such a problem
in Max-SNP, namely MAX-3SAT! Thus the following corollary to Theorem 10.1

10.2 INAPPROXIMABILITY RESULTS FOR PROBLEMS IN CLASS | 13

—
INAPPROXIMABILITY RESULTS FOR PROBLEMS IN
CLASS |

02

Class I contains problems for which achieving an approximation ratio 1 + ¢ is
NP-hard, for some fixed ¢ > 0. To prove that a problem is in Class I, we will
give simple gap-preserving reductions from MAX-3SAT.

Papadimitriou and Yannakakis had identified Class I a few years before the
discovery of the PCP Theorem. They called it the class of Max-SNP-hard prob-
lems. The next section describes their work.

10.2.1 MAX-SNP

NP-hard optimization problems exhibit a vast range of behaviors when it comes
to approximation. Papadimitriou and Yannakakis [PY91] identified a large sub-
class of them that exhibit the same behavior. The authors defined a class of
optimization problems, Max-SNP, as well as a notion of completeness for this
class. Roughly speaking, a Max-SNP-complete problem is one that behaves just
like MAX-3SAT in terms of approximability: MAX-3SAT is hard to approximate
upto some constant factor iff so is every Max-SNP-complete problem. (This made
MAX-3SAT a plausible candidate problem to prove hard to approximate, and
in particular motivated the discovery of the PCP theorem.)

Max-SNP contains constraint-satisfaction problems, where the constraints
are local. The goal is to satisfy as many constraints as possible. The concept
of “local” constraints 1s formalized using logic: constraints are local iff they are
definable using a quantifier-free propositional formula.

DEFINITION 10.3 A maximization problem is in Max-SNP if there is a se-
quence of relation symbols Gy, . .., Gy, a relation symbol S, and a quantifier-free
formula ¢(Gq,...,Gpm, S, 21,...,25) (where each x; is a variable) such that the
following are true (i) there is a polynomial-time algorithm that, given any in-
stance I of the problem produces a set { and a sequence of relations G, ..., GY
on U, where each G% has the same arity (“arity” refers to the number of argu-
ments) as the relation symbol G;. (ii) The value of the optimum solution on
instance 7, denoted OPT(T), satisfies

OPT(I) = H;EZ}X| {(xl, corp)EUR (G, GHSY ey,) = TRUE} [,

where S is a relation on ¢ with the same arity as S, and &* is the set of k-tuples
of U.

Note: The above definition is inspired by Fagin’s model-theoretic characteri-
zation of NP [Fag74], and an explanation is in order for those unfamiliar with
model theory. The sequence of relation symbols G, ..., Gy, S, as well as their

12 CHAPTER 10 HARDNESS OF APPROXIMATIONS

Next, we give another example of a gap-preserving reduction, which will be
useful later.

Example 10.1 We describe a reduction 7 from MAX-3SAT(5) to
LABELCOVER . that is gap-preserving with ¢ = ¢/ = 1, and p = (1 — €)1,
' = (1—=¢/9)~1. In other words, for every input ¢ to MAX-3SAT(5) it ensures

MAX-3SAT(¢) = | = LABELCOVERmax(7(¢)) = 1
MAX-3SAT(p) < 1 — ¢ = LABELCOVERpax(7()) < 1 — g (10.2)

Given an instance of MAX-3SAT(5), produce an instance of Label Cover
as follows. Let V) have one vertex for each clause and V5 have a vertex for
every variable. Let adjacency correspond to the variable appearing in the clause,
whether negated or unnegated. The number of labels, N, is 8. For a vertex in V7,
if the corresponding clause involves variables x;, z;, 2, the reader should think
of a label as a 3-bit binary vector (b1, bs,bs), corresponding to the assignment
x; = by, x; = by, 23, = bs. For a vertex in V5, say one corresponding to variable z;,
the labels will be either 0 or 1, corresponding respectively to a truth assignment
to z; (the remaining 6 labels will be dummy labels and not useful to cover any
edges).

The edge function TI. is described as follows. Suppose e is the edge (u,v)
where u € Vj corresponds to clause ', and v € V5 corresponds to variable z;.
Thus we know that z; appears in C' and let j be the place where z; appears. Let
M. (b1, b2, b3) be defined and equal to b; if and only if the assignment b1, bo, b3
satisfies C'.

Since each vertex 1s allowed only 1 label in the maximization version of LA-
BELCOVER, the labels on the right hand size vertices constitute a boolean
assignment to x1,29,...,2,. The label on a left-hand vertex also constitute
an assignment to the variables in the corresponding clause. The edge joining
a clause-vertex and a variable-vertex 1s covered iff that variable is assigned the
same value by both assignments and the assignment satisfies the clause.

Clearly, if all edges are covered then the assignment is a satisfying assign-
ment. Conversely, if no assignment satisfies more than 1 — ¢ of the clauses, then
every labelling must fail to cover an edge incident to at least ¢ fraction of the
clause-vertices, in other words a fraction at least ¢/3 of all edges.

This completes the proof except for the fact that the graph (Vi, Vs,) is
not regular. It can be proven that we can extend the reduction by adding at
most 2|F| dummy edges such that the new graph is regular and such that all the
dummy edges are easily coverable. This will only decrease the gap by a factor
of 3. The details are left to the reader. Thus this completes the proof of the
property claimed in (10.2).

10.1 HOW TO PROVE INAPPROXIMABILITY RESULTS 11

Furthermore, since replicating each clause ng times does not change the fraction
of satisfiable clauses, we can assume w.l.o.g. that each m; 1s greater than ng, the
integer mentioned in the statement about expanders.

To create an instance of MAX-3SAT(29) do the following for each variable
yi. Replace y; with m; new variables y}, y7, ..., y"*. Use the jth new variable, y!
in place of the jth occurrence of y;. Next, to ensure that the optimum assignment
assigns the same value to y},y?,..., ¥, add the following 14m; new clauses.
For each j, 1 < m; such that (j,1) is an edge of the expander G,,,, add a pair of
new clauses (y! V —yl) and (=yl vyl). Together, this pair just says (yll =y!): an
assignment satisfies the pair iff it assigns the same value to y! and y.

Hence the new formula contains 14N new clauses and m old clauses. Each
variable occurs in exactly 28 new clauses and 1 old clause. We claim that an op-
timum assignment, namely, one that satisfies the maximum number of clauses,
satisfies all new clauses. For, suppose it does not satisfy a new clause corre-
sponding to y;. Then it does not assign the same value to all of y;, yZ, ..., y7".
Divide these m; variables into two sets S and S according to the value they were
assigned. One of these sets has size at most m;/2; say it is S. In the expander
G, , consider the set of |S| vertices corresponding to vertices in S. Expansion
implies there are at least |S| + 1 edges leaving this set. Each such edge yields
an unsatisfied new clause. Hence by flipping the value of the variables in S, we
can satisfy at least 1 4 |S]| clauses that weren’t satisfied before, and possibly
stop satisfying the (at most [S]) old clauses that contain these variables. The net
gain is still at least 1. This contradicts the assumption that we started with an
optimum assignment.

We have shown that the optimum assignment satisfies all new clauses, and
thus assigns identical values to the different copies y},y?, ...,y of y; for all
i € {1,2,...,n}. Thus the optimum assignment corresponds to an assignment
to the old formula. Suppose the original instance of MAX-3SAT was satisfiable.
Then so is the instance of MAX-3SAT(5) we created. Now suppose no assignment
could satisfy more than (1 — 8)m clauses in the original formula. Then in the
new formula no assignment can satisfy more than 14N 4 (1 — §)m clauses. Since
N < 3m, we see that the fraction of unsatisfied clauses is at least 4221% = 6/43.
Hence the correctness of the reduction has been proved.

Finally, changing an instance of MAX-3SAT(29) into an instance of
MAX-3SAT(5) is similar to the above transformation, but easier. Specifically,
replace the expander in the above construction with a simpler graph: the cycle.
Thus if a variable appears [times, replace it by [new variables, and add new
clauses corresponding to edges in a cycle on [vertices. The reader can easily
check that each variable in the new formula appears in exactly b clauses. Fur-
ther, if only 1 — 4 fraction of clauses could be satisfied in the old formula, then
in the new formula the fraction of satisfiable clauses is at most 1 — v/29.

Note: The fact about expanders that we quoted above is only approximately
correct. The construction in [LPS88] may be unable to construct expanders of
size n for some integers n. However, it is able to construct an expander of size
< n(l + o(1)) for every n. The reader can easily check that this does not affect
the correctness of our construction. []

10 CHAPTER 10 HARDNESS OF APPROXIMATIONS

4. The gap-preserving reduction could behave arbitrarily on an instance 7
for which ¢/p < OPT(I) < e. Thus its “niceness” (namely, Equation 10.1)
holds only on a partial domain. In this sense the gap-preserving reduction
is a weaker notion than the L-reduction introduced in [PY91], whose
“niceness” has to be maintained on «all instances of II. An L-reduction,
coupled with an approximation algorithm for TI’, yields an approximation
algorithm for TI. This statement is false for a gap-preserving reduction.
On the other hand, for exhibiting merely the hardness of approximation,
it suffices (and is usually easier) to find gap-preserving reductions. For
instance, we will prove the inapproximability of SETCOVER and the
Nearest Lattice Vector problem using gap-preserving reductions, whereas
no corresponding L-reductions are known.

5. The name “gap-preserving” is a bit inaccurate, since the new gap p’ could
be much bigger or much smaller than the old gap p.

To illustrate the concept of gap-preserving reductions, we give a reduction

from MAX-3SAT to MAX-3SAT(5) that also proves Theorem 10.2, part 1.

Proof of Theorem 10.2, part 1. First we describe a reduction from
MAX-3SAT to MAX-3SAT(29) (i.e., each variable appears in at most 29
clauses). Modifying instances of MAX-3SAT(29) to instances of MAX-3SAT(5)
(preserving inapproximability) is easy, as we will show.

We describe a reduction 7 from MAX-3SAT to MAX-3SAT(29) that is gap-
preserving with parameters (1, (1—§)=1), (1, (1— 45—3)_1) for every 6 > 0. In other
words, it ensures for every fixed § > 0 and for every 3CNF formula I, that

MAX-3SAT(T) = 1| = MAX-3SAT(r(])) =1,
)
MAX-3SAT(T) < 1 — 6§ = MAX-3SAT(r(])) < 1 — TR
Recall that Theorem 10.1 describes a reduction 7 from SAT to MAX-3SAT
such that for some fixed € > 0 and for every SAT instance [I:

I € SAT = MAX-3SAT(r () = 1,

I & SAT — MAX-3SAT(r(])) < %—l—e

Thus the composed reduction (that is, 7 followed by 7) is a reduction from
SAT to MAX-3SAT(29) such that the fraction of satisfied clauses is either 1 or
1—¢/(43(14¢)) depending upon whether or not the SAT instance was satisfiable.

The description of reduction 7 uses a special type of expander graphs. The
relevant property of these graphs is that for every subset S of the vertices, the
number of edges between S and its complement S is at least min { |S], |§|} As
shown in [LPS88], such graphs are constructible. There is an algorithm A and a
fixed integer ng such that given any integer k& > ng, algorithm A constructs in
poly(k) time a 14-regular graph Gy on k vertices that is an expander.

Let I, the instance of MAX-3SAT, have n variables y1,y2,...,yn, and m
clauses. Let m; denote the number of clauses in which variable y; appears. Let
N denote the sum)", m;. Since a clause contains at most 3 variables, N < 3m.

10.1 HOW TO PROVE INAPPROXIMABILITY RESULTS 9

5. Approximating COLORING within a factor n® is NP-hard.

10.1.3 GAP PRESERVING REDUCTIONS

Now we define gap-preserving reductions. We will prove inapproximability re-
sults by composing one of the reductions in Theorem 10.2 with a gap-preserving
reduction. This technique is explained further in the note following the definition.

DEFINITION 10.2 Tet T and T’ be two maximization problems. A gap-
preserving reduction from T to T with parameters (¢, p), (¢’, p') is a polynomial-
time algorithm f. For each instance I of Il algorithm f produces an instance
I' = f(I) of TI'. The optima of I and I’, say OPT(I) and OPT(I') respectively,
satisfy the following property.
OPT(I) > ¢ = OPT(I') > ¢,
/
OPT(I) < = = oPT(I') < <. (10.1)
p p
Here ¢ and p are functions of |I|, the size of instance I, and ¢/, p’ are functions

of |I'|. Also, p(T),p/(I') > 1.

Comments on Definition 10.2:

1. Suppose we wish to prove the inapproximability of problem TI’. Suppose
further that we have a polynomial time reduction 7 from SAT to II that
ensures, for every boolean formula ¢:

¢ € SAT = OPT(7(p)) >
¢ & SAT = OPT(7(p)) <

™| ®

Then composing this reduction with the reduction of Definition 10.2 gives
a reduction f o7 from SAT to I’ that ensures:

¢ € SAT = OPT'(f(7(¢))) = ¢
¢ & SAT = OPT'(f(7(¢))) <

Q

b\| o

In other words, f o 7 shows that achieving an approximation ratio p’ for
I is NP-hard. This idea of composing reductions underlies our inapprox-
imability results.

2. Like most known reductions, ours will also map solutions to solutions in
an obvious way. For instance, given a solution to I’ of value at least ¢/, a
solution to I of value at least ¢ can be produced in polynomial time. But
we keep this aspect out of the definition for simplicity.

3. The above definition can be modified in an obvious way when one (or
both) of the optimization problems involve minimization.

8 CHAPTER 10 HARDNESS OF APPROXIMATIONS

1

I ¢ SAT — LABELCOVERmaX(Tg(I)) < W,

where 7y is an arbitrarily small positive constant and n is the size of 75(7).

(Note: Since the reduction runs in quasi-polynomial-time, n is at most
QPOIY(IOgHD.)

There is a similar reduction for LABELCOVER i, that produces instances
. . . 1—
with optimum value either 1 or > 2108 "7,

4. A quasi-polynomial-time reduction 74 from SAT to SETCOVER that, for
all T, ensures:

I € SAT = SETCOVER(r4(1)) = K(

1),

logn
1N -
- loan
where K (]7]) is a polynomial-time (in |7]) computable function and n is the
size of the ground set of the setcover instance 74(7). (The constant 48 can

be improved somewhat.)
5. A polynomial-time reduction 75 from SAT to COLORING that, for some
fixed & > 0 and for all I, ensures:

I € SAT = x(ms(1)) = K(|1)),

1 ¢ SAT = x(r5(T) > K(|T])n’,

I & SAT = SETCOVER(r4(I)) > K(

where K (]7]) is a polynomial-time (in |7]) computable function and n is the
number of vertices of 75(7).

Proof. The proofs appear in the following sections.

. 10.1.3.

. 10.5.1

. 10.4.1 and 10.4.2.
. 10.3.1.

. 10.5.2.

AAA/_\/_\
(o8]
N N

Notice that the following corollary follows immediately from the statement
of Theorem 10.2.

COROLLARY 10.1 There exist fixed ¢, 6,8 > 0 such that

1. Approximating MAX-3SAT and MAX-3SAT(5) within a factor (1 + ¢€) is
NP-hard.

2. Approximating R-CLIQUE and thus CLIQUE within a factor n® is NP-
hard.

3. Approximating LABELCOVER within a factor 9log' ™" n g Quasi- NP-hard,
for any v > 0.

4. Approximating SETCOVER within a factor (logn)/48 is Quasi-NP-hard.

10.1 HOW TO PROVE INAPPROXIMABILITY RESULTS 7

MAX-3SAT

MAX—3MUE

@ LABEL COVER

SET COVER @

MRING

(Class 1V

FIGURE 10.1

Diagram of the sequence of transformations used to
prove the inapprorimability of the six canonical
problems. The siz problems in turn lead to
mapprozimability results for problems in Classes I, 11,

I, and 1V.

For example, we will later prove the hardness of Set-Cover and Nearest Lattice
Vector problems using 7y, whereas we do not know how to prove these results
using 7. Luckily for us, Theorem 10.1 shows that reduction 7 exists.

Such peculiarities make it essential to know the precise statement of the
inapproximability result for our canonical problems. The next theorem gives
these statements.

THEOREM 10.2 The following reductions exist.

1. A polynomial-time reduction 7 from SAT to MAX-3SAT(5) that, for some
fixed € > 0 and for all boolean formulae 7, ensures:

I € SAT = MAX-3SAT(r(I)) = 1,

1
I ¢ SAT = MAX-3SAT(r(I))

< —.
1+e¢
2. A polynomial-time reduction 75 from SAT to R-CLIQUE that, for some
fixed & > 0 and for all I, ensures:
I €SAT = w(m(l)) =1,

I ¢ SAT = w(m(1)) <

where n is the number of vertices in m2(7).

3. A quasi-polynomial-time reduction 73 from SAT to LABELCOVERax
that, for all 7, ensures:

I € SAT = LABELCOVERmax(73(1)) = 1,

6 CHAPTER 10 HARDNESS OF APPROXIMATIONS

imum cost, which is

Z (number of labels assigned to v)
vEV]

(that is, the total number of labels, counting multiplicities, assigned to vertices
in V7). The objective function is cost/| V|, that is, the average number of labels
used per vertex.

Note that there is no reason thus far why LABELCOVER i, i1s a well-defined
problem, since there may be no feasible solution (i.e., a labelling that covers all
edges) at all. So we impose the following condition on the input: (iv) For each
edge e, the label 1 has a pre-image under II., that is to say, a b € {1,2,..., N}
for which T.(b) = 1. Thus we have guaranteed the existence of a feasible solution
of cost < N: the labelling that assigns assign 1 to each vertex in V5 and the set
{1,2,..., N} to each vertex in V;. This labelling clearly covers all the edges. (In
particular, condition (iv) thus ensures that LABELCOVERyin(£) < N for every
instance £.)

The reader may wish to read Example 10.1 below to properly understand
the definition of Label Cover.

10.1.2 INAPPROXIMABILITY RESULTS FOR THE CANONICAL PROBLEMS

Recall that an inapproximability result involves a reduction from SAT (or any
other NP-complete decision problem) to instances of the given problem, such
that there is a gap in the optimum value of the objective function depending
on whether or not the boolean formula is satisfiable. This section describes such
results for our canonical problems. (Figure 10.1 gives an overview of the logical
dependence between these results.)

To do further reductions from the canonical problem, it helps to know the
exact nature of the gap produced. As an illustration of this point, consider two
hypothetical polynomial-time reductions 7 and from SAT to MAX-3SAT. For
some fixed €, ¢ > 0, reduction 7 satisfies

I € SAT = MAX-3SAT(r(I)) = 1,

1
I# SAT = MAX-3SAT(ri (1)) < 1
€

and reduction 7 satisfies

I € SAT = MAX-3SAT(ma(])) =1 — ¢,

I ¢ SAT = MAX-3SAT(2(])) < 1 J_r E
As inapproximability results for MAX-3SAT, the reductions are equally useful:
both prove the NP-hardness of achieving an approximation ratio of (1 + ¢).

But as an ingredient of further inapproximability results (which involve further
reductions from MAX-3SAT) the first reduction appears to be far more useful.

10.1 HOW TO PROVE INAPPROXIMABILITY RESULTS 5

Now we describe the other five canonical problems.

Other Canonical Problems:

MAX-3SAT(5): This is the subcase of MAX-3SAT in which every variable appears
in at most 5 clauses. We will assume that each variable appears in exactly 5
clauses.

R-CLIQUE: The clique number of the graph, denoted w, is the size of the largest
clique (i.e., aset of vertices all adjacent to each other) in it. In the R-CLIQUE
problem the input consists of a positive integer r, and an r—partite3 graph &G
along with its r-partition. The goal is to find the largest clique in G. We define
R-CLIQUE(G) to be k/r, where k is the size of the largest clique in G.. Since
a clique can have at most one vertex in common with an independent set, no
clique in an r-partite graph has size more than r. Thus R-CLIQUE(G) < 1.

LABELCOVER: This problem comes in a maximization and a minimization ver-
sion, both of which are defined below (Definition 10.1).

SETCOVER: Given a ground set U and a collection of its subsets Sy, .59, ..., S,
satisfying Uzn:l S; = U, find the size of the minimum subcollection that
covers U, i.e., the minimum sized I C {1,2,...,m} such that | J;.; 5 = U.
The objective function is |I], the number of sets in the subcollection.

COLORING: Given a graph G, assign a color (namely, an integer) to each vertex
such that no two adjacent vertices have the same color. Minimize the total
number of colors used. The objective function is the number of colors in
a proper coloring. (The minimum of the objective function is called the
chromatic number of the graph, denoted x(G).)

The only problem unfamiliar from the traditional theory of NP-completeness

is LABELCOVER, which we describe now.

DEFINITION 10.1 LABELCOVER
Input: (i) A regular4 bipartite graph G = (Vi, Vs, F) (ii) An integer N. This
defines the set of labels, which are integers in {1,2,..., N}. (iii) For each edge
e € F a partial function T, : {1,2,..., N} — {1,2,...,N}.

A labelling has to associate a non-empty set of labels with every vertex in
Vi U Vs, Tt is said to cover an edge e = (u,v) (where u € Vi, v € Va) if, for every
label as assigned to v, there is some label a; assigned to u such that TT.(a1) = as.
The collection of all such partial functions id denoted as II.

LABELCOVER1ax: The output is a labelling that assigns one label per
vertex, and maximizes the fraction of covered edges. For a label cover instance
L=((V1,Va, E), N, TT), we let LABELCOVERyax(£) denote this fraction.
LABELCOVERmin: The output is a labelling that covers all the edges, using
more than one label per vertex if necessary. Furthermore, the labelling has min-

3An r-partite graph is one whose vertices can be partitioned into r disjoint independent
sets

4For our purposes a bipartite graph is regular if for some integers dj, ds, every vertex on
the left (resp., right) has degree di (resp., d2).

4 CHAPTER 10 HARDNESS OF APPROXIMATIONS

to have no sub-exponential algorithms (deterministic or randomized) a proof of
Quasi- NP-hardness is good evidence that the problem has no polynomial-time
algorithm (deterministic or randomized).

—
HOW TO PROVE INAPPROXIMABILITY RESULTS

-

Throughout, we will use the same method to prove the inapproximability of
a given problem: We start with a known inapproximable problem, and then
perform a gap-preserving reduction from that problem to the given problem.
Section 10.1.1 describes six canonical problems that often serve as the “known
inapproximable problem” in such situations. Section 10.1.2 describes, without
proof, the inapproximability results for the canonical problems; the proofs of
these results appear later in the chapter. The concept of a gap-preserving reduc-
tion is defined in Section 10.1.3, and illustrated with some examples.

10.1.1 THE CANONICAL PROBLEMS

We describe six canonical problems. The most basic one is MAX-3SAT, an opti-
mization version of the decision problem 3SAT. Reductions from MAX-3SAT will
be used to prove all inapproximability results in this chapter. Thus MAX-3SAT
plays a role in the theory of inapproximability analogous to the one played by
3SAT in the classical theory of NP-completeness. The next result, which proves
that approximating MAX-3SAT is NP-hard, can therefore be viewed as the ana-
logue of the Cook-Levin Theorem?2. Section 10.9 gives a brief history of this and
related results.

THEOREM 10.1 [ALM*92] There is a fixed ¢ > 0 and a polynomial-time
reduction 7 from SAT to MAX-3SAT such that for every boolean formula I:
I € SAT = MAX-3SAT(r(])) =1,
I & SAT = MAX-3SAT(r(1)) < T
€
In other words, achieving an approximation ratio 1 + ¢ for MAX-3SAT is
NP-hard.

Theorem 10.1 1s proved in Section 10.7.2

2The analogy between Cook’s Theorem and Theorem 10.1 is not entirely correct. Cook’s
Theorem is important also because it motivated other researchers to study NP-completeness.
The analogous result in the recent work on inapproximability is the paper of Feige et al.

[FGL*91] on CLIQUE.

CHAPTER 10 HARDNESS OF APPROXIMATIONS 3

Class | Factor of Approximation that is hard | Representative Problems
T 1+e¢ MAX-3SAT
1T O(log n) SETCOVER
1T glog' =7 LABELCOVER
v n¢ CLIQUE

Table 10.1: The four classes and their representative problems.

prove the best possible results for every problem. Rather, it is meant to be a way
to prove results that are “in the same ballpark” as the best results known. To give
an example, the best existing result for the clique problem shows the hardness
of achieving an approximation ratio roughly v/N, where N is the number of
vertices of the graph. Since the proof of that result is complicated and involves
delving deep into the proof of the PCP Theorem, we instead present the weaker
result — provable in our framework — that achieving a ratio N¢i1s NP-hard, for
some fixed € > 0.

The rest of the survey is organized as follows. Section 10.1 sets up the nota-
tional framework as well as the general philosophy of inapproximability results.
It also defines the six canonical problems. Sections 10.2 to 10.5 prove inapprox-
imability results for representative problems in Classes I to TV. Section 10.6 is
a succinct (by no means exhaustive) overview of other inapproximabilty results
and where they are proved. Section 10.7 is an introduction to the PCP Theorem
and how it is used in proving inapproximability results. Section 10.8 lists im-
portant research problems. Finally, Section 10.9 briefly describes how the results
of this chapter were discovered. That section also provides references to further
reading.

REMARK 10.1 Notation We describe, using MAX-3SAT as an example, the
notation we will use for describing optimization problems. Such problems in-
volve optimizing some objective function on a set of feasible solutions. In the
MAX-3SAT problem, the input is a 3CNF formula, and the goal is to find an
assignment that maximizes the number of satisfied clauses. Thus the feasible so-
lutions are truth assignments, and the value of the objective function on a truth
assignment is the fraction of clauses that it satisfies. We let MAX-3SAT(T) de-
note the maximum value of this objective function for a 3CNF formula 7. Note
that MAX-3SAT(7) < 1. We will likewise express the objective function for many
other problems as a ratio (i.e., a pure number).

REMARK 10.2 Quasi-NP-hardness Many inapproximability results in this
chapter show that achieving a certain approximation ratio is NP-hard. This im-
plies that if some polynomial-time algorithm achieves that approximation ratio,
then NP = P. Other results in this chapter are slightly weaker; they show only
that the approximation is Quasi-NP-hard. A problem is Quasi- NP-hard if any
polynomial-time algorithm for it can be used to solve all NP-problems in quasi-
polynomial (i.e., QPOIV(IOg”)) time. Since NP-complete problems are conjectured

2 CHAPTER 10 HARDNESS OF APPROXIMATIONS

for proving the hardness of decision problems (for example, non-optimization
problems such as SAT or TILING) than of approximation problems.

Recent work has yielded a fairly general technique for constructing gap-
producing reductions. This new technique, which originated in the work of
[FGLT91], relies upon new probabilistic characterizations of the NP class. The
most well-known such characterization is the so-called PCP Theorem, written as
NP = PCP(logn, 1) [AS92, ALM*92]. Section 10.7 provides an introduction to
the PCP Theorem.

The proof of the PCP Theorem involves complicated algebraic techniques
from complexity theory, and will not be given here. Luckily, understanding the
proof is not a prerequisite for using the theorem in inapproximability results.
In particular, this survey describes all major inapproximability results, while
requiring from the reader only some familiarity with the basic notions of NP-
completeness. The first few chapters of the well-known book by Garey and John-
son [GJ79] provide all necessary background.

As described in earlier chapters of this book, the chief parameter of interest
when studying the approximability of a problem is the approzimation ratio that
can be achieved by a polynomial-time approximation algorithm. An algorithm
achieves an approrimation ratio « for a maximization problem if, for every in-
stance, it produces a solution of value at least OPT/«, where OPT is the value
of the optimal solution. (For a minimization problem, achieving a ratio « in-
volves finding a solution of cost at most & OPT.) Note that the approximation
ratio is > 1 by definition. (Other chapters of this book use a slightly different
convention, according to which approximation ratios for maximization problems
are < 1.)

Recent inapproximability results divide problems into four broad classes,
based on the approximation ratio that is provably hard to achieve. These ap-
proximation ratios are, respectively, 1+ ¢ for some fixed ¢ > 0, Q(logn), 9log' ~n
for every fixed v > 0, and n® for some fixed § > 0 (throughout, n denotes the in-
put size). The corresponding classes of problems are called Classes T, T, TTT, and
TV respectively. Tnapproximability results for problems within a class (sometimes
also across classes) share common ideas. We devote a section (from 10.2 to 10.5)
to each class. Tt should be noted that our classification reflects only (the limits
of) our current understanding of the area; future work may reveal other natural
classes, or collapse two classes, or move problems from one class to another. To
give an example, all problems in Class IIT are believed to also lie in Class IV,
although a proof of this eludes us.

This survey also proposes six “canonical” inapproximable problems, which
can be used to derive all known inapproximability results in a fairly simple way.
(Our framework of canonical problems is derived from the one in [Aro94].) Thus
our six problems play a role in inapproximability results similar to that played
by the six canonical problems of [GJ79] in proving the NP-completeness of exact
optimization. Furthermore, just as 3SAT is the most basic canonical problem in
[GJT9], its optimization version, MAX-3SAT, is the most basic canonical problem
in this chapter. As we will show, (see Figure 10.1 on page 7) reductions from
MAX-3SAT can prove the hardness of all the canonical problems.

We emphasize that the framework presented in this chapter is not a way to

C H A P T E R

10

HARDNESS OF
APPROXIMATIONS

Sanjeev Arora Carsten Lund

Abstract

This chapter is a self-contained survey of recent results about

the hardness of approximating N P-hard optimization problems.
1

This chapter surveys recent results on the hardness of approximating NP-
hard optimization problems. According to these results, computing good ap-
proximate solutions to many problems is NP-hard — and hence no easier than
computing exact solutions.

In general, proving the NP-hardness of an optimization problem involves a
reduction from SAT (or any other NP-complete problem) to the problem. To
prove the hardness of approximation, this reduction must produce a gap in the
value of the optimum. For instance, proving the NP-hardness of approximating
the mazimum clique problem within a factor g requires coming up with a reduc-
tion from SAT to CLIQUE that maps satisfiable formulae to graphs with clique
number at least K (for some K'), and unsatisfiable formulae to graphs with clique
number at most K/g.

For along time it was unclear how to construct such gap producing reductions
for Clique and many other important optimization problems. The Cook-Karp-
Levin [Coo71, Kar72, Lev73] techniques for doing reductions seemed more suited

1Copyright 1996 by PWS Publishing Company, Bosston, MA, with all rights
reserved. This chapter will appear in the book Approzimation Algortthms
for NP-Hard Problems (ed. Dorit Hochbaum) to be published by PWS. For more
information on this or other PWS publications, please contact info@pws.com or
http://www.pws.com.

Sanjeev Arora is supported by NSF CAREER award CCR-9502747.

1

